Study the Parameter Optimization in the Injection Molding

Thesis submitted in accordance with the partial requirement of the Universiti Teknikal Malaysia Melaka for Bachelor of Manufacturing Engineering (Manufacturing Process and System)

By

Suhaila Binti Yacob

Faculty of Manufacturing Engineering
May 2007
BORANG PENGESAHAN STATUS TESIS

JUDUL: STUDY THE PARAMETER OPTIMIZATION IN THE INJECTION MOLDING

Saya SUHAILA BT YACOB

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Kolej Universiti Teknikal Kebangsaan Malaysia.
2. Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

☐ SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyetidikan dijalankan)
☐ TIDAK TERHAD

(TANDATANGAN PENULIS)

Disahkan oleh: [signature]
(TANDATANGAN PENYELIA)

Alamat Tetap:
1370, KG GUNUNG RENG.
17600, TANAH MERAH
KELANTAN

Tarikh: 13th MAY 2007

Cop Rasmii:

[signature]

TARIKH: 21/8/07

* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertai bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
APPROVAL

This thesis submitted to the senate of UTEM and has been accepted as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process). The members of the supervisory committee are as follow:

[Signature]
Main Supervisor

[Signature]
Co-Supervisor
DECLARATION

I hereby declare this thesis entitled “Study the Parameter Optimization in the Injection Moulding” is the results of my own research expected as cited in the reference.

Signature :
Author’s Name : SUHAILA BINTI YACOB
Date : 5 May 2007
ABSTRACT

This project describes about the study of the parameter optimization using the design of experiment (DOE) by using the method two factorial designs. DOE using 2k factorial design for obtain the parameter optimum of the plastic container product by using the polypropylene as the material. For achieve optimization that a few objectives have been used on this project reach to find out the optimum parameters of pressure in plastic injection moulding the real situation, to understand the parameters relationship the injection moulding process, to optimum the parameters of injection pressure, holding pressure, back pressure and clamping pressure and to product plastic product without defect. In this study the Arburg-420C injection moulding machine and mould of container are use to find out the parameters involve for producing a product plastic container. The parameters involve injection pressure, holding pressure, back pressure and clamping pressure were 1 be identified. Then Polypropylene material was be used in this study which they are different in term of viscosity, density and melt flow index. The problem faced which the optimum data parameter was be documented until no defect found at the plastic product. The purpose of this project is to study about the parameters of pressure such as clamping pressure, back pressure, holding pressure and injection pressure that use in the injection moulding process. The optimum parameter is important because they related in produce product without defects such as short moulding, flashing and others. By this project found out the result of product and obtain the optimum parameter and successful produce the good product by knowledge and skill in setting the condition of parameter.
ABSTRAK

DEDICATION

For my beloved mother
Hamidah Binti Yusof
Who always been there for me and always prays of me

For my beloved sister
Kamilah Binti Yacob

For my beloved brother
Sakifi Bin Yacob
Azmi Bin Yacob

For my beloved young brother
Mohd Zamri Bin Yacob

For my beloved friend
Ezril Jamaludin
Norhaniza Binti Kamarudzaman
Who has support me
ACKNOWLEDGEMENT

Appreciation is expressed to those who have reviewed and contribution to this project. I am specially alhamdullilah to Allah S.W.T to give all the guidance and also blessing me, to following indebted individuals especially to my supervisor Mr Mohd Amran bin Mohamad Ali, for your kindness advises guidance in developing and producing this work, moral support until my project completed. And I want to thank Mrs.Rosidah Jaafar for being my second advisor. I also would like to thank for Fauzi as technician at casting lab for their helping in using the 420C injection moulding machine. I thank to our lecturer in FKP and technician Mr Fauzi, too numerous to mention, have share their input and contribution on how to make this project more effective as a teaching and learning tool. To all those who have helped, I expressed my sincere thanks. Last, but certainly not be least, continually encouragement and support from my family and friends is deeply and sincerely appreciated.
TABLE OF CONTENTS

Abstract... i
Abstrak... ii
Dedication... iii
Acknowledgement... iv
Table of Contents... v
List of Figures... x
List of Tables... xii
Sign and Symbols... xiv

1.0 INTRODUCTION

1.1 Introduction of the research... 1
1.2 Objectives of the research... 2
1.3 Purpose of the study.. 3
1.4 Project scope... 3
1.5 Problem statements... 3
1.6 Advantage of the precise parameter in produce product of moulding... 4
1.7 Application of the research... 4
1.8 Thesis structure... 5

