Ergonomics Assessment for Assessing Thermal Comfort at Learning Facilities in UTeM

Thesis submitted in accordance with the requirements of the National Technical University College of Malaysia for the Degree of Bachelor of Engineering Manufacturing (Process)

By

Salmiah binti Maulan

Faculty of Manufacturing Engineering
May 2007
DECLARATION

I hereby, declared this thesis entitled "Ergonomics Assessment for Assessing Thermal Comfort at Learning Facilities in UTeM" is the results of my own research except as cited in references.

Signature : [Signature]
Author's Name : Salmiah Binti Maulan
Date : 19 MAY 2007
This thesis submitted to the senate of UTeM and has been accepted as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process). The members of the supervisory committee are as follow:

ISA BIN HALIM
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
Kerung Berkunci 1200, Ayer Keroh
75450 Melaka

Main Supervisor
(Official Stamp and Date)

Co – Supervisor
(Official Stamp and Date)
KOLEJ UNIVERSITI TEKNIkal KEBANGSAAN MALAYSIA

BORANG PENGESAHAN STATUS TESIS

JUDUL: Ergonomics Assessment for Assessing Thermal Comfort at Learning Facilities in UTeM

SESI PENGAJIAN: 2006/2007

Saya Salmiah Binti Maulan

(HURUF BESAR)

mengaku membenarkan tesis (PSW/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) dengan syarat-syarat keganaan seperti berikut:

1. Tesis adalah hak milik Kolej Universiti Teknikal Kebangsaan Malaysia.
2. Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. "**Sila tandakan (☑)

☐ SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

Alamat Tetap:
LOT 6266, JALAN BUKIT JATI,
SHAHBANDAR RAYA, 41000 KLANG
SELANGOR DARUL EHSAN.

Cop Rasm:

Tarikh: ____________________

* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini pelu dikelaskan sebagai SULIT atau TERHAD.
Pustakawan
Perpustakawan Kolej Universiti Teknikal Kebangsaan Malaysia
KUTKM, Ayer Keroh
MELAKA.

Saudara,

PENGEKLASAN TESIS SEBAGAI SULIT/TERHAD
- TESIS SARJANA MUDA KEJURUTERAAN PEMBUATAN (PROSES PEMBUATAN):
SALMIAH BINTI MAULAN
TAJUK: ERGONOMICS ASSESSMENT FOR ASSESSING THERMAL COMFORT AT
LEARNING FACILITIES IN UTeM

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk “Ergonomics Assessment for Assessing Thermal Comfort at Learning Facilities in UTeM” mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

“BERKHIDMAT UNTUK NEGARA KERANA ALLAH”

Yang benar,

EN. ISA BIN HALIM
Pensyarah,
Fakulti Kejuruteraan Pembuatan
(Penyelia Bersama)
06-2332122

s.k. - Penyelia Utama:
En. Hadzley B. Abu Bakar
ABSTRACT

Thermal comfort is the crucial matters in order to get the best convenient thermal environment in the learning facilities; library and classroom. However the condition can be measure by two methods: which are by obtaining the response from the occupants of the learning facilities through questionnaire and by assessing the actual condition with the thermal comfort monitor. Frankly, there were a library and seventeen of classrooms in Industrial Campus of Universiti Teknikal Malaysia Melaka (UTeM). Conversely in achieving this study, there is no authority to be implemented as this study just able to recommend the present condition by increase or decrease the temperature of the ventilation equipment whenever it is cold. The recommendation improvement is depend on the UTeM right either to be approve or via versa. After the completing the both method, can be observably obtain that a few classrooms including the library grasp the thermal discomfort condition via the predictive mean vote (PMV) and high of predictive percentage dissatisfaction (PPD). Mutually the terms of PMV and PPD is obey to the thermal environment standard ISO 7730.
ABSTRAK

