ROOT CAUSE ANALYSIS OF CORE PIN QUALITY PROBLEM USING CAUSE AND EFFECT DIAGRAM

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Process) with Honours.

by

ENDA NUR MALIA BTE NGAH DEMAN

FACULTY OF MANUFACTURING ENGINEERING
2009
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PSM

JUDUL:
ROOT CAUSE ANALYSIS IN CORE PIN QUALITY PROBLEM USING CAUSE AND EFFECT DIAGRAM

Saya **Enda Nur Malia Bte Ngah Deman** mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
4. *Sila tandakan (√)
 - SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 - TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 - TIDAK TERHAD

(TANDATANGAN PENULIS)
Alamat Tetap:
POS 44, PBL 26
Tanjung Gading Laut,
84000 Muar Johor

(TANDATANGAN PENYELIA)

Tarikh: 18/05/09

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini pertu dikelaskan sebagai SULIT atau TERHAD.

© Universiti Teknikal Malaysia Melaka
DECLARATION

I hereby, declare this report entitled Root Cause Analysis of Core Pin Quality Problem Using Cause and Effect Diagram is the results of my own research except as cited in references.

Signature

Author’s Name : Enda Nur Malia Bte Ngah Deman
Date : 18/05/09

© Universiti Teknikal Malaysia Melaka
DECLARATION

I hereby, declare this report entitled Root Cause Analysis of Core Pin Quality Problem Using Cause and Effect Diagram is the results of my own research except as cited in references.

Signature

Author’s Name : Enda Nur Malia Bte Ngah Deman
Date : 18/05/09
APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of University Technical Malaysia Melaka (UTeM) as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process) with Honours. The member of the supervisory committee is as follow:

[Signature]

ISMAIL BIN ABU SHAH
Pensyarah
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
This report represents the study of Root Cause Analysis in Core Pin quality problem. Due to the purpose, the issue that was study is about quality in manufacturing process especially in a field of injection molding which contributes by the Core Pin. This aspect is very important to minimize a product cost without affecting its quality. The objective of this study is to identify the root cause of Core pin problem using a Root Cause Analysis technique. This study also requires preventing and improved the encountered problem identified in Core Pin quality problem for long term. This report focuses on the process to solve the cause that occurs as the quality problem for the Core Pin. The methods of Root Cause Analysis, Fishbone Diagram and 5Why analysis are used during the study. This method helps in data collection and data analysis before further conclusion is made as reflect of finding. A structure of Root Cause Analysis which consists of identifying and analyzing the problems is expected to be developed at the end of the study. Data were collected from the manufacturing plant, which indicated that the monthly defect rate were significant ranging between 1.3 % to 5.7%. These figure give a clear indication regarding to the number of defect occurs within the total production. This would be achieved if appropriate manufacturing practices were adopted with the aim of reducing the effect of manufacturing system variable that effect overall quality. A process attributes chart has been used to monitor the defect in each process of Core Pin. Upper and lower limit were given and the data are plotted in statistical control chart. If the defect above the upper limits the study meet the objective but if the defect below in the lower limits, some action must be taken to improve it.
ABSTRAK

DEDICATION

I would like to dedicate my special thanks to my beloved family especially for my father Allahyarham Ngah Deman Bin Hj Ahmad and my mother Puan Jamilah Bte Banan. Thanks for all your love and support. Also to all my friends and classmate for contributing to the success of my final year project and not to forget my supervisor Mr. Ismail Bin Abu Shah, thanks for all your advices and support. The successful of this project cannot be achieved without all of you. Once again, thank you to all for everything.
ACKNOWLEDGEMENT

Alhamdulillah, praised be to Allah S.W.T the Al Mighty and Merciful, because of the blessing that made possible for this project to be completed in time. This thesis is prepared to fulfill the graduation requirement of Bachelor of Manufacturing Engineering (Honours) Process and System. One semester of completing this thesis together with the classes to be attended as the requirement on the completion of BME (Honours) Process and System has given me opportunity to gain knowledge and being exposed to the current technology condition before continuing with the future endeavor challenges.

Foremost, I would like to take this opportunity to express my sincerely gratitude to all those efforts facilitated in the completion of this thesis. Without helped and support from various people, the completion of this study would not be made possible.