2.0 LITERATURES REVIEW

2.1 Introduction... 7
2.2 Categorizing of parameters... 8
 2.2.1. Temperature
 2.2.1.1 Temperature of material... 10
 2.2.1.2 Temperature of the mould... 11
 2.2.1.3 Temperature of the oil... 12
 2.2.2. Pressure
2.2.2.1 Injection pressure..13
2.2.2.2 Holding pressure... 13
2.2.2.3 Clamp pressure... 13

2.2.3 Time
2.2.3.1 Injection time... 14
2.2.3.2 Cooling time... 14
2.2.3.3 Clamp time... 15

2.2.4. Distance
2.2.4.1 Mould close distance.................................... 15
2.2.4.2 Injection distance....................................... 16
2.2.4.3 Mould open distance................................... 18

2.3. ARBURG ALLROUNDER 420C injection moulding machine......... 19
2.3.1 The Element in the injection moulding machine............... 20
2.3.2 Machine operation... 21
2.3.3 Machine Components.. 23
 2.3.3.1 Injection system.. 23
 2.3.3.2 The hopper ... 24
 2.3.3.3 The barrel ... 24
 2.3.3.4 The reciprocating screw............................. 24
 2.3.3.5 The nozzle ... 25
 2.3.3.6 Mould system .. 26
 2.3.3.7 Two plate mould 27
 2.3.3.8 Three-plate mould 28
 2.3.3.9 Cooling channels 28
 2.3.3.10 Hydraulic system 28
 2.3.3.11 Control system 29
 2.3.3.12 Clamping system 29
 2.3.3.13 Moulded system 30
 2.3.3.14 The delivery system 31
 2.3.3.15 Cold runners .. 31
3.0 METHODOLOGY

3.1 Introduction .. 57
3.2 Purpose design of experiment (DOE) ... 58
3.1. Components of Experimentation .. 59
3.3 Choosing an experimental design .. 60
 3.3.1 Experimental goal or objective ... 60
 3.3.2 Problem description ... 60
 3.3.3 Identification of the parameter to be selected and studied 61
 3.3.4 Select the factor level and plans for data collection 61
 3.3.5 Statement of how to conduct the experiment ... 62
 3.3.6 Statement of how to represent the experimental data 62
 3.3.7 Statement of how to analyze the result ... 62
 3.3.8 Discussion section ... 62
 3.3.9 Conclusion section ... 63
3.4 Flow chart planning methodology ... 64
3.5 Flow chart of experiment procedure ... 66

4.0 PROCEDURE EXPERIMENT

4.1 Introduction .. 68
4.2 Equipment use in research ... 69
4.3 Safety in Injection Moulding .. 75

5.0 RESULT AND ANALYZE

5.1. Introduction .. 76
5.2 Result ... 81
5.3 Analyzing data .. 91
5.4 Analyze result
 5.4.1 Analyze for categories 1 ... 95
 5.4.2 Analyze for categories 2 ... 95
 5.4.3 Analyze for categories 3 ... 96
5.4.4 Analyze for categories 4 96
5.4.5 Analyze for categories 5 97

6.0 DISCUSSION
6.1 Introduction .. 98
6.2 Overall observation of the results analysis 98
6.3 Problem faced in this project 103

7.0 CONCLUSION
7.1. Conclusion .. 105
7.2 Recommendation .. 106

REFERENCES .. 107

APPENDICES
A Gantt Chart PSM 1
B Gantt Chart PSM 2
C Study of the parameter temperature
E Study of the parameter temperature
F Study of the parameter temperature
G Study of the parameter temperature
H Study of the parameter temperature
I Study of the parameter temperature
J Study of the parameter temperature
K Study of the parameter temperature
L Study of the parameter temperature
M Study of the parameter temperature
N Study of the parameter temperature
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The categories of parameters</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>The measuring plastic temperature</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>The controlling temperature of mould</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>The mould closing distance</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>The machine ARBURG ALLROUNDER 420C</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Injection moulding elements</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>The injection moulding machine component</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Plastifying cylinder and mould</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>A single screw injection moulding machine for thermoplastics</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>A reciprocating screw, showing the feeding zone, compressing</td>
<td>25</td>
</tr>
<tr>
<td>2.11</td>
<td>(a) Nozzle with barrel in processing position. (b) Nozzle with barrel</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>A typical (three-plate) moulding system</td>
<td>26</td>
</tr>
<tr>
<td>2.13</td>
<td>A two plate mould</td>
<td>27</td>
</tr>
<tr>
<td>2.14</td>
<td>A three plate mould</td>
<td>28</td>
</tr>
<tr>
<td>2.15</td>
<td>The mould system includes a delivery system and molded parts</td>
<td>30</td>
</tr>
<tr>
<td>2.16</td>
<td>Effect of melt temperature of stress</td>
<td>42</td>
</tr>
<tr>
<td>2.17</td>
<td>Melt temperature and lost profit</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Plastic container</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart of component of experiment</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Flow chart planning methodology</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>A schematic of the injection molding machine. ARBURG 420C</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Process flow material into hopper</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Flow chart on a typical injection moulding cycle</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Process removed the three plate mould to injection moulding</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Process of screw movement</td>
<td>73</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.6</td>
<td>Process of mould close</td>
<td>74</td>
</tr>
<tr>
<td>4.7</td>
<td>Process of mould open and ejected par</td>
<td>74</td>
</tr>
<tr>
<td>5.1</td>
<td>Temperature zone at the injection moulding machine</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Type of defects</td>
<td>94</td>
</tr>
<tr>
<td>6.1</td>
<td>Percentage of type of defects</td>
<td>100</td>
</tr>
</tbody>
</table>
LIST OF TABLES