Kajian ini menunjukkan beberapa keputusan satu kajian luar mengenai penyiasatan keselesaan alam sekitar di perpustakaan dan bilik-bilik darjah. Penyaman udara adalah biasa dalam pejabat-pejabat walaupun tenaga yang tingginya penggunaan disebabkan oleh panas dan cuaca lembap Malaysia. Satu kajian di tanggapan dan sukatan terma keselesaan dikendalikan atas buah kelas dan sebuah perpustakaan dalam industri kampus di Universiti Teknikal Malaysia Melaka (UTeM). Fungsi utama satu bangunan pejabat yang secara mekanik mengalirkan udara adalah untuk menyediakan satu persekitaran sihat dan selesa untuk penghuni-penghuninya. Pusat kualiti udara yang tertutup dan baik sebuah bangunan boleh dikekalkan oleh membiarkan dalam udara segar bersih dalam satu jumlah mencukupi untuk orang ramai hidup di dalam. Lima puluh peratus (50%) penghuni adalah perempuan dan 50% adalah lelaki. Keselesaan terma yang miskin boleh mengurangkan semangat produktivi pekerja dan pelajar. Data yang sungguhpun diukur adalah mengikut piawai ISO 7730 bagi mendapatkan nilai PMV dan PPD. Namun begitu, untuk memperbaiki keadaan sebenar, terpulang kepada pihak universiti untuk mengambil kira kos rendah, sederhana dan tinggi.
DEDICATION

Specially to my dearest mum,
I will always love and always by your side.

Not forgetting,
My siblings, my sister and brothers
Thanks for all your support.

Last but not least,
Thanks to all my friends whoever assist me in completing this project
I do appreciate all your kindness.
ACKNOWLEDGEMENTS

First and foremost I wish to express my sincere gratitude and appreciation to (i) my supervisor, specifically for his supervision, encouragement, suggestion and assistance throughout this study; (ii) my second supervisor Mr Edeerozy bin Abd Manaf in assisting me in my final thesis (iii) my project coordinator, Mr Akramin bin Muhammad for recommending for this title of project. Similar gratitude also goes to the Library of UTeM of giving me authorization in doing my task. Not forgetting to all the lecturers’ whose involved in my

I would like to express the thoughtful gratitude to my beloved family for incessant love and support in undergoing graduate study specially to my beloved mother, Mstinah binti Wongso They have contributed a lot by their continuous encouragement and understanding on accomplishing this final thesis

Finally, I would like to present my greatest thanks goes to all individuals and colleagues who have contributed so much throughout my study. I could offer an inadequate gesture of my appreciation.
TABLE OF CONTENTS

Abstract .. i
Abstrak ... ii
Dedication .. iii
Acknowledgement ... iv
Table of Contents ... v
List of Figures ... ix
List of Tables .. xi

1. INTRODUCTION .. 1
 1.1 Background and Problems ... 1
 1.2 Study Requirements ... 4
 1.3 Scope and Limitation of Study ... 6
 1.4 Potential Benefits From the Study ... 7
 1.5 Study Outline ... 8

2. LITERATURE REVIEW .. 9
 2.1 Ergonomics Assessments and Application .. 9
 2.2 The importance of Thermal Comfort ... 10
 2.3 Thermal Comfort Improvement in Learning Facilities 12
 2.4 Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) ... 15
 2.5 Comparison of the Actual Condition of thermal comfort with ISO 7730 24
 Standard
 2.6 Various methodologies used Previously for Thermal Comfort Improvement 24
 2.6.1 Redesign Engineering ... 24
 2.6.1.1 Engineering control .. 24
 2.6.1.1.1 Heating ... 25
2.6.1.1.2 Air movement ... 25
2.6.1.1.3 Air conditioning .. 26
2.6.1.1.4 Evaporative Cooling ... 26
2.6.1.1.5 Thermal Insulation ... 27
2.6.1.2 Administrative controls .. 27
2.6.2 Conventional Method ... 27
2.7 Previous thermal monitor of related to thermal comfort condition 28
 2.7.1 Human Thermal Comfort Empirical Model (Manikin) 28
 2.7.2 Babuc ... 29
 2.7.3 Thermohygrograph ... 30
2.8 The Comparative Relating Current and Previous Study in Thermal 31
 Comfort Assessment.

