Productivity Improvement using Line Balancing Technique: A Case Study at an electronic Company

Thesis submitted in accordance with the requirements of the Technical University of Malaysia Malacca for the Bachelor Degree of Manufacturing Engineering in Manufacturing Process

By

Zhafran Aizat Bin Zakaria

Faculty of Manufacturing Engineering

May 2007
JUDUL: Productivity Improvement By Using Line Balancing Technique: Case Study at an Electronic Company

SESJ PENGAJIAN: 4/2

Saya: ZHAFRAN AIZAT BIN ZAKARIA

mengaku menembarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hukmil Universiti Teknikal Malaysia Melaka
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap:
Lot 852 Kg Sri Gemencah, 73200,
Gemencah, N.Sembilan

Cop Rasm:
NOR AKRAMIN BIN MOHAMD

Pensyarah

Fakulti Kejuruteraan Pembustan
Universiti Teknikal Malaysia Melaka
Karung Bercinti 1200, Ayer Keroh,
75450 Melaka

(TANDATANGAN PENYELIA)

Tarikh: 16/5/07

Disahkan oleh:

Tarih: 17/5/2007

* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat dari pada pihak berkualas/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this thesis entitled “Productivity Improvement By Using Line Balancing Technique – Study Case: at an electronic company” is the results of my own research except as cited in references.

Signature : ..
Author’s Name : ZHAFRAN AIZAT BIN ZAKARIA
Date : 16 MAY 2007
ABSTRACT

The problem of balancing assembly line is a classical industrial engineering problem. Even though much of the work area goes back to mid 50s and early 60s, the basic structure of the problem is relevant to the design production system today. The thesis is cover all the topic of assembly line balancing; methodology and theory and the company approaches to implement this technique. The case study focused on Flextronics Malacca and parallel line in production lot and the model sequenced that both line more than one model. This is know and compare the two model to proven that the line more than one or parallel could be balanced or not. The scope of project characterized by following up the Flextronics approaches and their schedule planning to implement this technique which starting from October 2006 untill January 2007. For chapter 4 the result is used to compare before and after improvement to prove the effectiveness of the parallel line. After that chapter discussion is about the effectiveness of improvement by using this technique shall discuss by comparing the result. Finally the finding that will get from the study case to compare the Flextronics approaches and theory assembly line balancing before whether its relevant and practical or not to solve industrial production problem.
DEDICATION

For My parent and Supervisor Lecturer
ACKNOWLEDGEMENTS

I would like to thank for god as give me a chance and opportunity during complete this project as well as this project has been successfully completed without any problem. Not forget also to say thanks to my parent as give me encourage especially when I struggle to complete this study and report for my project in final year. Their encouragement as a spiritual to me along the duration of this thesis done. For my supervisor lecturer that handle me during this project I appreciated and dedicated for Miss Zuhriah Bte Ebrahim as give me the guideline, supporting and giving some recommendation to overcome problem faced during the project. I would like also thank to my classmate that give me encouragement and supporting me doing complete this project.
TABLE OF CONTENTS

Abstract i
Dedication ii
Acknowledgement iii
Table of Content iv
List of Figures xi
List of Tables xiv
Sign and symbol xvi
List of Appendices xviii

1. INTRODUCTION 1

1.1 The project 1

1.1.1 The products 3

1.1.2 Management and Organization Chart 4

1.2 Objectives Project 6

1.3 Scope of Project 6

1.4 Background Problems 7
2. LITERATURE REVIEW

2.1 The concept of Line Balancing

2.2 Assembly Line Balancing

2.3 The type of problem in Line Balancing

2.3.1 Assembly line Balancing Problem

2.3.2 Stochastic Single Assembly Line Balancing Problem

2.3.3 Parallel Assembly Line Balancing Problem

2.3.4 Mixed Model Assembly Line Balancing Problem

2.4 Line Balancing Analysis

2.4.1 Heuristic line Balancing

2.5 Demand Flow Technology

2.5.1 Background of DFT

2.5.2 What is Demand Flow Technology?

2.5.3 Product Synchronization in Parallel Lines A1B and A5

2.6 Demand Flow Technology resources

2.6.1 The perspective Line Balancing

2.6.2 Resource Calculation

2.7 Flextronics Approach

2.7.1 Management Approach
3. METHODOLOGY

3.1 Introduction 36
3.2 Selecting production line 38
3.3 Preparing implementation schedule 41
3.4 Implementing the Flextronics Line Balancing Approach 43
3.5 Collecting Data 44
3.6 Analyzing Data 46
3.7 Discussing the Result 46
3.8 Findings 47
4. RESULT

