Information Requirement for Mould and Die Process Planning Activities

Thesis submitted in accordance with the partial requirements of the Universiti Teknikal Malaysia Melaka for the Bachelor of Manufacturing Engineering (Manufacturing Process)

By

Siti Saudah Binti Mohd Nasir

Faculty of Manufacturing Engineering
May 2007
APPROVAL

This thesis submitted to the senate of UTeM and has been accepted as partial fulfillment of the requirement of the degree of Bachelor of Manufacturing Engineering (Manufacturing Process). The members of the supervisory committee are as follow:

(MUHAMMAD HAFIDZ FAZLI BIN MD FAUADI)
Main Supervisor
JUDUL: INFORMATION REQUIREMENT FOR MOULD AND DIE PROCESS PLANNING ACTIVITIES

SESJ PENGAJIAN: 2/2006-2007

Saya

SITI SAUDAH BINTI MOHD NASIR

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Kebangsaan Malaysia (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (√)
 - SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 - TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 - TIDAK TERHAD

(TANDATANGAN PENULIS)

Disahkan oleh:

(TANDATANGAN PENYELIA)

Alamat Tetap:
E-439 KAMPUNG GONG PAUH, 20050
KUALA TERENGANU, TERENGANU
DARUL IMAN.

Tariikh: 14/05/2007

Cop RasmI:
MUHAMMAD HAFIDZ FAZLI BIN MD. FAUADI
Pensyarah
Fakulti Kejuruteraan Pembaruan
Universiti Teknikal Malaysia Melaka
Karang Berkuaci 1200, Ayer Keroh
75450 Melaka

Tariikh: 15/5/07

* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declare this thesis entitled “Information Requirement For Mould and Die Process Planning Activities” is the results of my own research except as cited in the reference.

Signature: ...
Author’s Name: Siti Shudah Binti Mohammad Najib
Date: 15/5/07
ABSTRACT

As the competition in manufacturing industry has becoming more complex, manufacturers should try to shorten time-to-market and introduce new product as soon as possible to win market share. This project discusses about information requirement for Mould and Die process planning activities in manufacturing industry. Hence the design of the information system has to be performed taking into consideration all the functions and entities that operate within mould manufacturing. The objectives of this study are to define generic functional and information requirements for Injection mould process planning activities, and to design and develop a database management system based on the Injection mould process planning information model that has been developed. This project utilizes IDEF (Integrated computer-aided manufacturing DEFINition) as the main modeling method. IDEF0 was used to model functional flow and IDEF1x was used to model the information flow of the company selection. The database management system that was selected to develop the application system is Microsoft Access 2000 and the interface of the system used was Visual Basic Application for Microsoft Access. Although a designing and developing database management system is not an easy task, this project manages to achieve all of the objectives. The study can be used as reference for further study.
ABSTRAK

DEDICATION

The memory of;

Mohd Nasir bin Che Salleh
Halimahton binti Ahmad

For your love and passionate for values of education since I'm still a little kid. You will always in my heart.

To my special person;

Mohd Abdul Syukor bin Jaafar

For your patience whose always tested during writes this project. Your love, support and understanding are part of this research.
ACKNOWLEDGEMENTS

In the name of Allah, the most gracious and the most merciful.

Thanks a lot for giving me this strength and opportunity to complete this research study. I am grateful to have the support and motivation from many people throughout completing this study and I would like to take it this opportunity to thank those who are either directly or indirectly involved during the process this study is conducted.

Most immediately, a special gratitude goes to my Project Supervisor, Mr. Mohd Hafidz Fadzli bin Md. Fauadi of Universiti Teknikal Malaysia Melaka, Ayer Keroh Melaka for his precious advice, time, contributions, comments, and guidance in every stage of this project. My utmost gratitude also goes out to all lecturers from the Faculty of Manufacturing Engineering for being a very nice and effective lecturer to me and thus, making this study easier to be completed. As for the Manager of Technical Centre Department at MAC Technology (M) Sdn. Bhd, Mr. Mazlan bin Hanafi, thank you for all cooperation and help throughout the entire duration of the training.

My token of appreciation also goes to my beloved family members who never failed to be there for their love, support, and prayers. Last but not least, I would like to thank all my friends, especially my classmates for their never ending supports. May ALLAH bless to all of you.