2.1 Characterized of machine ARBURG ALLROUNDER 420C 19
2.2 The injection moulding machine the following specifications 31
2.3 About the mould 35
2.4 The steps for injection moulding process 38
2.5 Advantages and disadvantages of injection moulding process 46
2.6 Parameter changes versus property effect 53
2.7 Number of runs for a 2k full factorial 55
2.8 Notation for 2-level designs 56

3.1 Type of parameter to be selected and control 61
3.2 Two levels of processes parameters 61

4.1 Equipment used in research 69
4.2 Type of safety devices 75

5.1 Five categories of parameters setting 76
5.2 Factor and two levels selected 77
5.3 Categories of parameters setting with the others parameters 78
5.4 Types of temperature zone 80
5.5 Data of the parameters setting in category 1 81
5.6 Data of the parameters setting in category 2 83
5.7 Data of the parameters setting in category 3 85
5.8 Data of the parameters setting in category 4 87
5.9 Data of the parameters setting in category 5 89

6.0 Experiment number from 1 to 21 and type of defects 91
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Experiment number from 22 to 42 and type of defects</td>
<td>91</td>
</tr>
<tr>
<td>6.2</td>
<td>Experiment number from 43 to 63 and type of defects</td>
<td>92</td>
</tr>
<tr>
<td>6.4</td>
<td>The result of defects and good product parameters setting condition</td>
<td>93</td>
</tr>
<tr>
<td>6.1</td>
<td>Problem that occur with injection moulding</td>
<td>100</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>PP</td>
<td>-</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>DOE</td>
<td>-</td>
<td>Design of Experiment</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
<td>Temperature</td>
</tr>
<tr>
<td>UTeM</td>
<td>-</td>
<td>Universiti Teknikal Malayisa Melaka</td>
</tr>
<tr>
<td>PSM</td>
<td>-</td>
<td>Projek Sarjana Muda</td>
</tr>
<tr>
<td>kN</td>
<td>-</td>
<td>Kilo Newton</td>
</tr>
<tr>
<td>Mpa</td>
<td>-</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>mm</td>
<td>-</td>
<td>Milimeter</td>
</tr>
<tr>
<td>Max</td>
<td>-</td>
<td>Maximum</td>
</tr>
<tr>
<td>Min</td>
<td>-</td>
<td>Minimum</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Introduction of the research

Injection moulding can be defined as a process that consists of heating a plastic material to a point at which it becomes soft enough to force into a closed mould, at which point the material cools enough to solidify and form specific product. An injection-moulding machine consists of three basic parts such as the mould plus the clamping and injection units. The clamping unit is what holds the mould under pressure during the injection and cooling. Basically, it holds the two halves of the injection mould together.

There are so many parameters in the injection moulding process that must be controlled to ensure the proper manufacture of a product. All fall into four major categories. These are temperature, pressure, time and distance. The softening or melting of the plastic is achieved by causing the individual molecules within the plastic material to go into motion. This is accomplished by applying heat. There are four heating zones in a moulding machine heating cylinder such as nozzle, front, center and rear. Injection pressure is used to fill the mould to its primary capacity (95%) with molten plastic.

Clamp pressure is used to keep the mould closed against the injection pressure of the incoming molten plastic. Total cycle time of injection moulding process consists of totaling the individual time require for a variety of activities including injection time, cooling time and machine closing and opening time. Material property values can be
altered significantly by adjusting moulding parameters. It has horizontal and vertical moulding machine.

In this case, use the ARBURG 420C horizontal moulding machine because the horizontal moulding is the most common method of injection moulding. Therefore, large number of experienced personnel is available and gravity assists ejected parts to fall freely from the mould. For the advantage using the Injection moulding which it can be used to form a wide variety of products. Complexity is virtually unlimited sizes may range from very small to very large, and excellent control of tolerances is also possible.