4.1 Introduction

4.2 Results After Implementation (By Phase)

4.2.1 Phase 1

4.2.2 Phase 2

4.2.3 Phase 3 & 4

4.2.4 Phase 5

4.3 Product Output (represents in SGR)

4.3.1 Phase 1

4.3.2 Phase 2

4.3.3 Phase 3 & 4

4.3.4 Phase 5

4.7 The cycle time (s) and Takt Time (s)

4.4.1 Phase 1

4.4.2 Phase 2

4.4.3 Phase 3 & 4

4.4.4 Phase 5

4.7 Quality Yield

4.5.1 Goldfinger

4.5.2 Sigmund
. DISCUSSION
.1 Introduction 77
.2 Productivity 78
 5.2.1 Phase 1 78
 5.2.1.2 Comments 78
 5.2.2 Phase 2 79
 5.2.2.1 Comments 79
 5.2.3 Phase 3 & Phase 4 80
 5.2.3.1 Comments 80

 5.2.4 Phase 5 81
 5.2.4.1 Comments 81

3 Cycle Time and Standard Time 82

4 Quality Yield 83

5 Problem Occured 84
 5.5.1 Phase 1: 84
 5.5.1.1 Potential Problem 84

 5.5.2 Phase 2: 85
 5.5.2.1 Potential Problem 85

 5.5.3 Phase 3 & 4: 86
 5.5.3.1 Potential Problem 87

 5.5.4 Phase 5: 88
 5.5.4.1 Potential Problem 88
6. SUGGESTION AND RECOMMENDATION FOR FURTHER IMPROVEMENT

6.0 Introduction

6.1 A Framework for Implementing Line Balancing Technique

6.2 Identify the number of workstation

6.3 Obtaining single-skilled operator set and multiple-skilled operator set

6.4 Workmotion study to identify the actual work load for each
 One operator in workstation

6.5 Obtaining the number of multiple-skilled operator needed
 for each operation

6.6 Identifying all feasible allocations for needed
 multiple-skilled operator.

6.7 Revised and rearranged segments by creating sequence of work template

6.8 Confirmation of skill efficiency by analyzing three indices
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flextronics Malacca</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Flextronics Line per Shift</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Several end product of the company based on the name of PCBA given</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Flextronics Organizational Chart</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>An example of Precedence Diagram</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The product sequencing model</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Surface Mounted Technology (SMT) Flowchart process</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Backend Flowchart process</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>The Line Balancing Technique by DFT concept</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>The History of F.M.S</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart Methodology</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>The Flextronics approaches line balancing implementation</td>
<td>44</td>
</tr>
<tr>
<td>4.1(a)</td>
<td>Result Before Improvement SGR/Output of Goldfinger vs Targeted</td>
<td>57</td>
</tr>
<tr>
<td>4.1(b)</td>
<td>Result After Improvement SGR/Output of Goldfinger vs Targeted</td>
<td>58</td>
</tr>
<tr>
<td>4.2(a)</td>
<td>Result Before Improvement SGR/Output of Sigmund vs Targeted</td>
<td>58</td>
</tr>
<tr>
<td>4.2(b)</td>
<td>Result After Improvement SGR/Output of Sigmund vs Targeted</td>
<td>59</td>
</tr>
<tr>
<td>4.3(a)</td>
<td>Result Before Improvement SGR/Output of Sigmund vs Targeted</td>
<td>59</td>
</tr>
<tr>
<td>4.3(b)</td>
<td>Result After Improvement SGR/Output of Sigmund vs Targeted</td>
<td>59</td>
</tr>
</tbody>
</table>
4.4(a) Result Before Improvement SGR/Output of Goldfinger vs Targeted

