DIRECT TORQUE CONTROL OF INDUCTION MOTOR DRIVE

Muhd Zharif Rifqi Bin Zuber Ahmadi

Bachelor of Power Electronics and Drive

2012
DIRECT TORQUE CONTROL OF INDUCTION MOTOR DRIVES

MUHD ZHARIF RIFQI BIN ZUBER AHMADI

A report submitted in partial fulfillment of the requirements for the degree of

Power Electronic and Drives

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA (UTeM)

JUNE 2012
SUPERVISOR DECLARATION

“I hereby declare that I have read through this report entitle “Direct torque control of induction motor drives” and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Power Electronics and drives)”

Signature : ..

Supervisor’s Name : DR AUZANI BIN JIDIN

Date : ..
STUDENT DECLARATION

“I declare that this report entitled “Direct torque control of induction motor drives” is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.”

Signature: ...

Student’s Name: MUHD ZHARIF RIFQI BIN ZUBER AHMADI

Date: ...
DEDICATION

Especially dedication is to my beloved mother Puan Che Rodiah Binti Che Ismail, my beloved father En Zuber Ahmadi Bin Hassan Hilmi, my sister and brothers beloved

For taking care of me and educating me all these while. Also thank for their continuous prayers until I became what I’m now.

Also for my family
Dr Auzani Bin Jidin

Thank you very much

And not forgetting to all my relatives
Especially Electrical Engineering (Power Electronics and Drives) batch 2009-2012

The success belongs to us all

May God bless all of us.....Amin
ACKNOWLEDGEMENT

ALHAMDULILLAH, I am grateful to God for His blessing and mercy of the His to make this project successful and complete in this semester. First of all, I would like to express to Universiti Teknikal Malaysia Melaka. The special thanks go to my helpful supervisor Dr Auzani Bin Jidin for giving invaluable guidance supervision, committed and sustained with patience during this project. The supervision and support that he gave truly help the progression and smoothness in the Final Year Project. In addition, I also wish to express to all the people involved in this thesis either directly or not, especially to the entire lecture who have taught me, thank you for the lessons that have been taught.

My sincere thanks go to all my friends in the one same guidance under Dr Auzani Bin Jidin, who are Muhd Hafizzudin, Ahmad Shah Erwan, Mohd Hafizi, Nor Hasina and Liza because willing to support and gives some knowledge to achieve the aim for this final year project. Instead of that, special thanks I gave to another supporter friends who sincerely give their opinion and continuous guidance throughout this final year project.

Not forgotten also, thanks to my family especially to my mother and father for their support and endless encouragement to successfully complete on this project.
ABSTRACT

Direct torque control (DTC) has gained popularity for induction motor control that requires high torque control performance due to its simplicity. This scheme does not require a frame transformer, knowledge of machine parameters, speed sensor and current controller, as opposed to the Field Oriented Control (FOC) which is another control scheme of induction machine. The prototype DTC drive offers several advantages such as robust control (less sensitivity to parameter variations), speed sensorless drive, inherent current control, fast instantaneous torque and flux control. The DTC algorithm (including estimations of flux and torque, hysteresis controllers, look-up table and etc) was performed using a low-cost Digital Signal Processor (DSP) controller board, i.e. ezdsp F28335. The algorithm of DTC was developed using IQ Math-MATLAB components as provided by Texas Instrument to optimize and minimize the digital computation in DSP. A decoupled control of torque and flux that provides fast dynamic control can be established in DTC, where in torque and flux are controlled using 3-level and 2-level hysteresis comparators, respectively. The output of comparators and flux sector information are used to index the look-up table, to select appropriate voltage vectors to control torque and flux, simultaneously. By modelling the DTC algorithm using IQ-math components, the sampling period of DSP computation can be minimized at 50 μs, that is much smaller than that obtained using Simulink component (about 100 μs). The feasibility and effectiveness of DTC implementation using ezDSP F28335 to provide fast instantaneous torque and flux control were verified through experimental results.
ABSTRAK

