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1.0 INTRODUCTION 
Gears are the most widely used elements in both applications such in consumer and industrial machineries. As 
we know, gear types may be grouped into five main categories, namely, spur, helical, rack and pinion, worm and 
bevel. As referred to in (Babu and Tsegaw, 2009; Bradford and Guillet, 1943; Higuchi and Gofuku, 2007), these 
are the most common curves used for the gear tooth profiles. These curves are developed based on the 
approximation theory, for instance; the development of involute curves has used a Chebyshev approximation 
(Higuchi and Gofuku, 2007). Besides, the tracing point method has also been applied along the path (shape) 
design of involute curves (Margalit, 1995; Reyes et al., 2008; Yeung, 1999). Therefore, several methods and 
concepts have been employed in the generation of involute curves. With reference to the above evidence, it 
shows that this involute curve is not directly produced and is shown as the approximated (inexact) curves. For 
these reasons, we propose the theoretical developments of the exact (or known as the transition) curves using 
the parametric function. 

Mathematically, parametric function is a method to define a relation between the independent (free) 
variables. Previously, Ali (1994) and Ali et al., (1996) explored the parametric of Bézier-like cubic curve using 
Hermite interpolation. They are, however, only focused on the function developments, while the scope of 
designs through the proposed curves is not touched upon. Therefore, in this study, we use the Bézier-like cubic 
curve approach as the degree three (cubic) polynomial curves that allow the inflection points. This is due to the 
approach is suitable for G2 (curvature) blending application curves and also contains the shape parameters 
which can control the shape of the curve (Ali, 1994; Ali et al., 1996; Walton and Meek, 1999). As compared to the 
cubic Bézier curves, the shape parameters are not automatically included (Rashid and Habib, 2010; Habib and 
Sakai, 2008). Figure 1 shows the method of designing the transition curves will follow the five cases of clothoid 
templates as was identified by Baass (1984) and successfully used in highways or railways design. These 
templates are crucial to determine the design parameters in order to ensure the comfort and safety of road users 
(Baass, 1984). The templates are 1) straight line to circle, 2) circle to circle with C transition, 3) circle to circle 
with an S transition, 4) straight line to straight line and 5) circle to circle where one circle lies inside the other 
with a C transition (Walton and Meek, 1999; Baass, 1984; Walton and Meek, 1996). Figure 2 shows the profiles 
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design where the third and fifth templates are similar to the involute curves. In this study, these two templates 
with the application of Bézier-like cubic curve function are therefore chosen to redesign a spur gear teeth 
profile. By using the new method, the curve is directly generated with the significant increases in accuracy, and 
also the actual spur gear profile can be produced through this method.   

This study will continue to find out the applicability of the new profile generation and the gear material 
through Stress-Strain Analysis, Fatigue Analysis and DE. FEA is the most common tools for the analysis while 
Stainless Steel Grade 304 is chosen for the selection of material in this study. This gear material is often selected 
for gear application since it has an aesthetic appearance, ease of fabrication and good in impact resistance. The 
scheme in Stress-Strain Analysis known as a Linear Static Analysis is used to determine many of the physical 
structures such in the stress, force and displacement distributions (Westland, 2006; Sapto and Safarudin, 2008). 
Many of the studies use this linear scheme to determine the structural applicability between the involute 
profiles and the gear material (Feng, 2011; Gurumani and Shanmugam, 2011; Reagor, 2010). However, there is 
no related study for the proposed curves. The retrieved values from Linear Static Analysis will be further 
explored in Fatigue Analysis and DE where both are strongly connected to the safety factor (Moultrie, 2009; Khai 
et al., 2007; Niederstucke et al., 2003; Firth and Long, 2010). Incidentally, the descriptions of DE in the design 
area are still less-decrypted. Figure 3 shows one of the applications using Linear Static Analysis. The next section 
will explain the nomenclature used in this study.  
                                                                            

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Railways route design modeling using transition curves application. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Third (left) and fifth (right) cases of circle to circle templates. (Baass, 1984; Walton and Meek, 1996; Meek and Walton, 1989). 
 