4.4(b) Result After Improvement SGR/Output of Goldfinger vs Targeted

4.5(a) Result Before Improvement SGR/Output of Sigmund vs Targeted

4.5(b) Result After Improvement SGR/Output of Sigmund vs Targeted

4.6(a) Result Before Improvement SGR/Output of GoldFinger VS Targeted

4.6(b) Result After Improvement SGR/Output of GoldFinger VS Targeted

4.7(a) Result Before Improvement SGR/Output of Goldfinger vs Targeted

4.7(b) Result After Improvement SGR/Output of Goldfinger vs Targeted

4.8(a) Result Before Improvement SGR/Output of Sigmund VS Targeted

4.8(b) Result After Improvement SGR/Output of Sigmund VS Targeted

4.9(a) Result Before Improvement Operator Cycle Time Goldfinger

4.9(b) Result After Improvement Operator Cycle Time Goldfinger

4.10(a) Result Before Improvement Operator Cycle Time Sigmund

4.10(b) Result After Improvement Operator Cycle Time Sigmund

4.11(a) Result Before Improvement Operator Cycle Time Sigmund
4.11(b) Result After Improvement Operator Cycle Time Sigmund
4.12(a) Result Before Improvement Operator Cycle Time Goldfinger
4.12(b) Result After Improvement Operator Cycle Time Goldfinger
4.13(a) Result Before Improvement Operator Cycle Time Sigmund
4.13(b) Result After Improvement Operator Cycle Time Sigmund
4.14(a) Result Before Improvement Operator Cycle Time Goldfinger
4.14(b) Result After Improvement Operator Cycle Time Goldfinger
4.15(a) Result Before Improvement Operator Cycle Time Goldfinger
4.15(b) Result After Improvement Operator Cycle Time Goldfinger
4.16(a) Result Before Improvement Operator Cycle Time Sigmund
4.16(b) Result After Improvement Operator Cycle Time Sigmund
4.17(a)(b) The defect of model goldfinger and Sigmund
4.18 Defect type of Labelling
4.19 The comparison percentage yield before and after implementation
4.20 The comparison percentage yield before and after implementation
5.1(a)(b) Remove PRE IR station before and after improvement
5.2(a)(b) Removing Kapton Tape with combination of location gold after skipped
5.3(a)(b) Changing from stamping to dotting after improvement
5.4(a)(b) Minimizing or reducing become one scanner after improvement
6.1 Illustrates the frame work for operator allocation line problem
6.2 Three indices analysis for operator allocation 1.
6.3 Three indices analysis for operator allocation 2.
LIST OF TABLES

2.5 Comparison between DFT and Lean 23
2.7 The action FMS Tracking Scheduled from June 2006 34
3.2a Explanation of line for SMT and Backend process (A1B) 38
3.2b Explanation of line for SMT and Backend process (A5) 39
3.3 The Detail Flextronics Line Balancing Implementation 40
4.1 Before and After Improvement at PRE/IR station 49
4.2 Before and After Improvement at PRE/IR station 50
4.3 Result Before and After Improvement at Deburring Station (Backend) 51
4.4 Result Before and After Improvement at Deburring Station (Backend) 52
4.5 Result Before and After Improvement at FI station and remove kapton tape 53
4.6 Result Before and After Improvement at FI station and remove kapton tape 54
4.7 Result Before and After Implementation at FI (Scanning) process 55
4.8 Result Before and After Improvement at FI Station (Backend) 56
5.1 Result productivity before and after for phase 1 78
5.2 Result productivity before and after for phase 2 79
5.3 Result productivity before and after for phase 3 & 4 80
5.4 Result productivity before and after for phase 5 81
6.1 Flexibility Training Woksheet For Operator 93
6.2 Training Matrix for cross training each product/line 94
6.3 Sequence of work template for sampling at P/IR Workstation 98
6.4 Sequence of work template for sampling work at FI station (stamping)

6.5 Sequence of work template for sampling work at FI station (scanning)

6.6 Operator allocation worksheet for each different case

6.7 Shows worksheet to measure performance of Operator

7.1 The differentiate productivity before and after implementation for all phases
LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVA</td>
<td>Non value added</td>
</tr>
<tr>
<td>FMS</td>
<td>Flextronics Manufacturing System</td>
</tr>
<tr>
<td>SFM</td>
<td>Synchronize Flow Manufacturing</td>
</tr>
<tr>
<td>DFT</td>
<td>Demand Flow Technology</td>
</tr>
<tr>
<td>SMT</td>
<td>Surface Mounted Technology</td>
</tr>
<tr>
<td>WIP</td>
<td>Work in process</td>
</tr>
<tr>
<td>TDE</td>
<td>Test Development Engineering</td>
</tr>
<tr>
<td>WIP</td>
<td>Work in process</td>
</tr>
<tr>
<td>I.E</td>
<td>Industrial Engineering</td>
</tr>
<tr>
<td>WD</td>
<td>Workdays per month</td>
</tr>
<tr>
<td>Dc</td>
<td>Daily rate</td>
</tr>
<tr>
<td>Fr</td>
<td>Hourly Flowrate</td>
</tr>
<tr>
<td>n</td>
<td>Number of stations</td>
</tr>
<tr>
<td>c</td>
<td>Station cycle time</td>
</tr>
<tr>
<td>Σt</td>
<td>Total work content time of unit</td>
</tr>
<tr>
<td>ALBP</td>
<td>Assembly Line Balancing Problem</td>
</tr>
<tr>
<td>K</td>
<td>No of station</td>
</tr>
<tr>
<td>t(Sk)</td>
<td>Cumulated task time</td>
</tr>
<tr>
<td>s</td>
<td>Station Load</td>
</tr>
</tbody>
</table>