Thank you very much. Siti Saudah binti Mohd Nasir
UTEK, Melaka
April 2007 10th
TABLE OF CONTENTS

Abstract ... i
Dedication .. ii
Acknowledgment .. iii
Table of Contents ... iv
List of Figures ... viii
List of Tables ... ix
Sign of Symbols .. x

1. INTRODUCTION .. 1
 1.1 Background ... 1
 1.2 Problem Statements .. 1
 1.3 Objectives of the Project ... 2

2. LITERATURE REVIEW ... 4
 2.1 Definition of Mould and Dies 4
 2.1.1 Mould .. 4
 2.1.2 Dies .. 5
 2.2 Components of Injection Mould 6
 2.2.1 Function of Mould Base Components 8
 2.3 Basics of Mould Construction 8
 2.3.1 Introduction .. 8
 2.3.2 The Basic Mould Tool 9
 2.3.3 Mould Design Considerations 9
 2.3.4 Influencing Factors of Mould Design 11
 2.3.4.1 Component Material 11
 2.3.4.2 Product Quantity 11
 2.3.4.3 Mould Material and Mould Life 12
 2.3.4.3.1 Mould Classification System 12
 2.3.4.4 Mould Making Techniques 13
2.12.1 Introduction ... 38
2.12.2 Function and Informational Model Using IDEF Methodology 39
2.12.3 Database and User Interface Development ... 42
2.12.3.1 Physical Database Development Using Microsoft Access 2000 42
2.12.3.2 User Interface Development Using Microsoft Visual Basic 6.0 42
2.13 Database ... 43
2.13.1 Database Management System (DBMS) .. 44
2.13.1.1 Introduction ... 44
2.13.1.2 Components of Database Management System ... 45
2.13.1.3 Example of Database Management Software ... 46
2.13.1.4 Types of Database ... 47
2.13.1.5 Hierarchical Database .. 47
2.13.1.6 Relational Database ... 48
2.13.1.7 Object Oriented Database .. 49
2.13.1.8 Network Database .. 50
2.14 Previous Development of Database Management System (DBMS) on the Mould and Die Process Planning Activities ... 54
2.15 Other Categories of Moulding .. 56
2.15.1 Blow Mould .. 56
2.15.2 Injection Mould ... 56
2.15.3 Extrusion .. 57
2.16 Conclusion .. 58

3. METHODOLOGY ... 59
3.1 Introduction ... 59
3.2 Gantt Chart .. 59
3.3 Methodology’s Flow Chart .. 60
3.3.1 Formulation of Objectives and Scopes ... 61
3.3.2 Literature Review .. 61
3.3.2.1 Document ... 62
3.3.2.2 Internet ... 62
3.3.2.3 Interview .. 62
3.3.3 Case study / Company Selection .. 63
3.3.4 Data Collection ... 63
3.3.5 Design and Develop DBMS (Microsoft Access 2000 and Visual Basic Application For Microsoft Access) .. 65
3.3.5.1 Software ... 66
3.3.6 Discussion ... 66
3.3.7 Conclusion .. 66

4. Company Background .. 68
4.1 Introduction .. 68
4.1.1 MAC Technology (M) Sdn. Bhd. ... 68
4.1.2 Operation Objective ... 69
4.1.3 Operation Mission .. 70
4.1.4 Organization of MAC ... 70
4.2 Technical Centre Department .. 72
4.2.1 Introduction ... 72
4.2.2 New Mould Fabrication Procedure ... 73
4.2.2.1 Mould Fabrication Order Notice ... 73
4.2.2.2 Appointed Mould Maker ... 75
4.2.2.3 Mould Purchase and Receivable ... 75
4.2.2.4 In House New Mould Fabrication ... 76
4.2.2.5 Inspection of Dimension for Mould Part 76
4.2.2.6 Assembly of Mould .. 76
4.2.2.7 Mould Inspection .. 77
4.3 Mould Maintenance, Modification, and Improvement Procedure .. 77
4.3.1 Requisition for Mould Maintenance, Modification and Improvement .. 77
4.3.2 Approved by Technical Centre Department Head (Attachment 1C) .. 79
4.3.3 Registration of New Mould (Attachment 1E) .. 79
4.4 Control of System Supplied Mould ... 80
4.4.1 Receiving Mould and Inspection .. 82
4.4.2 Mould Storage .. 84
4.5 Technical Centre Preventive Maintenance ... 86
4.5.1 Technical Centre Preventive Maintenance Procedure.................................86
4.5.2 Conduct Preventive Maintenance...87
4.5.3 Maintain Maintenance Record...87
4.5.4 Conclusion...87

5. DATABASE SYSTEM ANALYSIS..89
5.1 Data Collection...89
5.2 Mould Making Processes..90
5.3 Description of Operations...91
5.4 Problems and Constraints..93
5.5 System Objectives...94
5.6 Scope and Boundaries..94
5.7 Database design...94
5.8 Implementation and Loading..95
5.9 Testing and Evaluation..95
5.10 Operation...95
5.11 Mould Process Planning Functional Modeling Using IDEF0........................95
5.12 Mould Process Planning Informational Modeling Using IDEF1x................104
5.13 Conclusion..105