Daya kilas langsung (DTC) telah mendapat populariti untuk mengawal motor aruhan yang memerlukan kawalan prestasi daya kilas yang tinggi disebabkan kelemahan yang dihadapinya. Teknik ini tidak memerlukan pengubah/bingkai, pengetahuan parameter mesin, penderia kelajuan dan pengawalan arus, rujukan bertentangan dengan kawalan orientasi medan yang merupakan satu lagi teknik kawalan mesin aruhan. Pemacu prototaip DTC menawarkan beberapa kelebihan seperti kawalan tahan lasak (kurang sensitif kepada perubahan parameter), pemacu tanpa penderia laju, kawalan arus semulajadi, kawalan cepat daya kilas ketika dan fluks ketika. Algoritma DTC (termasuk anggaran fluks dan daya kilas, pengawal histerisis, jadual pemilihan dan sebagainya) dilakukan menggunakan pengawalan pemrosesan isyarat digital (DSP) yang berkost rendah, iaitu eZdsp F28335. Algoritma DTC dibangunkan menggunakan IQ-math Matlab komponen yang disediakan oleh Texas Instrumen untuk mengoptimumkan dan meminimumkan pengiraan digital DSP. Satu kawalan pemisah daya kilas dan fluks yang menyediakan kawalan pantas dinamik diwujudkan oleh DTC, di mana daya kilas dan fluks dikawal masing-masing pembanding histerisis 3 tahap dan 2 tahap. Keluaran pembanding tersebut dan maklumat sektor fluks digunakan untuk memilih vektor yang sesuai didalam jadual carian mengawal serentak kedua-dua daya kilas dan fluks. Dengan memodelkan algoritma DTC menggunakan komponen IQ-math, tempoh perempeluan bagi pengiraan DSP boleh diminimakan kepada 50 μs, iaitu sangat kecil berbanding dengan yang dicapai menggunakan komponen Simulink (dianggarkan sekitar 100 μs). Keberkesanan dan kebolehan bagi melaksanakan DTC menggunakan ezdsp F28335 untuk menyediakan kawalan ketika daya kilas dan fluks yang cepat telah disahkan melalui keputusan ujikaji.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUPERVISOR DECLARATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STUDENT DECLARATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>v- viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURE</td>
<td>x-xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOL</td>
<td>xii-xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 | INTRODUCTION |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Background of project</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Objective</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Scope of project</td>
<td>3</td>
</tr>
</tbody>
</table>
LITERATURE REVIEW

2.1 Introduction 4
2.2 Literature review of motor drives 4
2.3 Concept of Direct Torque Control 5
2.4 The major problem of DTC 5
2.5 Control Technique 6
2.6 Scalar Control 7
2.7 Vector control 7
2.8 Field Oriented Control 7

METHODOLOGY

3.1 Introduction 8
3.2 Research Methodology 8
3.3 Project Flowchart 10
3.4 Software Matlab versions R2011b 11
3.5 Project development 12

DIRECT TORQUE CONTROL

4.1 Basic principle of DTC 13
4.2 Principle of Direct Torque Control 16
 4.2.1 Direct Flux control 17
 4.2.2 Direct Torque control 19
5 OPTIMIZATION OF DTC ALGORITHM USING IQ-MATH BLOCK SIMULINK-MATLAB

5.1 Introduction 21
5.2 Computation using IQ-math block MATLAB 22
5.3 Optimization DTC computation using IQ-math blocks 24

6 EXPERIMENTAL RESULTS

6.1 Introduction 27
6.2 Draw the diagram of the selective detection for definition of twelve sectors of the stator flux plane 27

6.3 Experimental results of the stator flux d & q component with related the flux sector and magnitude angle of flux 28
6.4 Experimental results of the flux sector with status flux error and torque flux error 30
6.5 Experimental result of stator flux plane 32
6.6 Experimental results of stator flux d & q and flux locus in different hysteresis band 33
6.7 Experimental result of DTC technique 34
6.8 Experimental results of output torque ripple 35
6.9 Experimental result of stator flux 38
6.10 Experimental result of the harmonic in DTC 40