3. METHODOLOGY ... 34
3.1 Flow Chart Process ... 34
 3.1.1 Flow Chart Explanation .. 35
 3.1.1.1 Start ... 35
 3.1.1.2 Study of Existing Thermal Comfort Condition 36
 3.1.1.3 Constructs Questionnaire .. 36
 3.1.1.3.1 Obtain Response from the Respondents at Learning Facilities 36
 3.1.1.4 Assessing thermal comfort monitor 36
3.2 The three-stage of study approach ... 37
 3.2.1 Phase 1: Assessing and analyzing thermal comfort condition at 37
 learning facilities in UTeM
 3.2.2 Phase 2: Determination of the level of thermal comfort at 38
 learning facilities in UTeM
 3.2.3 Phase 3: Ergonomics Assessment to solve the thermal comfort 40
 Condition
4. RESULT AND ANALYSIS

4.1 Response from Students: Questionnaires

4.1.1 Result for questionnaires

4.1.1.1 Questionnaires for Library

4.1.1.1.1 Air Temperature

4.1.1.1.2 Radiant Temperature

4.1.1.1.3 Relative Humidity

4.1.1.1.3 Air Velocity

4.1.1.1.4 Metabolic Rate

4.1.1.1.5 Clothing Insulation

4.1.1.1.6 General Question

4.1.1.2 Questionnaires for Classroom

4.1.1.1 Air Temperature

4.1.1.2 Radiant Temperature

4.1.1.3 Relative Humidity

4.1.1.4 Air Velocity

4.1.1.5 Metabolic Rate

4.1.1.6 Clothing Insulation

4.1.1.7 General Questions

4.2 Assessing the actual condition of thermal comfort

4.2.1 Measurement Data of Library

4.2.2 Measurement Data of Bilik Kuliah 1

4.2.3 Measurement Data of Bilik Kuliah 2

4.2.4 Measurement Data of Bilik Kuliah 3

4.2.5 Measurement Data of Bilik Kuliah 4

4.2.6 Measurement Data of Bilik Kuliah 5

4.2.7 Measurement Data of Bilik Kuliah 6

4.2.8 Measurement Data of Bilik Kuliah 7

4.2.9 Measurement Data of Bilik Kuliah 8
5. DISCUSSION ... 94
 5.1 Response from Respondents: Questionnaires ... 94
 5.1.1 Questionnaires for learning facilities in library 95
 5.1.2 Questionnaires for learning facilities in classrooms 99
 5.2 Assessing the thermal comfort monitor .. 102

6. SUMMARY AND CONCLUSIONS ... 105
 6.1 Summary .. 105
 6.1.1 Assessing and analyzing thermal comfort condition at learning 105
 facilities in UTeM
 6.1.2 Determination of the level of thermal comfort at learning 106
 facilities in UTeM
 6.1.3 Verification of the current condition complies with 106
 standard/ specification
 6.1.4 Recommendations for the improvement of thermal 107
 comfort at learning facilities in UTeM

 6.2 Conclusion ... 107
LIST OF FIGURES

1.3 Flow of the scope for the thesis 6
2.2 Conventional overhead air distribution system 11
2.3 Location of the human hypothalamus 13
2.3 Median sagittal section of brain of human embryo of three months 13
2.3 Goose bumps or piloerection on human skins 14
2.4 Fanger's Comfort Chart 1 16
2.4 Fanger's Comfort Chart 2 17
2.7.1 Thermal Manikin, ADAM 29
2.7.1 Thermal Comfort Human Subject Testing 29
2.7.2 Systems for thermo-technical testing of buildings, Babuc 30
2.7.3 Thermohygrograph 30
3.1 Process Flow Chart 35
3.2.2 Thermal comfort monitor, Quest 39
3.2.2 Thermal comfort monitor, QUEST 40
3.2.2 QuestSuite Software 41
3.2.2 Windows of QuesTemp Software 42
5.1.1 Library Environment 95
5.1.1 Quantity of students in the library 98
5.1.2 Environment in classroom 99
<table>
<thead>
<tr>
<th></th>
<th>Table Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Six stage of developing ISO standards</td>
<td>18</td>
</tr>
<tr>
<td>2.62</td>
<td>Table method of using the conventional system in thermal comfort condition</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparative of the related issues</td>
<td>31</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Table of metabolic rates value for different activities</td>
<td>42</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Clothing insulation values</td>
<td>43</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Data in Library</td>
<td>75</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Data in Bilik Kuliah 1</td>
<td>76</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Data in Bilik Kuliah 2</td>
<td>77</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Data in Bilik Kuliah 3</td>
<td>78</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Data in Bilik Kuliah 4</td>
<td>79</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Data in Bilik Kuliah 5</td>
<td>80</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Data in Bilik Kuliah 6</td>
<td>81</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Data in Bilik Kuliah 7</td>
<td>82</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Data in Bilik Kuliah 8</td>
<td>83</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Data in Bilik Kuliah 9</td>
<td>84</td>
</tr>
<tr>
<td>4.2.11</td>
<td>Data in Bilik Kuliah 10</td>
<td>85</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Data in Bilik Kuliah 11</td>
<td>86</td>
</tr>
<tr>
<td>4.2.13</td>
<td>Data in Bilik Kuliah 12</td>
<td>87</td>
</tr>
<tr>
<td>4.2.14</td>
<td>Data in Bilik Kuliah 13</td>
<td>88</td>
</tr>
<tr>
<td>4.2.15</td>
<td>Data in Bilik Kuliah 14</td>
<td>89</td>
</tr>
<tr>
<td>4.2.16</td>
<td>Data in Bilik Kuliah 15</td>
<td>90</td>
</tr>
<tr>
<td>4.2.17</td>
<td>Data in Bilik Kuliah 16</td>
<td>91</td>
</tr>
<tr>
<td>4.2.18</td>
<td>Data in Bilik Kuliah 17</td>
<td>92</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