6. DATABASE SYSTEM DESIGN..106
6.1 Interface Design..106
6.2 Navigational Design..113
6.3 Logical Design..120
6.3.1 Data Normalization..120
6.4 Physical Design...121
6.5 Conclusion...122

7.
DISCUSSION..123
7.1 Database and User Interface Development...123
7.1.1 Physical Database Development Using Microsoft Access 2000...............123
7.1.2 User Interface Development Using Visual Basic Application For Microsoft Access ... 124
7.2 General Comments ... 125

8. CONCLUSION ... 126

REFERENCES ... 128

APPENDICES

A PSM Project Schedule
 - PSM 1 and II

B Data Collection and Hard-Documentation
 - Interview Questions for Company Selection
 - Mould Fabrication Specification Form
 - Inspection Check Sheet
 - Mould Parts Jig & Tool Request Form
 - Mould Trouble Report
 - Mould Maintenance, Modification, and Improvement Procedure Flow
 - Approval Trial Process Schedule
 - Mould Repair and Maintenance Data
 - Reply Letter From Company Selection
 - Example Part of Drawing
 - Information Model for Mould Process Planning Activities.

C Previous Study
 - Figure 2.24 – Figure 2.27
 - Tables of mould process planning
 - Forms for mould process planning activities and also their snippet codes
LIST OF FIGURES

2.1 Exploded View of Mould Base ... 8
2.2 Influencing Factors of Mould Design 10
2.3 Example Two-Plate Mould ... 14
2.4 Example Three-Plate Mould ... 16
2.5 Information Management Integration in Plastic Injection Mould-Making Industries (IMIPIMI) framework ... 18
2.6 The integrated process planning and scheduling system 20
2.7 Overall Schema of the Proposed Process Planning Paradigm 21
2.8 Standard mould cavity and core features 21
2.9a Standard mould core features ... 22
2.9b Standard mould cavity features 22
2.10 Scheduling of assembled jobs ... 26
2.11 Main Phases of Discrete Part Manufacturing 26
2.12 Process Plan Information Flow ... 29
2.13 Product Specification for Mould Design. 30
2.14 IDEF0 Diagram ... 41
2.15 A0, A1, A12 Numbering .. 41
2.16 Machine Operation Model .. 41
2.17 Example of User Interface for Using Microsoft Visual Basic 6.0 42
2.18 The Database Management System (DBMS) Allows Users to quickly and easily locate the information they required 43
2.19 Advantages and Disadvantages DBMS 45
2.20 Hierarchical database ... 48
2.21 Relational database ... 49
2.22 Object-oriented database ... 49
2.23 Network database ... 50
3.1 Methodology Flow Chart .. 60
4.1 MAC Technology (M) Sdn. Bhd. .. 68
4.2 Organizational Chart of MAC Technology (M) Sdn.Bhd 71
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Organizational Chart of Technical Centre Department</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Machining Process Standard Flow</td>
<td>78</td>
</tr>
<tr>
<td>4.5</td>
<td>Control of Customer Supplied Mould Flow Chart</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>Customer Supplied for Extended Mould Fabrication Flow Chart</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Process Flow for Mould Manufacturing at Company Selection</td>
<td>91</td>
</tr>
<tr>
<td>5.2</td>
<td>Mould Process Planning Activities (A0 Level)</td>
<td>96</td>
</tr>
<tr>
<td>5.3</td>
<td>Mould Process Planning Activities (Second Level)</td>
<td>97</td>
</tr>
<tr>
<td>5.4</td>
<td>Mould Process Planning Activities (Third Level)</td>
<td>98</td>
</tr>
<tr>
<td>5.5</td>
<td>Mould Process Planning Activities (Third Level)</td>
<td>101</td>
</tr>
<tr>
<td>5.6</td>
<td>Mould Process Planning Activities (Fourth Level)</td>
<td>102</td>
</tr>
<tr>
<td>5.7</td>
<td>Mould Process Planning Activities (Fourth Level)</td>
<td>103</td>
</tr>
<tr>
<td>5.8</td>
<td>Mould Process Planning Activities (Fourth Level)</td>
<td>104</td>
</tr>
<tr>
<td>6.1</td>
<td>Flow Chart of Database for Mould Process Plan</td>
<td>109</td>
</tr>
<tr>
<td>6.2</td>
<td>Main Menu of The System</td>
<td>107</td>
</tr>
<tr>
<td>6.3</td>
<td>Interface to Display Records (Mould Process Planning)</td>
<td>110</td>
</tr>
<tr>
<td>6.4</td>
<td>Interface for Form Mould_Process_Plan</td>
<td>113</td>
</tr>
<tr>
<td>6.5</td>
<td>Mould Drawing Record</td>
<td>114</td>
</tr>
<tr>
<td>6.6</td>
<td>Bill of Material Record</td>
<td>115</td>
</tr>
<tr>
<td>6.7</td>
<td>Main Menu Record</td>
<td>115</td>
</tr>
<tr>
<td>6.8</td>
<td>Tool Record</td>
<td>116</td>
</tr>
<tr>
<td>6.9</td>
<td>Flow of Table Mould_Process_Plan</td>
<td>120</td>
</tr>
<tr>
<td>6.10</td>
<td>Data Dictionary for Table Mould_Process_Plan</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Function of Mould Base Components</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of Materials</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>Criteria for Material Selection</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>The summary for literature review of previous development that had</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>taken place</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Activities of Major Process</td>
<td>96</td>
</tr>
<tr>
<td>6.1</td>
<td>Snippet Codes for Main Menu</td>
<td>108</td>
</tr>
<tr>
<td>6.2</td>
<td>Snippet Codes for Interface of Mould Process Planning Activities</td>
<td>111</td>
</tr>
<tr>
<td>6.3</td>
<td>Snippet Codes for Form Mould_Process_Plan</td>
<td>116</td>
</tr>
<tr>
<td>6.4</td>
<td>Data Dictionary for Selected Microsoft Access 2000 Tables Created for The Mould Process Planning Activities Database.</td>
<td>122</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
<td></td>
</tr>
<tr>
<td>CAM</td>
<td>Computer Aided Manufacturing</td>
<td></td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
<td></td>
</tr>
<tr>
<td>DBMS</td>
<td>Database Management System</td>
<td></td>
</tr>
<tr>
<td>ECM</td>
<td>Electro-Chemical Machining</td>
<td></td>
</tr>
<tr>
<td>EDM</td>
<td>Electric Discharge Machining</td>
<td></td>
</tr>
<tr>
<td>HSM</td>
<td>High Speed Machining</td>
<td></td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>MLT</td>
<td>Manufacturing Lead Time</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>Material Requirements Planning</td>
<td></td>
</tr>
<tr>
<td>MTO</td>
<td>Make to Order</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>Numerical Control</td>
<td></td>
</tr>
<tr>
<td>OO</td>
<td>Object-Oriented Database</td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
<td></td>
</tr>
<tr>
<td>SMEs</td>
<td>Small Medium Enterprise</td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>WIP</td>
<td>Work-In Progress</td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>Moulding Assembly Ceramic</td>
<td></td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Mode Effective Analysis</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