 
 
 
 
 
 
 
 
 

Figure 3: Automotive crankshaft in Linear Static Analysis. 
 
 
2.0 NOMENCLATURE 
Consider the notations such as symbol and unit in the nomenclature, as shown in Table 1. This nomenclature is 
the basic foundation of Linear Static Analysis (M Britto, 2005). 

It is noticed that the unit of these input and output parameters will be based on the system of units that 
are applied in the solid model. Table 1 is extensively used for the analysis purposes. In the next section, we will 
explore the description method of the designing of spur gear using S transition and C spiral curves.  
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Table 1: Some of the parameters that are commonly used in the system of units 

 

System of Units 
Input Parameters Output Parameters 

Length, ζ Force, ƒ Mass, η Density, ρ Displacement, δ Force, ƒ Stress, υ 

1 m N kg kgm-3 m N Pa 

2 mm N mg mgmm-3 mm N MPa 

3 ft Ibf slug slugft-3 ft Ibf psf 

4 in Ibf Ibf.s2in-1 Ibf.s2in-4 in Ibf psi 
  

 
 
3.0 METHOD OF DESCRIPTIONS 
 

3.1 Bézier-Like Cubic Curve as a Function 
Bézier-like cubic curve (also known as the cubic alternative curve) is a new basis function in the field of 
Computer Aided Geometric Design (CAGD). Bézier-like basis function simplifies the process of controlling 
the curve since it has only two shape parameters, λ0 and λ1 to control or change the shape of the curve 
such in Figure 4, compared to the cubic Bézier curve for which the control points need to be adjusted 
(Farin, 1997). Bézier-like cubic curve is formulated by applying the form of Hermite interpolation given 
by (Ali, 1994; Ali et al., 1996; Ahmad, 2009).    
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Figure 4: Distribution of Bézier-like cubic curves with the different values of λ0 and λ1. 
 

In the next subsection, we will explain the control points identification in Bézier-like cubic curve 
based on the circle to circle template (Figure 2) 
 
3.2 Third Case of Circle Templates as an S-Shaped Transition Curve 
The cubic Bézier curve had been predominantly used in curve design, as shown in studies by Habib and 
Sakai (2003) and Walton and Meek (1999). The similarity between this function and Bézier-like cubic 
curve is that both functions have four control points. By referring to Habib and Sakai (2003), the control 
points are stated as 
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where, c0 and c1 are the centre points of circles ψ0 and ψ1, r0 and r1 are the radii of circles ψ0 and 

ψ1, h and k are the length or norm of 01, PP  and 23 , PP
 
while α is an angle's circles measured 

anticlockwise. These control points are unique only in the case of the S-shaped transition curve. The 
improvements are made in Eq. (4) to increase the degree of freedom and its applicability such 
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with the angles in the circle {ψ0, ψ1} denoted as α and β which are measured anticlockwise. The 

other parameters remain the same as in Eq. (4). The value of h and k will be calculated by using the 
curvature continuity (G2 continuity) shown as 
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By applying these theories, an S-shaped curve is demonstrated in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5: An S-shaped transition curve produced by using G2 Bézier-like cubic curve. 
 
 

3.3 Fifth Case of Circle Templates as a C-Shaped Spiral Curve 
The fifth case will produce a type of C-shaped transition curve as a single spiral (Baass, 1984; Walton and 
Meek, 1996; Habib and Sakai, 2005). The curve architecture in transition and spiral curves is totally 
different from the segmentations used. As shown in Figure 6, three segments are needed to design C-
shaped transition curve whereas only two segments are used in C-shaped spiral curve.   
 
 
 
  
 
 
 
 
 
 

 

Figure 6: Transition (left) and spiral (right) curves architecture applied in cubic Bézier curve (Walton et al., 2003). 
 
