Intelligent Part Recognition and Auto Storage Using Feature-Based Modelling Within CAD System

Thesis submitted in accordance with the requirements of the National Technical University College of Malaysia for the Degree of Bachelor of Engineering (Honours) Manufacturing (Process)

By

Wan Fadilah Wan Jamaludin

Faculty of Manufacturing Engineering
June 2006
KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA

BORANG PENGESAHAN STATUS TESIS*

JUDUL : INTELLIGENT PART RECOGNITION AND AUTO STORAGE USING FEATURE BASED MODELLING WITHIN CAD SYSTEM

SESi PENGAJIAN : 2/2005-2006

Saya WAn FADILah BINTI WAN JAMALUDiN

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Kolej Universiti Teknikal Kebangsaan Malaysia.
2. Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (√)

☐ SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

(STRING)

(TANDATANGAN PENULIS)

Alamat Tetap:
106 JALAN 4, TAMAN SEKAMAT,
43000 KAJANG,
SELANGOR DARUL EHSAN.

Tarih: 9 JUN 2006

(TANDATANGAN PENYELIA)

DR. MOHAMAD SHARIS BIN ABDUL KARIM
Pensyarah
Fakulti Kejuruteraan Pembuat
Kolej Universiti Teknikal Kebangsaan Malaysia
Karung Berkunci 1200
75450 Ayer Keroh, Melaka.

Tarih: 9/6/06

* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat dari pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref):
Rujukan Tuan (Your Ref):

Pustakawan
Perpustakawan Kolej Universiti Teknikal Kebangsaan Malaysia
KUTKM, Ayer Keroh
MELAKA.

Saudara,

PENGKELASAN TESIS SEBAGAI SULIT/TERHAD
- TESIS SARJANA MUDA KEJURUTERAAN PEMBUATAN (PROSES PEMBUATAN):
WAN FADILAH BINTI WAN JAMALUDIN
TAJUK: INTELLIGENT PART RECOGNITION AND AUTO STORAGE USING FEATURE
BASED MODELLING WITHIN CAD SYSTEM

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk
“INTELLIGENT PART RECOGNITION AND AUTO STORAGE USING FEATURE BASED
MODELLING WITHIN CAD SYSTEM” mohon dikelaskan sebagai terhad untuk
tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan
potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

“BERKHIDMAT UNTUK NEGARA KERANA ALLAH”

Yang benar,

DR. MOHAMAD SHARIS BIN ABDUL KARIM
JURUTERA PENGAJAR, PENGAWAS
Fakulti Kejuruteraan Pembuatan
(Penyelia)
DECLARATION

I hereby, declare this thesis entitled “Intelligent Part Recognition and Auto Storage Using Feature-Based Modelling Within CAD System” is the results of my own research except as cited in the reference.

Signature : ..
Author’s Name : WAN FADILAH BINTI WAN JAMALUDIN
Date : JUNE 6TH, 2006
ABSTRACT

Feature-based modelling is one of a way of building a product model. One can start either with a more or less complete geometric model and defined form features on it, or one start sketching by combining form features from a standard library. The parametric representation of features provides a powerful way to change features with respect to their dimension. The programme is created and developed in SolidWorks and Visual Basic software to recognize the feature-based modelling and save them in part file storage. This programme is developed by studying the past research done on feature modelling fields, the Visual Basic programming language, and the SolidWorks software as well. The literature review and background study are done on the journals and books found in the internet or library. This project is important as it can enhance and simplify CAD user to recognize the feature-based modelling and save them in designated part files storage.
ACKNOWLEDGEMENTS

Firstly, I would like to take this opportunity to convey my highest gratitude to God Almighty for giving me His blessing and strength to complete this project. Then, I would like to thank my family for their unconditional love and support throughout my effort in completing this project. My deepest thanks to my supervisor, Dr. Mohamad Sharis b. Abdul Karim, for guiding and advising me during the progress of the project until it is completed. Last but not least, I would like to thank my friends, Mr. Harryzeen b. Abdullah and Miss Nurqurshiah bt. Amran, who always there whenever I needed help and support. I would like to share the findings in this project with everyone, and I hope it will benefit us in every way.
TABLE OF CONTENTS