Most polymers may be injection moulded, including thermoplastics fiber reinforces thermoplastics, thermostetting plastics and elastomers. The another advantage of injection moulding are high production rates, high tolerances are repeatable, wide range of materials can be used, low labor costs, minimal scrap losses and little need to finish parts after moulding. The disadvantages of injection moulding expensive equipment investment, running costs may be high and parts must be designed with moulding consideration.

1.2 Objectives of the research

This project is an attempt to approach the subject of injection moulding in analytical parameters. The objectives of this project are:

i. To find out the optimum parameters of pressure in plastic injection moulding the real situation.

ii. To understand the parameters relationship the injection moulding process.

iii. To optimum the parameters of injection pressure, holding pressure, back pressure and clamping pressure.

iv. To produce plastic product without any defect.
1.3 Purpose of the study

The purpose of this study is to develop and consideration the type of parameters involves in the injection moulding process for produce a plastic container product. Requirement to study and analyze the parameters by know the purpose application of the parameters in producing the part of the mould for injection moulding.

1.4 Project scope

In this study the Arburg-420C injection moulding machine and mould of container are use to find out the parameters involve for producing a product plastic container .The parameters involve injection pressure, holding pressure, back pressure and clamping pressure will be identified. Then Polypropylene material will be used in this study which they are different in term of viscosity, density and mould flow index. The optimum data parameter will be documented until no defect found at the plastic product.

1.5 Problem statements

The problem faced by many injection companies is the setting data for injection machine did not available if no accurate data available, the mould setter need more time to setting up mould at injection machine. For this study pressure, temperature and time parameters involved in producing product container will be documented and record. This because of the time of setting up for one mould takes longer time. The optimum parameter is importance because they relate to product defect such as short shot, sink mark and flashing. For example, if too high injection pressure the product plastic will out flashing or if too low injection pressure the product plastic can get short shot.
1.6 Advantage of the precise parameter in produce product of injection moulding

By the knowledgement and skill in the injection moulding condition can improve the product quality and reduce the part reject. There are many advantages of the precise parameters for produce a product of injection moulding such as below:

i. Can reduce manufacture cost by apply the precise parameter.

ii. From the research can improve the level productivity plastic process industry.

iii. Overcome the defects problem occur on the product.

1.7 Application of the research

This study has many applications mainly in produce a proper product. By understanding the element of the parameters relationship with the injection moulding which can use this path as a guide to select the correct value of parameter during the manufacture process. By implementing the correct parameter at the sector of industrial can decrease time and manufacturing cost. By develop the important concept in parameter of injection moulding can make confidently to produce a product by own skill.
1.8 Thesis structure

Chapter 1 describes about the introduction of the projects which explain the background of studies, objective, scope, statement of problem and rational of the project. The next chapter, the study focus on the literature reviews as station to collect more information that base on the project requirement for the project progress.

Chapter 2 consists the literature of studies about the material, machine and others. It also describes about the main step for produce the container product which is consideration the study include the type of categories of parameters, properties of material and the theory about the injection moulding machine describe about the element of in the injection moulding machine, machine operation, mould, mould process and thing to know about the injection moulding and the method can be use to produce product by apply the concept two level factor for design of experiment in this project. And also study about the troubleshooting in the injection moulding as preparation before do the experiment. The next chapter, the study focuses on the methodology for the project progress.

Chapter 3, the methodology describes about the method to be use for this project by apply the Design of Experiment (DOE) for produce the container product. In the methodology describe about the manner and procedure experiment of the injection molding operation. For this project application can enhance the knowledge about machining process that focuses to the injection moulding machine. The next chapter focuses on the procedure experiment.

Chapter 4 describes about the method and procedure for do the experiment by using the injection moulding process. It shows the flow of steps to handle the injection moulding machine operation and for produce the container product. In the next chapter, the study focuses on the result and data analysis.
Chapter 5 is very important because it determine the actual data from do the experiment. The analysis of data result brings out and performs to decrease the defect by adjusting and setting the parameters. The results show the real condition of the product base on the five categories of parameters setting. The reason of the data analysis is to know the range value of the parameters for produce the good surface finish container product. In the next chapter, the study focuses on the discussion of the results.

Chapter 6 describes about the discussion that explains about the results analysis and types of defect observe the major and minor of the defects. Also observe about processing condition resulting in defects and good Calculate the overall cycle time and preview the problems face during in this project. In the next chapter, the study focuses on the conclusion and recommendation.

Chapter 7 contains the conclusion of the analysis and product with the recommendation for future in producing good product. Beside that, the appendix and reference are locate in the behind of the thesis.