This chapter intents to provide comprehensive background information and it is ordered to reveal the inventiveness of the study. Descriptive information is also given on: background and problems, research requirements, potential benefits from the study, study outline and structure of the thesis.

1.1 BACKGROUND AND PROBLEMS

Nowadays there were several learning centers published in Malaysia. Out of 19 public universities had been discovered all around in Peninsular and East Malaysia. In short, the opportunity of learning is widen to the future. UTeM is one of the public universities which is the first technical university in Malaysia. It was abbreviation of Universiti Teknikal Malaysia Melaka. This technical university consists of 5 faculties which are Electrical Engineering, Electronic and Computer Engineering, Mechanical Engineering, Manufacturing Engineering and Information Technology.

Ergonomics or human factors is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data, and methods to design in order to optimize human well-being and overall system performance.

The thermal comfort associated with study environment in learning facilities needs to be managed efficiently since poor study environment can affect the students’
performance. The environmental factors include air temperature; air velocity and relative humidity have to take into consideration to enhance the comfort level in study environment. Naturally, human such as students want to feel comfortable; they like to study in an environment that is neither hot nor cold and neither very humid nor very dry. The students may experience thermal discomfort if the learning facilities either too hot or too cold. Although the thermal discomfort may not directly harm the students, but it does affects the performance of students. Students maybe less consideration, sleepy and feel tired when the process of learning is running. In order to study in a good condition, should be considering of the study environment first. In the best condition, student will concentrate and give full of attention to the teachers/lecturers without disturbance. As the sample of this topic, library and classroom at Academic Building in Industrial Campus had been chosen.

Nevertheless the college authorities can increase productivity in a variety of ways. For example: The most obvious methods involve automation and computerization which minimize the tasks that must be performed by students. Recently, less obvious techniques are being studied that involve ergonomic design and student comfort. A comfortable employee, the theory maintains, can produce more than a counterpart who struggles through the day. In fact, some studies claim that measures such as raising workplace temperature can have a drastic effect on office productivity. Experiments done by the Japanese Shiseido Corporation also suggested that productivity could be increased by means of perfuming or deodorizing the air conditioning system of workplaces.

Ergonomic Assessment can be define as an intensive review of a particular work station for the purpose of determining any necessary modifications to maximize the productivity of the employee by eliminating hazards which ma cause injury. For this situation, ergonomic assessment is the preeminent solution to the thermal comfort condition in UTeM learning facilities. An employee may experience discomfort or difficulty in performing the essential functions of their job due to inadequate equipment used to perform their job. The employee may request an ergonomic assessment based on
the medical information or based on both the medical information and any discomfort or pain associated with performing their job tasks. The medical information should be submitted to the Department of Management and Budget, Safety and Health Unit, along with a request, in writing, for an ergonomic assessment.