Firstly, I would like to express my deepest gratitude and thanks to my most respected thesis examiner, Dr. Bagas Wardono and Encik Jeefferic Bin Abd Razak, from whom I sought and received valuable guidance, comments, views, advices as well as encouragement based upon her own extensive experience. I am also grateful for her tolerance towards my weaknesses and ignorance in completing this thesis. I wish to express my special word of thanks and indebted to En.Ismail Bin Abu Shah, who also responsible for the preparation of the contents and the flow of the thesis. Last but not least, special word of thanks and sincere gratitude to my beloved family, for the prayer and constant support for the beginning until the end of this study. Thanks a million.
TABLE OF CONTENT

Declaration
Approval
Abstract
Abstrak
Dedication
Acknowledgement
Table of Content
List of Tables
List of Figures
List of Abbreviation

1. **CHAPTER 1**

1.1 Back Ground of Study
 1.1.1 Injection Molding
 1.1.2 Root Cause Analysis
1.2 Problem Statement
1.3 Objective
1.4 Scope
1.5 Significant Of the Study 7
1.6 Outline of Study 7

2. CHAPTER 2

2.1 Introduction 9
2.2 Quality In Manufacturing 10
2.3 Injection Molding 10
 2.3.1 Injection Mold 11
 2.3.2 Core Insert Pin 12
2.4 Acceptance Sampling 15
2.5 Defect rate 16
2.6 Importance Of Tolerance Control 16
2.7 Dimensional Inspection 17
2.8 Size 17
2.9 Fit And Allowance 18
2.10 Geometrical Dimensioning And Tolerance 20
2.11 Statistical Control Chart 22
2.12 Root Cause Analysis 22
 2.12.1 Application of Root Cause Analysis 24
 2.12.2 General Principle of Root Cause Analysis 25
 2.12.3 Other Root Cause Analysis Technique 25
2.12.3 5 Why Analysis 26
2.12.4 Causes in Fishbone Diagram 27
2.13 Management In Root Cause Analysis 30

3. CHAPTER 3
3.1 Project Planning 32
 3.1.1 Gantt Chart 32
 3.1.2 Flow Chart 33
3.2 Study the Problem 35
3.3 Literature Review 37
3.4 Collect Data 37
3.5 Management Data 44
3.6 Calculation Statistical Control Chart 47
3.6 5 Why Analysis 48
3.7 Cause of Failure 49
3.8 Improvement from the Outcome 50

4. CHAPTER 4
4.1 Introduction 51
4.2 Result Overview 51
4.3 Finding and Result 53
 4.3.1 Result 55
4.4 Data Analysis 57
4.4.1 Defect Rate 58
4.4.2 Core Insert Pin Graph in March 2008 60
4.4.3 Core Insert Pin Graph in April 2008 61
4.4.4 Core Insert Pin Graph in May 2008 62
4.4.5 Core Insert Pin Graph in June 2008 63
4.4.6 Summary of the Data Analysis 64
4.4.7 Cause and Effect Analysis 69

5 CHAPTER 5

5.1 Introduction 96
5.2 Defect rate 96
5.3 Cause and Effect Diagram (Fishbone Diagram) 98
5.4 Framework for Quality Improvement 102

6 CHAPTER 6

6.1 Conclusion 103
6.2 Recommendation To Reduce Quality Problem In Core Pin Manufacturing 104

APPENDICES

A Gantt chart for PSM 1 & 2
B Technical Drawing of Core Pin
C Result of Core Pin March 2008
D Result of Core Pin April 2008
E Result of Core Pin May 2008
F Result of Core Pin June 2008
LIST OF TABLES

2.1 Example of Inspection Report
3.2 Milling Operation Form
3.3 Harden Process Form
3.4 In- Process Form
3.5 Grinding Process Form
3.6 WEDM Process Form
3.7 Final Production Inspection Form
3.8 Subcon Process From
3.9 Sort the Data Follow the Main Cause
3.10 Countermeasure table