7 DESCRIPTION OF THE EXPERIMENTAL SET-UP

7.1 Introduction 41
7.2 Digital Signal Processor board (DSP) 42
7.3 Complex programmable logic device (CPLD) 43
7.4 Gate driver and 3-phase Voltage Source Inverter 44
7.5 Current measurement 45
7.6 Induction machine 46

8 DISCUSSION AND ANALYSIS 48
8.1 Discussion 50
8.2 Analysis experimental results

9 CONCLUSION AND RECOMMANDATION 52
9.1 Conclusion 52
9.2 Recommendation 53

REFERENCES 54
APPENDICES 56
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Look-up table for voltage vector selection</td>
<td>19</td>
</tr>
<tr>
<td>5.1</td>
<td>An Example of Four-bit Multiplication</td>
<td>22</td>
</tr>
<tr>
<td>6.1</td>
<td>Voltage vector selection look-up table for 12 sectors</td>
<td>31</td>
</tr>
<tr>
<td>7.1</td>
<td>Induction machine parameter</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Several common control techniques used for induction machine</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of research project</td>
</tr>
<tr>
<td>3.2</td>
<td>Math works Matlab</td>
</tr>
<tr>
<td>4.1</td>
<td>Structure of basic DTC-hysteresis based induction machine</td>
</tr>
<tr>
<td>4.2</td>
<td>Voltage space vectors of a 3-phase inverter with the corresponded switching states</td>
</tr>
<tr>
<td>4.3</td>
<td>Two possible active voltages are switched for each sector to control the stator flux</td>
</tr>
<tr>
<td>5.1</td>
<td>Fractional representation for data format I9Q23. “I” is integer-fraction and “Q” is the Question-fraction</td>
</tr>
<tr>
<td>5.2</td>
<td>Frictional representation of data I3Q29</td>
</tr>
<tr>
<td>6.1</td>
<td>Describes about the identify sector of the stator flux plane of selection in the region to select the sector to compare from flux q and flux d with threshold value, Ψ_{q1}</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimental results of identifying sector</td>
</tr>
<tr>
<td>6.3</td>
<td>Experimental results of magnitude of stator flux</td>
</tr>
<tr>
<td>6.4</td>
<td>Stator flux sector at different condition of torque and flux status error</td>
</tr>
<tr>
<td>6.5</td>
<td>Comparison of stator flux locus</td>
</tr>
<tr>
<td>6.6</td>
<td>The waveform shows of shape wave at two different of hysteresis band</td>
</tr>
<tr>
<td>6.7</td>
<td>Result of step torque change in DTC</td>
</tr>
<tr>
<td>6.8</td>
<td>Experimental results from step torque change response of torque</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>36</td>
</tr>
</tbody>
</table>
6.9 Control of torque using a 3-level hysteresis comparator 36
6.10 Typical waveforms of the torque, the torque error and the torque error status for the three-level hysteresis torque comparator 37
6.11 Experimental results of flux stator 38
6.12 Control of flux magnitude using a 2-level hysteresis comparator 39
6.13 Typical waveforms of the stator flux, the flux error and the flux error status for the two-level hysteresis flux comparator 39
6.14 Result for the harmonic of DTC 40
7.1 Complete drive system of DTC drive 42
7.2 Digital Signal Processor board 42
7.3 Complex programmable logic device 43
7.4 Gate driver circuit 44
7.5 Voltage Source Inverter circuit for 3-phase 45
7.6 Current measurement board 45
7.7 Induction machine 47
LIST OF SYMBOL