The Safety and Health Unit will then schedule an ergonomic assessment through the Michigan Accommodation Center, which is a part of the Michigan Rehabilitation Services, Department of Career Development. The purpose of the assessment is to help the department in preventing work injuries through job site modifications. Such ergonomic improvements can result in fewer injuries, reduced absenteeism, decreased turnover, increased efficiency, improved work quality, higher morale, and lower workers’ compensation costs.
1.2 STUDY REQUIREMENTS

In affording due to the problem stated, it is essential to adopt ergonomic assessment approach in order to manage the suitable thermal conditions in UTeM learning facilities. Specifically the project tries to achieve the objectives of:

1.2.1 To determine the response of students regarding to the current thermal comfort at learning facilities in UTeM.

A list of questionnaire has been set regarding to the issue. The questionnaire is set into two portions; one is for the conditions in the classrooms while another one is specifically to the condition in the library.

1.2.2 To assess the actual condition of thermal comfort at learning facilities in UTeM.

The specific experiment is to get the actual condition of learning facilities in UTeM is not comfortable to the students of the thermal comfort. This can be proven of the result of the questionnaires given.

1.2.3 To verify whether the current condition complies with standard/ specification

The existence of a comfortable living environment is necessary for a healthy and productive life. The state of comfort depends on a wide range of factors some of which are not quantifiable, such as psychological well-being. In quantifiable terms, thermal comfort can be said to be related to a set of environmental conditions such as air temperature, radian temperature humidity, air movement, etc., which are, in turn, dependent on personal variables such as clothing and
activity. For given clothing values and activity ranges, there are environmental conditions under which most people feel comfortable.

1.2.4 To make recommendations for the improvement of thermal comfort at learning facilities in UTeM.

Recommendations are needed to determine a conducive environment of study in the best thermal comfort regarding to the portions stated which are in the library moreover in the classroom.
1.3 SCOPE AND LIMITATIONS OF STUDY

This section is intended to describe the scope and limitations of carried out study. The scope of the study is specifying to the learning facilities in UTeM. The main constitution of the learning facilities of the Industrial Campus in UTeM is library and classrooms.

![Diagram](image)

Figure 1.3: Flow of the scope for the thesis

The recommendation for the improvement of thermal are proposed by redesign, etc. The proposed solutions may found to be an effective solution to enhance the thermal of staffs and students. Nevertheless, the implementation of the proposed solutions is depended on UTeM willingness to deploy the solution. In addition, UTeM is free to make decision whether to accept the proposed solutions. More over, the study has no direct access and authority to enforce the proposed solutions to UTeM even though the effectiveness can be proved.
1.4 POTENTIAL BENEFITS FROM THE STUDY

The potential benefits discovered from the problem statement are towards the students and staffs (including the lecturer and librarian). The thermal comfort condition is studied concerning of the thermal discomfort at the certain area due to the scope. The study will evaluate the temperature in the classroom and library campus. However for the potential benefits can be summarized as:

i. The information of the thermal comfort condition will be documented. This issue is important due to the study environment.
ii. The study will be beneficial for the future study related to study environment in learning facilities and it will be widen.
iii. The study of thermal comfort is using the proper equipment for thermal comfort assessment and will be highlighted.
iv. Other than that, the study will give a beneficial technique on how the assessment is being done which related to thermal comfort.
1.5 STUDY OUTLINE

The three-stage of study approach can be summarized as follows:

1.5.1 To assess and analyze thermal comfort at learning facilities in UTeM

The first stage is important in evaluating the problem statements. The main problem is about temperature condition in building of learning facilities. The thermal comfort of the learning facilities influenced the study environment which also effecting to the students performance. While in the library engaged to the librarian an also the students.

1.5.2 To determine the level of thermal comfort at learning facilities in UTeM

Due to the problem statements, which concerned of temperature, thermal comfort device, named QUEST is utilized. The thermal comfort device is able to take the data of air temperature, air velocity and relative humidity. From the data obtained, the indexes of PMV and PPD could be classified.

1.5.3 To propose the solution regarding to the problem statements.

In order to get the optimum study environment at learning facilities in UTeM several solutions have to be proposed. Regarding to the problem statements, there were three points of solution. They are low cost solution, medium cost solution and high cost solution. Concerning of the problems, low cost solution is by construct pane, as the air could flow easily. In addition curtain is bed in to the windows to avoid sunlight get through the building. For the medium cost solution, ventilation shall be installed to the building. While the high cost solution, air-conditionable is added to the building. However, the allotment of educations funds is effective and whether the upgraded facilities can improve teaching effectiveness and learning behaviors in the education. Conversely to the normal thermal comfort position, just maintain the thermal.