Declaration .. i
Abstract .. ii
Acknowledgement ... iii
Table of Contents .. iv - vi
List of Figures .. vii
List of Tables ... viii
Signs and Symbols ... ix

1.0 INTRODUCTION ... 1
 1.1 Introduction .. 2
 1.1.1 The SolidWorks History 2 - 3
 1.1.2 The Working Plan ... 4
 1.2 Problem Statement .. 5
 1.3 Objectives of The Research 5
 1.4 Scope of The Project ... 5

2.0 LITERATURE REVIEW ... 6 - 7
 2.1 CAD ... 8
 2.1.1 CAD System .. 8 - 9
 2.1.2 Types of CAD Applications 10
 2.1.2.1 CATIA ... 10
 2.1.2.2 SolidWorks .. 11
 2.1.2.2.1 The SolidWorks Approach 11-12
 2.1.2.2.1.1 Parts .. 12-16
 2.1.2.2.1.2 Assemblies 16-17
 2.1.2.2.1.3 Drawings 17

iv
2.1.2.3 Pro/Engineer .. 18-19
2.1.2.4 UniGraphics ... 20
2.1.2.5 SolidEdge ... 20-21

2.2 Programming in CAD 21
 2.2.1 Advanced Programming Interface (API) 21
 2.2.1.1 Visual Basic Application (VBA) 21-23

2.3 Feature-Based Modeling 24
 2.3.1 Introduction .. 24-25
 2.3.2 Design by Feature 25-26
 2.3.3 Interactive Feature Definition /
 Feature Identification 27
 2.3.4 Feature Models 27-29
 2.3.5 Feature Model & Domain Specific Language 30

3.0 METHODOLOGY ... 31
 3.1 The Methodology .. 32-33
 3.1.1 Opening The Parts 33
 3.1.2 Defining The Rules 34-37
 3.1.2.1 Programming in Visual Basic 37-40
 3.1.2.2 Programming in SolidWorks 41-46
 3.1.3 Defining Analysis Parameters 46
 3.1.4 Analyzing The Parts 46
 3.1.5 Determining The Folder 47
 3.1.6 Saving Part in The Folder 47
4.0 RESULTS .. 48
 4.1 The Results of The Project ... 49-51
 4.2 The Full Programming in Microsoft Visual Basic 52-59

5.0 DISCUSSION ... 60-62

6.0 CONCLUSION & RECOMMENDATIONS 63-65

REFERENCES .. 66-67
LIST OF FIGURES

2.1 The CAD Standards Development Process
2.2 SolidWorks Hierarchy
2.3 Sketching Square
2.4 Extruding Square
2.5 Sketching Circle
2.6 Extruding Circle
2.7 Sketching Inner Circle
2.8 Cut-extruding Inner Circle
2.9 Filleting
2.10 Shelling
2.11 Assembling
2.12 Part Drawing
2.13 Some Examples of Features on Different Components; on top a component typical for application in aircraft and made by means of rubber pad forming (redrawn from [Kappert 93]), middle; a prismatic component suitable for PART and on the bottom; a sheet metal component suitable for PART-S.
2.14 Ways of Obtaining Manufacturing Features in CAPP System.
2.15 Example of Feature Model

3.1 Software Development Methodology
3.2 The Procedure of The Programming
3.3 The Flowchart of The Program
3.4 Visual Basic Form
3.5 Visual Basic Controls
3.6 Visual Basic Properties Window
3.7 Visual Basic Code Window
3.8 Visual Basic Project Window
3.9 How to start using SolidWorks
3.10 Select Part icon
3.11 Blank template
3.12 Start sketching by clicking Sketch icon
3.13 The rectangular shape sketched
3.14 Extruded Boss/Base icon
3.15 Set the extruded depth
3.16 Sketch circle on existing part
3.17 Extruded Cut icon
3.18 Set the extruded cut depth
3.19 Completed Part With Circle Feature