 

We now identify the control points as in (Habib and Sakai, 2003) 
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Where the notations are the same as in Eq. (4). The definitions in Eq. (7) will produce a C-shaped 

transition curve which is related to the second case (Walton and Meek, 1999; Baass, 1984 ; Walton and 
Meek, 1996). Modifications of Eq. (7) are needed for fifth case template, and therefore, we have 
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where {c0, r0, β} is the centre point, radii and angle of the circle, ψ0 while the centre point, radii and 

angle in the circle, ψ1 represented as {c1, r1, α}. Parameter h and k are the length or norm of 23 , PP  

and 01, PP . In order to design C spiral curve, the segments used in Eq. (8) should be reduced (Walton et 
al., 2003) by assuming that 
 

21 PP                                                                                           (9) 
 

Then, in Eq. (9) either h or k can be eliminated by using a dot product. If the parameter chosen is k, 
the expression will be dotted with a vector, }sin,{cos   where 
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The modified control points that satisfy the fifth case template (C spiral curve) are given by 

 

  
}sin,{cos*

}cos,{sin*
  }sin,{cos*

113

01

000







rcP
kPP
rcP







                                                                 (11) 

 
In order to join C spiral curve with the circles, we will need to apply the curvature continuity such 
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This continuity is also used to determine the shape parameters, λ0 and λ1 in Eq. (3). A generated C-

shaped spiral curve is visualized in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: C-shaped curve in the fifth case of circle templates using G2 Bézier-like cubic curve. 
 

Both curve theories will be applied to redesign a profile (tooth) of the spur gear. Currently, an 
involute or evolute curve is always used in designing this spur tooth profile. 
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4.0 SPUR GEAR DESIGN 
 

4.1 Modeling of Spur Gear 
Traditional spur gears have the teeth which are straight and parallel to the axis of the shaft that conveys 
the gear (Mott, 2003). Normally, the teeth have an involute form where this form can be acted as in 
contacting the teeth (Mott, 2003). Figure 8 shows a schematic and related terminology for spur gear 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Some of the terms in spur gear (Price, 1995). 
 

Based on Figure 8, an inner circle and an outer circle can be drawn, and smaller circles can be fitted 
within their boundaries, as shown in Figure 9. This resulting structure will be used to design a profile 
(tooth) of the spur gear. 
 
 
 
 
 
 
 
 

Figure 9: A new basis model of designing a spur gear tooth. 
 
4.2 Single Tooth Design uses an S-Shaped Transition Curve 
By applying the segmentation of divisions, two segments are divided to create this single tooth. This is 
because an S-shaped curve has the beginning point at the tangent of base circle and ending at the tangent 
of the outside circle. For the first segment, the inputs are c0 = {-0.398, 0.689}, c1 = {0, 0.795}, α = 0.6667π 
radian, β = 0.5π radian, r0 = r1 = 0.206 are used, while for segment two, the inputs are c0 = {0.398, 0.689}, 
c1 = {0, 0.795}, α = 0.3333π radian, β = 0.5π radian and other parameters remain the same as in segment 
one.  Then, h and k are determined to be 0.2779 and 0.3780 in accordance with the inputs and theories 
above. Notice that, the value of h and k is similar in both segments. Figure 10 shows the design of the 
tooth and its segmentation using an S-shaped transition curve. 
 
 
 
 
 
 
 
 
 

 

Figure 10: Single tooth of spur gear using an S-shaped transition curve (left) and its segmentation (right). 
 