The mould and die designer must balance the constraints imposed by the various processes involved in producing a part to achieve the most cost effective solution. Reliance on the experience and expertise of an individual is now giving way to scientific design principles based on an understanding of polymer behavior. (J Gosden, 1983). The complexity associated with scheduling for job shops derives from the nature of the environment generally characteristic of job shops. Job shops typically produce a large number of different products, each of which may have unique manufacturing requirements. It is not unusual for a large job shop to maintain a database of such manufacturing requirements for several thousand regularly produced items. A database is usually stored within a computer and a special program it is a database manager or database management system (DBMS) that provides an interface between users and the data itself. (Timings & Tooley, 2001).

1.2 Problem Statements

Competition in manufacturing industry has becoming stiffer from day to day. The impact of information technology has made the competition becoming more complex. Therefore, to win market share, manufacturers should try to shorten time-to-market and introduce new product as soon as possible. One of the important manufacturing sectors is the mould-making sector. Mould
making is a very competitive industry. Mould making processes have the characteristic of job shop type of industry where orders are in limited quantity, no two orders are the same, production process is very slow and could be very complex. The complexity is due to the variety of parts, materials, machines, machining operations, process routes that are different for each product.

Therefore, all of the information should be managed as efficient as possible. Commercial DBMS can provide a database to contain information for all functions needed. However, the problem faced by SMEs is that those systems are not available cheaply. Therefore, there is a need to come up with information system to assist companies who need to manage information for mould making.

1.3 Project Objectives

The objectives of this project are:
(a) To define generic functional and information requirements for Mould and Die Process Planning Activities.
(b) To design and develop a database management system based on the Mould and Die Process Planning information model that has been developed.