xvi
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{max}</td>
<td>Largest task time</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>H</td>
<td>Effective work hours</td>
</tr>
<tr>
<td>S</td>
<td>Workshift per day</td>
</tr>
<tr>
<td>P/IR</td>
<td>Pre Inspection Resources</td>
</tr>
<tr>
<td>ICT</td>
<td>Integrated Circuit Testing</td>
</tr>
<tr>
<td>FI</td>
<td>Final Inspection</td>
</tr>
<tr>
<td>PV</td>
<td>Target Monthly Volume</td>
</tr>
</tbody>
</table>
LIST OF APPENDIXES

Appendixes A

- Gantt Chart PSM

Appendixes B

- Collected data (Cycle Time) Before
- Collected data (Cycle Time) After
- Status Quality Yield (Before)
- Status Quality Yield (After)

Appendixes C

- Flextronics Scheduled Approved
- Standard Data Form collected In Flextronics
CHAPTER 1
INTRODUCTION

1.1 The Project

The project is about study on productivity improvement through the application of line balancing concept at Flextronics Sdn. Bhd in Malacca. The company that done the research is sub-con in industrial electronic company which has headquarters at Flextronics, Senai in Johor Bharu. Flextronics Malacca is the fifth plant to be built in Malaysia branches includes Senai, Tampoi, Shah Alam and Pulau Pinang. The Malacca Plant was bought over by Flextronics from Dovatron (M) Sdn. Bhd on the late of 1993, but only started its operation on January of 1994. However, they take almost 3 years to develop before granted with ISO 9002 on 1997.

Figure 1.1: Flextronics Malacca

The work force of this company keeps increasing at an increasing rate and reaches 3600 peoples today. Besides that it has 30 SMT lines which could accommodate the more quantity people that need to get job.
Assembly lines can be classified into two general groups (with single and multimixed products) and U-Type assembly lines (with single and multimixed products), serial and parallel lines. There are all these types above mentioned assembly line at Flextronics. This project will use Line A1B and A5 as a case study. These two lines is recognized as parallel lines in Flextronics. The lines A1B and A5 which is two models only goldfinger and Sigmund those go through to the both line making assembly process from SMT (Surface Mounted Technology) process until Backend process. The research studied that we done focused on the parallel lines at line A1B and A5 for single model, Sigmund and goldfinger which running for both lines. This project involves parallel line will focus on the single line balancing problem which have parallel workstations. This project will base on Flextronics approaches implementing line balancing technique from the planning schedule that determined by the management headquarters.

The approach is based on the FMS team strategy to develop problem solving method based on DFT (Demand Flow Technology) concept. The objective of their approach is to improve the productivity of the company that such give the profit. This could be achieved by develop stochastic cost integrated into a balancing line to enable an approximately minimum cost balanced to be obtained. The purpose of this project to studied the flextronic's propose an efficient optimal processing based on eliminating Non Value Added by balancing the process.
1.1.1 The Products

With the experience more than 25 years made this factory become flexible and strongest management to handle all the project that given by customer successfully and fulfill customer satisfaction. In 2002 the management factory is changed again into two sections because of model infocus give many problems. This model is transferred to the new branch factory at Senai, Johor Bahru. Therefore, Malacca Branch only produced model HP and Carrier Access Instead of focusing on manufacturing end products this plant is more on the creation of the main boards of the end products. The main customers of Flextronics Malacca are Hewlett Packard, Carrier Access, In Focus and Baxter. Here in Malacca, the main products manufactured include printers, digital cameras, Liquid Crystal Display Screen, Touch Screen and Video Projectors. Figure 1.3 below shows several end products of the company based on the name given by the customer for the PCBA board produced.

![Image of end products]

Figure 1.3: Several end product of the company based on the name of PCBA given.