4.3 Single Tooth Design uses a C-Shaped Spiral Curve 
In this case, Figure 9 is modified to suit the elements in designing a C-shaped spiral curve (Subsection 
3.3). The small circles are drawn at the intersection of two circles. For this curve, it needs four segments 
to design a single tooth of the spur gear. Segment one consists of c0 = {-0.398, 0.689}, c1 = {-0.247, 0.725}, 
α = 0.05556π radian, β = 0.6667π radian, r0 = 0.206 and r1 = 0.05. The values of k and shape parameters, 
λ0, λ1 are computed by using the Eqs. (3), (10), (11), and (12). We found that k = 0.1431 whereas λ0 and λ1 
are equal to 2.7695 and 0.3619, respectively. For segment two, the inputs are c0 = {0, 0.795}, c1 = {-0.247, 
0.725}, β = 1.5π radian while the rest is exactly the same as in segment one. This time, k and shape 
parameters, λ0, λ1 are found to be 0.2449, 2.1279 and 0.5343, respectively. These two segments have a 
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symmetrical curve which can be defined as mirroring or balancing to segment three and four. Thus, 
segment three and four have the similar shape to segment one and two, respectively (Du Sautoy, 2009). 
Figure 11 shows the design of the tooth and its segmentation using this C spiral curve. Next, we will apply 
the single tooth designs using both developed curves in order to design a solid model of the spur gear. 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: Single tooth of spur gear using a C-shaped spiral curve (left) and its segmentation (right). 
 
4.4 S Transition and C Spiral as the Shaped Curves in Solid of Spur Gear 
In Computer Aided Geometric Design (CAGD), the surface design technique is commonly used where this 
technique has several design and surface properties to be considered (Bloor et al., 1995), difficult to 
extrude as a solid model and unsuitable in Computer Aided Analysis (CAE) purposes. To solve these 
problems, the integration of Mathematical and Computer-Aided Design (CAD) may be applied. Wolfram 
Mathematica 7.0 and CATIA V5 are both selected as the integrated software of the designing of the solid 
model of the spur gear. The following process flow diagram is used to show the integration of both 
software and its applications in spur gear design (Figure 12). Two models of six gear teeth are developed 
with the outside and shaft diameters as well as the gear thickness are 40.04 mm, 5.672 mm and 4 mm 
(Figure 13). 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Integrated process flow diagram used in designing a solid model of the spur gear. 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 13: Solid of spur gear using S transition (left) and C spiral (right) curves. 
 

We will extend these solid design structures to analyze its applicability of the new tooth profiles 
with the gear material using Linear Static Analysis.  
 
 

5.0 LINEAR STATIC ANALYSIS 
 

5.1 Fundamental of Linear Static Analysis 
Most of the structural problems can be treated as a linear static problem if and only if the several 
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assumptions are made such as linear behavior, elastic material and static loads (Ziaei Rad, 2011). The 
scenario of the assumptions is shown in Figure 14. One of the applicabilities of Linear Static Analysis is to 
find out the structural response of the bodies' spinning with the effect of the velocities or accelerations 
are constants since the applied loads are static (do not change with time). This analysis measures the 
responses of the displacement, strain (deformation), stress and reaction force. The linear static problem 
can be simplified using the expression of the linear matrix system such 
 

}{}]{[ FxK                                                                                      (13) 
where, 

 
[K] is the structural (assembled) stiffness matrix or square matrix of order (n x n), {x} are the 

unknown parameters (displacement, strain and stress) of order (n x 1) while {F} is the loading in the 
system represents the matrix of the order (n x 1). For the solution of {x}, the matrix solver that will be 
used is FEA. The next subsection will explain the FEA solver and its structural modeling.  
 
 
 
 
 
 
 
 
 
 

 

Figure 14: Linearity and elastic material assumptions in the static analysis (Hamburger, 2000). 
 
5.2 FEA Solver and Its Modeling 
MSC Nastran & Patran is the FEA software chosen as the preferred solution for Linear Static Analysis. The 
following process flow diagram is the FEA processes that will be applied using this software, as shown in 
Figure 15 (Sapto and Safarudin, 2008; Daryl, 2006). 
 
 
 
 
 
 
 

 
 

Figure 15: Process flow diagram of MSC Nastran & Patran and its FEA application. 
 