4.1 Specification of the drawing
4.2 sampling plan
4.3 Results for March 2008
4.4 Results for April 2008
4.5 Results for May 2008
4.6 Results for June 2008
4.7 Manage Data Follow the Major Cause
4.7 The Data Collection
4.8 5 Why Analysis (Material)
4.9 The Systematic Diagram of the Fishbone Diagram for Machine
4.10 5 Why Analysis (Method)
4.11 The Systematic Diagram of the Fishbone Diagram for Method
4.12 5 Why Analysis (Mother Nature)
4.13 The Systematic Diagram of the Fishbone Diagram for Mother Nature
4.14 5 Why Analysis (Man Power)
4.15 The Systematic Diagram of the Fishbone Diagram for Manpower
4.16 5 Why Analysis (Material)
4.17 The Systematic Diagram of the Fishbone Diagram for material
4.18 5 Why Analysis all Root Cause
4.19 The Systematic Diagram of the Fishbone Diagram for Major Root Causes.
4.20 Summary 5 Why Analysis for All Root Cause

5.1 The Summary of Countermeasure
5.2 Main Causes That Give Impact in Core Pin Quality Problem
LIST OF FIGURES

1.1 Relationship between Yesterday, Real-Time and Breakthrough
1.2 Core Insert Pin

2.1 Explored Mold
2.2 Wire Frame Molding
2.3 Core Insert Movement
2.4a View the Cavity and Core Insert Pin
2.4b Movement of the Core Insert Pin
2.5a A Feature Of Size Is A Subset Of A Spherical Or Cylindrical Surface
2.5b Limit of Size Are Defined By Limits on Nominal Parameter Value
2.6 Description of Allowance
2.7 Description of Fits and Allowance
2.8 Clearance of the Mold Part
2.9 Fitting a Shaft inside a Hole
2.10 Apparent and Root Cause
2.11 Illustrate Concept of 5 Why Technique
2.12 Basic Cause and Effect Diagram
2.13 Example of Fishbone Diagram
2.14 Table of Root Cause Analysis

3.1 Flow Chart of Project Methodology
3.2 Core Insert Pin
3.3 Core Insert Dimension
3.4 Core Pin Position
3.5 Temperature Scale
3.6 Process Flow to Produce the Core Pin
3.7 Burr at Core Insert Pin
3.8 Cause and Effect Diagram of Core Insert Pin Quality problem
3.9 Questions to the Causes

4.1 Measurement Process Flow
4.2 X-Bar Chart for Dimension 0.762mm of Core Insert Pin in March 2008
4.3 The Defect Rate in March 2008
4.4 X-Bar Chart for Dimension 0.762mm of Core Insert Pin in April 2008
4.5 The Defect Rate in April 2008
4.6 X-Bar Chart for Dimension 46.175mm of Core Insert Pin in May 2008
4.7 The Defect Rate in May 2008
4.8 X-Bar Chart for Dimension 0.762mm of Core Insert Pin in June 2008

4.9 The Defect Rate in June 2008

4.10 The Possibility Cause

4.11 Sub Factor of Grouping Causes (Machine)

4.12 Sub Factor of Grouping Causes (Method)

4.13 Sub Factor of Grouping Causes (Mother Nature)

4.14 Sub Factor of Grouping Causes (Man Power)

4.15 Sub Factor of Grouping Causes (Material)

5.1 Graph of Defect Rate in 4 Month

5.2 Framework of Quality Improvement
LIST OF ABBREVIATION

QA - Quality Assurance
ISO - International Organization for Standardization
FOS - Features of Size
GDT - Geometric Dimensioning and Tolerancing
MMC - Maximum material condition
LMC - Least material condition
RCA - Root Cause Analysis.
CHAPTER 1
INTRODUCTION

This chapter consist the background of study where it explains about the meaning of Root Cause Analysis in industrial practice and the quality of product, problem statement where it highlights the actual problem happened in Core Pin quality also objective and scope of this study. Later on next chapter will explain about the objective and scope. Then, followed by significance and the outline of the study will done to complete this report.

1.1 Background of the study

The issue highlights in this study is about quality in the manufacturing process. Quality is a high degree of excellence or good of highest of quality in manufacturing product. Simply and generally quality may be defined as a product’s fitness for use (Kalpakjian, and Schmid, 2006a).