L_d - d-axis self inductance
L_q - q-axis self inductance
L_m - Mutual inductance
i_s - stator current
i_r - rotor current
r_r - Rotor and stator resistance
i_{sd} - d-axis current
V_{sd} - d-axis voltage
i_{sq} - q-axis current
V_{sq} - q-axis voltage
i_{sd, sq} - d and q components of the stator current in stationary reference frame
i_{a, b} - Current phase a and phase b
L - Self inductance
\psi_{sd}, \psi_{sq} - d and q components of stator flux reference frame
\psi_r, \psi_s - Stator and rotor flux linkage space vector in stationary reference frame
\psi_f - Field flux linkage
\psi_{\lambda} - Flux threshold
T - Output Torque hysteresis
\phi - Output flux hysteresis
\delta - Load angle
\begin{align*}
V_a, V_b, V_c & \quad \text{Three Phase Voltage} \\
T_e & \quad \text{Electromagnetic torque} \\
P & \quad \text{Pairs of pole} \\
\omega_r & \quad \text{Rotor electrical speed} \\
V_{dc} & \quad \text{DC link voltage} \\
S_a, S_b, S_c & \quad \text{Switching states} \\
\theta_{sr} & \quad \text{Angle between stator and rotor flux vectors} \\
v_s & \quad \text{Voltage vector}
\end{align*}
LIST OF ABBREVIATIONS

DTC - Direct Torque Control
IM - Induction Motor
VSI - Voltage Source Inverter
FOC - Field Oriented Control
DSC - Direct Self Control
AC - Alternating Current
DC - Direct current
DSP - Digital Signal Processor
IFO - Indirect Rotor Flux Orientation
ADC - Analog Digital Converter
DAC - Digital Analog Converter
CPLD - Complex programmable logic device
SVM - Space vector modulated
IGBT - Insulated gate bipolar transistor
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Simulation Simulink Blocks Of DTC</td>
<td>56</td>
</tr>
<tr>
<td>B</td>
<td>Simulation Model Of DTC Algorithm Using Iq-Math Blocks, Matlab</td>
<td>60</td>
</tr>
<tr>
<td>C</td>
<td>List Of Attend The Competition Innovation And Invention 2012</td>
<td>63</td>
</tr>
<tr>
<td>D</td>
<td>Project Planning For FYP(1) And FYP(2)</td>
<td>65</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of project

Among types of AC machine, the induction machine is widely adopted in many industrial applications, for examples industrial blower, traction drives, spindle drives, stationary power tools and others. The induction machine is very economical, rugged and requires less maintenance.

In this project, direct torque control of the induction machine drive was developed using IQ-math block provided by Texas Instrument which are available in software Matlab (Version R2011b). The purpose of the project was to study the principle of DTC of induction machine, implement the Direct Torque Control algorithm using ezdsp F28335. The algorithm was programmed using IQ-math components.

A description of DTC drive will be presented and the operation of DTC will be verified to show its functionally via experimental results.
1.2 Problem statement

Some challenges or problem need to be concerned in developing the AC motor control, as listed as below:

(i) It is required to avoid inrush current/overcurrent during motor start-up or acceleration.
(ii) It is desirable to improve poor dynamic performance as resulted in the conventional system, i.e. scalar method.
(iii) In many industrial drive systems, the motor can perform under 4-quadrant operations without any use or extra hardware to the drive system.

1.3 Objective

The main objectives of the project are as follows;

(i) To study the principle of DTC of induction machine which can offer fast torque dynamic performance, inherent current control (provide current limit) and allow 4-quadrant operations.
(ii) To develop a DTC drive for 3-phase induction machine using ezdsp F28335.
1.4 **Scope of project**

The scopes of the project are listed as follows;

(i) To study the principle of DTC operation and the variations of DTC improvement through literature or technical papers.

(ii) To simulate and construct DTC algorithm using IQ-math component that can perform the execution time cycle at 50 μs.

(iii) To realize DTC drive system using ezdsp F28335.

(iv) To verify the proper DTC operation via experimental results.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will discuss about the review of journal or technical report that related to the project. This chapter also covers the researchers related to the subject. This will provide a clearly understanding of the overall project. This chapter will discuss on overall theories and concept of the project.

2.2 Literature review of motor drives

In the past year DC motor was extensively used for many industrial applications due to its simplicity and offers superior torque and dynamic performance. However, DC motor drive has many disadvantages such as high maintenance, expensive, and cannot operate at very high speed operations. The problem can be solved by replacing DC motor with induction motors which are much cheaper, less maintenance, and reliable. The advancement of induction motor control has gained much momentum as the technology of power electronic switching devices grow rapidly, which in turns excite the developments of the vector controlled that allows