5.2.1 CAD models and its meshes 
The CAD or solid models (Figure 13) will be imported to MSC Patran software as the starting 
process of the Linear Static Analysis (FEA). The selection of the element model in FEA is very 
crucial and will be determined the overall process of the analysis. The gear structures (Figure 13) 
are the Three-Dimensional (3D) geometry solid models that reveal the complex structures. Solid 
element models are widely used to analyze the complex elements such as structural components 
and loading conditions and also the estimation of the stress levels (Fellipa, 2009; Entrekin, 1999). 
The element topology that is chosen for the structure (Figure 13) is Tetrahedral-10 (Tet-10) that 
represents a 3D solid triangle with four planar faces and ten nodes (Fellipa, 2009; Fellipa 2011), as 
shown in Figure 16. The Tet-10 or second order tetrahedral element is commonly used for its 
ability to mesh almost any solid regardless of its complexity (Entrekin, 1999; Said et al., 2012). The 
resulting of the applied Tet-10 is shown in Table 2 and Figure 17. 
 
 
 
 
 
 
 

Figure 16: Tet-10 element's topology (Sapto and Safarudin, 2008; Fellipa, 2011). 
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Table 2: Tet-10 and its mesh data structures 
 

Solid of the spur gear (S transition) Solid of the spur gear (C spiral) 

Global Edge Length Nodes Elements Global Edge Length Nodes Elements 

1.0551234 34897 22448 1.011111 34854 22668 
  

 
 
 
 
 
 
 
 
 
 
 

Figure 17: Tet-10 and its spur gear meshing of the applied curves, S transition (left) and C spiral (right). 
 
5.2.2 Boundary and loading conditions 
The next process is the setting of the boundary and loading conditions on the solid model (Figure 
17). Boundary condition can be referred as the external load on the border of the structure (Feng, 
2011). As this case, the boundary condition is applied on the gear shaft (Figure 17) where in this 
shaft, the displacement does not happen (is equivalent to zero) (Nikolić et al., 2012; Lee, 2009). 
This is the important setting to simulate the gear transmission (Feng, 2011). Many of the 
references used Torque (T) as the applied load (loading condition) for their analysis and 
application (Feng, 2011; Nikolić et al., 2012; Lee, 2009). In order to find out the new tooth profiles 
and its applicability (Figure 13), the suitable load to be applied is Pressure (P) which this load is set 
on the contact stress of both spur gear models (Figure 17) (Gilbert Gedeon, 1999; Wang et al., 
2011). The critical region of the contact stress is shown in Figure 18 (Rameshkumar et al., 2010). 
Figure 19 shows the setting of both conditions in the models (Figure 17). One of the conditions, P is 
applied as 50 MPa 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 18: The critical region (two dots along the blue line) of the contact stress in the tooth profile (Rameshkumar et al., 2010). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 19: Spur gear model using C-spiral curve with its boundary conditions and load, P = 50 MPa. 
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5.2.3 Material selection for spur gear 
Stainless Steel Grade 304 also known as AISI 304 is widely used in the range of applications such as 
a gear material (Zehe et al., 2002). This grade of material is the type of Austenitic Stainless Steels 
for the highly contained of Chromium and Nickel. These Steels have high ductility and ultimate 
tensile strength and also low yield stress. Figure 20 shows one of the cases of Austenitic Stainless 
Steels when compare to a Typical Carbon Steel. It can be seen clearly that the stability region is 
occurred in the types of Austenitic while the Carbon type has an instability diagram (Figure 20). 
The mechanical properties of the AISI 304 are presented in Table 3. These properties will be used 
in this static analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: Stress-strain behavior of the Austenitic and Carbon Steels. 
 
After applying the above settings on the models (Figure 19), it is ready to analyze using MSC 

Nastran & Patran software (Figure 15). The processor of Intel ® Core ™ 2 Duo CPU with the RAM, 
3.49 GB is used to operate the software. The resulting of this process will be discussed in the next 
subsection.  