1.4 Project Scopes

The scopes of this project are as follow:
(a) The system will be a PC-based system which may work in a network
(b) The point of view of this study starts from the system level to the information level. Therefore, it will consider all of the information requirements for Mould and Die Process Planning.

(c) Mould making processes will be modeled using case study company especially for injection mould making.
CHAPTER 2
LITERATURE REVIEW

2.1 Definition of Mould and Dies

2.1.1 Mould

According to researcher Rowe (2001), mould is the shape and in most cases, the final on parts. Most injection moulds are comprised of two halves a cavity (also called the female of a mould) and core (also called the male half). In general moulds are separate into two to permit the part to be extracted. This is because the shape of a part must be such that it will not be locked into the mould. For example, sides of objects typically cannot be parallel with the direction of draw (the direction in which the core and cavity separate from each other). While the core and cavity are usually highly machined mould also consist of many other parts that required little or no machining or shaping, such as pins, bushings, and etc. most moulds are produced through either traditional machining or electro discharge machining (EDM), although rapid prototyping and tooling techniques are gaining a foothold. Basically, the quality of mould is depends on the quality of the moulded part, which is taken care during the moulding process, and upon details of the design of the part itself.

Mould for Expanded Polystyrene foam are traditionally aluminum sand cast but, because of the many stages involved in making a sand mould example
pattern design, core making, and sand conditions, sand-casting is not always the most cost-effective solution. (Lye et al., 1996).

2.1.2 Dies

The die is made from plasters or cements that have a very high crushing strength (15,000 psi or more). The die has an internal air system which, when activated on the press, releases the ware from the die. This is referred to by many as an air-release die. The release is actually caused by interaction between air and water within the die. http://www.the art of die making.htm.

Forming dies are typically manufactured by tool and die makers and put into production after mounting into a press. The die is a metal block that is used for forming materials like sheet metal and plastic.

Dies may be classified as male and female; they may also be classified by their size. Small dies generally are those that have a surface area of $10^3 \text{ mm}^2 - 10^4 \text{ mm}^2$ (2 in2 - 15 in2), whereas large dies have surface areas of 1 m2 (9 ft2) and large, such as those used for press working automotive body panels.

Dies of various sizes and shapes can be cast from steels, cast irons, and nonferrous alloys. The processes used range from sand casting (for large dies weighing many tons) to shell moulding (for small dies). Several die materials, such as tool and die steels, high-speed steels, and carbides. Cast steels are generally preferred for dies for large workpieces, because of their strength and toughness and because of the ease with which their composition, grain size, and properties can be controlled and modified. (Kalpakjian & Schmid, 2001).
2.2 Components of Injection Mould

Injection mould is constructed using a series of components including various plates, pins, bushings, pillars, ejector systems, and many other items used for many purposes. Figure 2.1 shows some of the basic of items and where they are located in the mould.

Table 2.1:- Function of Mould Base Components

<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
<th>Function of Mould Base Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Top Clamping Plate</td>
<td>Hold the stationary part of the mould to the stationary platen of the injection machine.</td>
</tr>
<tr>
<td>2.</td>
<td>Locating Ring or Sprue Bushing Retainer Ring</td>
<td>Fits into a counterbore in the top clamping plate and is used to locate the mould on the platen of the press so the nozzle and sprue bushing are aligned.</td>
</tr>
<tr>
<td>3.</td>
<td>Cavity Retainer Plate (Front Cavity Plate)</td>
<td>Part of the stationary section of the mould into which the leader or guide pins are mounted. Also used to hold core, cavity blocks, and sprue bushing.</td>
</tr>
<tr>
<td>4.</td>
<td>Core Retainer Plate (Rear Core Plate)</td>
<td>Top plate of the movable section of the mould. Forms the parting line of the mould with cavity retainer plate. Used to hold the leader pin bushings as well as core and cavity.</td>
</tr>
<tr>
<td>5.</td>
<td>Support Plate (Back up Plate)</td>
<td>Mounted behind the core retainer plate to keep this plate from bending under the high pressure used in injection molding.</td>
</tr>
<tr>
<td>6.</td>
<td>Bottom Clamping Plate</td>
<td>Holds the moving portion of the mould to the movable platen of the injection machine.</td>
</tr>
<tr>
<td>7.</td>
<td>Parallels (Rails)</td>
<td>Mounted on the bottom clamping plate under the support platen to form a space which allows the ejector bar to move when the piece parts are ejected.</td>
</tr>
<tr>
<td>8.</td>
<td>Ejector Retainer Plate</td>
<td>Counterbored for the heads of the ejector pins,</td>
</tr>
</tbody>
</table>