Product quality has been one of the most important aspects in manufacturing process because quality is a broadcast characteristic or property and it consists not only of well-defined technical consideration but also of subjective opinions. The emphasize that quality must be built into a product and not merely checked for after the product already have been made. It’s to minimize a product’s cost without affecting its quality. Major advances in quality engineering and productivity has been made, largely because of the efforts of quality experts like used the Root Cause Analysis technique.
In quality management, it has three different conditions that have been used; it is ‘Yesterday’, ‘Real Time’ and ‘Breakthrough’. In ‘yesterday’ condition, only the inspection and sampling plan that being used. It is not effective to find the cause and problem. For the real time the Statistical Process Control that being used and to define the real time, Root Cause Analysis technique is used to analyze the data collection. Breakthrough is the stage where it used for a long term (continuously).

<table>
<thead>
<tr>
<th>Yesterday</th>
<th>Real Time</th>
<th>Breakthrough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection</td>
<td>Statistical Process Control</td>
<td>FMEA</td>
</tr>
<tr>
<td>Sampling Plan</td>
<td></td>
<td>POKA YOKE</td>
</tr>
<tr>
<td>Root Cause Analysis technique</td>
<td></td>
<td>DOE</td>
</tr>
</tbody>
</table>

Figure 1.1: Relationship between Yesterday, Real time and Breakthrough

1.1.1 Injection molding

The plastics injection molding process is important to many of today’s mainstream manufacturing processes in industries such as telecommunications, consumer electronics, medical devices, computers and automotive all have large, constantly increasing demands for injection molded plastic parts. In the production of injection molded parts is a complex process where, without the right combination of material, part and mold design and processing parameters, a multitude of manufacturing defects can occur, thus incurring in high costs. The injection molding process itself is a complex mix of time, temperature and pressure variables with a multitude of manufacturing defects that can occur without the right combination of processing parameters and design components (Moldflow, 2005).
The main part that is concerned in this study is Core Pin Insert Mould which is the part inside the mould. The function of the Core Pin is to push a molded part of a core in a mold as shown at **Figure 1.2**.

![Core Insert Pin](image)

Figure 1.2: Core Insert Pin

Core pins fit into ejector sleeves require special considerations. Core Pin are mounted on an ejector plate attached to a piston called an ejector rod. The principles of heat flow should be understood and applied in the injection mold design as the mold acts as a heat exchanger during the molding cycle. It is because core pins are then ideal for use in cooling plastic in a mold as they are in contact with the plastic and will remove heat by conduction. Core pin can transfer heat rapidly to an area of cooler temperature, insuring flow from the plastics through the core pin, due to the greater temperature difference between them. Standard off the shelf ejector sleeves are built to accept pins with tolerances applicable to core pins. Apparently when ejector sleeves were first introduced the only close tolerance pins available were core pin and the precedent was established. Core is mounting fit at the surface of cavity. Both the plastic material shrink rate and thermal expansion of the mold cavity and core must be taken into consideration in the design of close tolerance molds.
1.1.2 Root Cause Analysis

Root Cause is the most basic reason for an undesirable condition or problem which if eliminated or corrected would have prevented it from exiting or occurring (Wilson et al., 1993a). In keeping with the definition of root cause, care must be taken to distinguish symptoms clearly from cause, as well as apparent causes. Root Cause usually is defined in terms of specific systematic factor. Since the definition states that it is the most basic cause, a root cause is usually expressed in terms of the least common organizational, personal, or activity denominator. Proper Root Cause Analysis identifies the basic source or origin of the problem. Root Cause Analysis is a step by step approach that leads to the identification of a fault's first or root cause. Every system, equipment, or component failure happens for a reason. There are specific successions of events that lead to a failure. A root cause analysis investigation follows the cause and effect path from the final failure back to the root cause.

In certain industries, the cost of mistake cannot be calculated as easily. Particular attention has been given to the effectiveness of preventing recurrence of identified problems. The manufacturing industry, perhaps more so than others, also deals with problems that are only postulated as well as those that have already occurred. For the problem solving process to be effective the estimation must therefore uncover and correct the condition's root cause, not just treat the symptoms but find the best way to make solution of the problem.

Root cause analysis techniques are designed to provide with the proper focus for identifying and resolving problem as well as potential occurrences. This focus is to provide input to the management decisions making regarding quality and productivity improvement on a long term basis. Root cause analysis can be an effective management tool to find the true or actual cause of unwanted events or conditions, facilitating effective action and prevent their recurrence. It also provides the most obvious opportunities for improvement since it identifies obstacles and the basic reasons for problems in current activities or processes.