 
Table 3: AISI 304 and its characteristics (Peckner and Bernstein, 1977) 

 

Modulus of 
Elasticity 

Yield 
Strength 

Ultimate 
Strength 

Poisson 
Ratio 

Density 
Damping 

Coefficient 
195 GPa 215 MPa 505 MPa 0.29 8 gcc-1 0.003 

  
 

5.2.4 Simulation results and its safety factor 
The discussion began with the presentation of the generated results using Linear Static Analysis. 
These results of the proposed models will be compared with the existing model. The existing model 
(EM) is directly designed using the graphical properties in CATIA V5 with the dimensions remained 
the same. Table 4 shows the maximum Von Mises stress (υmax) and maximum displacement (δmax) 
distributions among the models through the repeated loads. Hence, the safety factor (Sf) or also 
known as a design margin (Michalopoulos and Babka, 2000) can be derived as in Eq. (14) (Clifford 
et al., 2008; Shenoy, 2004) and where the yield strength of AISI 304 can be found in Table 3. 
 

max

 
f

304 AISIof  StrengthYieldS                                                                 (14) 

 
Table 4: The result distributions of δmax, υmax and Sf in the applied models 

 

P 
(MPa) 

EM S Transition C Spiral 
δmax  

(mm) 
υmax  

(MPa) Sf 
δmax 

(mm) 
υmax  

(MPa) Sf 
δmax  

(mm) 
υmax 

(MPa) Sf 

10 5.93E-3 61.3 3.507 5.99E-3 61.9 3.473 5.77E-3 62.5 3.440 
20 1.19E-2 123 1.748 1.20E-2 124 1.734 1.15E-2 125 1.720 
30 1.78E-2 184 1.168 1.80E-2 186 1.156 1.73E-2 187 1.150 
40 2.37E-2 245 0.878 2.40E-2 248 0.867 2.31E-2 250 0.860 
50 2.97E-2 307 0.700 3.00E-2 309 0.696 2.89E-2 312 0.689 

  
 

Figure 21 depicts the contour plot of determining the presented values of υmax and δmax 
(Table 4) for the applied P = 30 MPa. It is clearly shown in the plot legend that δmax approximates to 
1.73E-2 at the node, 34450 while the value of υmax is equal to 187 MPa at the node, 27631. The υmax 
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(red color) occurs in the gear shaft because of the model (Figure 17) is analyzed in the steady state 
(static) behavior (Boulos et al., 1997). The resulting of υmax (P = 30 MPa) is far below the yield 
strength of AISI 304. Therefore, Sf approximates to 1.15 (Table 4). Failure occurs if and only if Sf < 1 
or Sf has the negative sign (Michalopoulos and Babka, 2000). All gear models in Table 4 are safe to 
be used if P  30 MPa whereas the models are in failure modes if P > 30 MPa. These inequalities 
show that the new teeth profiles (S transition and C spiral curves) have the same applicability 
(strength) when compare to the EM. The findings in Table 4 will be used to predict when the failure 
(fatigue) modes start to occur among the gear models. This fatigue prediction will be discussed in 
the next section. 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 21: The example of findings {δmax, υmax} for the applied P = 30 MPa in C spiral gear model.  
 
 

6.0 FIRST-ORDER NEWTON INTERPOLATING POLYNOMIAL AS A FATIGUE PREDICTOR 
Fatigue can be described as a failure mode that happened on the structure design which this structure is affected 
by the implications of repeated or varying loads, fluctuating loads and rapidly applied loads (Pun, 2001). Fatigue 
also can be occurred by the different physical mechanisms such as low-cycle and high-cycle fatigue (Pun, 2001). 
As referred to in failure mode above, let assume that the fatigue starts to occur if Sf = 1. Due to this Sf, the related 
load will be predicted using the Newton’s Interpolating Polynomial. The general form of this polynomial such 
(Chapra and Canale, 2010). 

 
))...()((...))(()()( 110102010n  nn xxxxxxbxxxxbxxbbxf                       (15) 

 
Where, n is referred to as the nth-order polynomial, b0, b1, b2 and bn are the polynomial coefficients and 

the set of (n+1) data points represented by {xi, f(xi)} with i = {0, 1, 2, 3,…, n}. The polynomial coefficients also can 
be shown as (Chapra and Canale, 2010). 

 
],,[ ];,,[];,[);( 0110122 011 00 xx,...,xxfbxxxfbxxfbxfb nnn                              (16) 

 
And the bracketed functions are evaluated using the Finite Divided Differences where (Chapra and 

Canale, 2010). 
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We can see clearly in Table 4 that the fatigue of the models starts to occur in the range of P  [30, 40] that 

allows only two data points. Therefore, the First-Order Newton Interpolating Polynomial or known as Linear 
Interpolation is the suitable polynomial to be applied.  Let P is denoted as x-axis while Sf is equal to f(x) or y-axis. 
The first-order or linear form (n = 1) is given as 

 
)()( 0101 xxbbxf                                                                          (18) 

 
With b0 and b1 are calculated using Eqs. (16) and (17). The algorithms of using this linear interpolation 

include four steps such as: Set x0, x1, f(x0) and f(x1); Calculate b0 and b1; Substitute x0, b0 and b1 into f1(x); Solve x 
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for f1(x) = 1. All calculated values of x among the models (Table 4) are fully depicted in Table 5. It shows that the 
models are in safety mode if P  35 MPa while the fatigue may start occurring when P > 35 MPa. 

 
Table 5: The Initial loads of P for the fatigue mode 

 

EM S Transition C Spiral 
35.7931 MPa 35.3979 MPa 35.1724 MPa 

  
 

With the reference of Table 5, the values in this table will be used to determine the Design Efficiency (DE) 
for the proposed models. Further discussion of DE will be explained in the following section. 

 
 

7.0 DESIGN EFFICIENCY OF THE PROPOSED DESIGN MODELS 
Design Efficiency (DE) or Sensitivity Analysis (SA) relates to the design quality (Aas, 2000; Azarian et al., 2011) 
that can achieve the stated objectives of the certain studies such in this study, to find out the applicability of the 
new teeth design with AISI 304 as the selected material. Generally, the levels of DE in the engineering field are 
almost 85 % and above.  Hence, 85 % can be assumed as the benchmark of the improvements that will be made 
(Gupta et al., 2006). Let make the assumptions in Table 5 that EM equivalents to the true value, xt (input) 
whereas S Transition and C Spiral are represented as the approximation values, xa (output). Thus, DE can be 
expressed as (Khai et al., 2007). 

 

%100)(
t

a 
x
x

Input
OutputDE                                                           (19) 

 
After applying Eq. (19), DE of an S Transition approaches to 99% while for C Spiral method approximates 

to 98%. Both results have shown that DE almost achieved 100% of the design effectiveness. With reference to 
the above mentioned benchmark (85%), the proposed designs are the acceptable methods of designing the spur 
gear teeth with AISI 304 as the selected material. 
 
 
8.0 CONCLUSIONS AND FUTURE WORK 
This study has proposed the designing of spur gear teeth using S-shaped transition and C-shaped spiral curves 
(directly produced). Circle to circle templates have successfully been applied in both curves design. The solids of 
spur gear have been generated by the integration between Mathematical and CAD software. The applicability of 
the proposed design and the material, AISI 304 is measured using Linear Static Analysis, Fatigue Analysis and 
DE. First-order Newton interpolating polynomial can be employed as a fatigue predictor for all design models. 
As referred to in Table 4, all models are in safety mode if P  30 MPa while in failure mode if P > 30 MPa. 
Generally, fatigue starts to occur when P > 35 MPa in all design models whereas the models are safe to use in the 
related applications if P  35 MPa. The applicability (strength) of the proposed design, S and C curves are the 
same when compare to EM as shown in the above analyses. The new design methods, S and C curves are the 
acceptable methods of designing the spur gear teeth as both methods have presented DE greater than 85 % of 
the design effectiveness. In future, this study will continue in the analysis of dynamic and acoustic features such 
as normal, frequency and transient modes and also in the noise test. 
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