4.1 How to run the program
4.2 Select the program name
4.3 The note appeared to show the part is successfully saved
4.4 The Microsoft Visual Basic window form
LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Advanced Programming Interface</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer-Aided Manufacturing</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-Aided Analysis</td>
</tr>
<tr>
<td>CADD</td>
<td>Computer-Aided Design and Drafting</td>
</tr>
<tr>
<td>CAID</td>
<td>Computer-Aided Industrial Design</td>
</tr>
<tr>
<td>CAAD</td>
<td>Computer-Aided Architectural Design</td>
</tr>
<tr>
<td>CATIA</td>
<td>Computer-Aided Three-Dimensional Interactive Applications</td>
</tr>
<tr>
<td>CAx</td>
<td>A summary term for various kinds of Computer-Aided technologies</td>
</tr>
<tr>
<td>COSMOS</td>
<td>Curvedness-Orientation-Shape Map on Sphere</td>
</tr>
<tr>
<td>DSL</td>
<td>Domain Specific Language</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>LISP</td>
<td>List Processing</td>
</tr>
<tr>
<td>NX</td>
<td>UniGraphics</td>
</tr>
<tr>
<td>PDM</td>
<td>Product Data Management</td>
</tr>
<tr>
<td>PLM</td>
<td>Product Lifecycle Management</td>
</tr>
<tr>
<td>PTC</td>
<td>Parametric Technology Corporation</td>
</tr>
<tr>
<td>UGS</td>
<td>Unigraphics Solution Incorporated</td>
</tr>
<tr>
<td>VBA</td>
<td>Visual Basic Application</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Introduction

1.1.1 The SolidWorks History

1.1.2 The Working Plan

1.2 Problem Statements

1.3 Objectives of The Project

1.4 Scope of The Project
1.1 Introduction

1.1.1 The SolidWorks History

SolidWorks Corporation was founded in December 1993. The headquarters are situated in Concord, Massachusetts. The ownership of this company was acquired in 1997 by Dassault Systemes S.A., which is based in Suresnes, France. It is the leading global developer of “product lifecycle management” (PLM) solutions.

The mission of this company is to unleash the power of 3D for everyone in product development. SolidWorks serves customers in industrial, medical, scientific, consumer, educational, technology, and transportation markets.

With so many CAD based products in the market, SolidWorks still standing strong as it has very competitive product. Competitive differentiation of SolidWorks software is such as below.

- It is the number 1 supplier of 3D mechanical design software for the mainstream market.

- It is the mainstream 3D CAD market’s leader in number of users in production, customer satisfaction, and revenue.

- It is the standard for mainstream 3D CAD software that blends all of the functionality that engineers need to create exact product designs and the ease of use that lets them complete those designs quickly.
It has proven its adaptability to most engineering design needs. Customers have used it to design a broad range of products, including exploratory subsea, electric vehicles, Formula one race cars, and industrial machinery with tens of thousands of parts.

It has more users worldwide than any other mainstream 3D CAD software with 400,000 designers and engineers using it at more than 66,000 locations in more than 100 countries.

It has been endorsed and embraced by the world's top-ranked four and five-year engineering degree programs, worldwide. Over 4,500 academic institutions are using SolidWorks software to teach engineering technology and design.

It has evolved with more product innovations and enhancements than any other 3D CAD product in the industry. This means SolidWorks has kept abreast of evolving customer needs and enhanced the technology to constantly meet those needs.

It is the only 3D CAD software from a company that has been 100 percent focused on 3D product design since its beginning.

(http://www.solidworks.com/pages/company/companyprofile.html)
1.1.2 The Working Plan

For this project, it is required to design a program, which is to recognize the feature-based modeling part and save them in part files storage. This program is developed by studying the past research done on feature modelling fields, the Visual Basic programming language, and the SolidWorks software as well.

Initially, the related topics from journals and websites have been searched in the internet in order to gain more knowledge and understanding about the project title. The journals includes about the SolidWorks, UniGraphics, ProEngineer, CATIA, and Visual Basic Application.

Some exercises in the SolidWorks and Visual Basic Application have been worked out as well. This is important as it can enhance more skills and understanding in designing a program.

To understand more about the programming, the Computer Programming Using MVC++ subject have been revised back, which was taken on the first year. This subject had introduced to the computer and its functions, the components and the software, the programming language, how the computer runs the program, and general form of C++ programming. This subject had helped a lot for this project.

Lastly, the flowchart and the pseudo-codes for the program have been designed. From this flowchart and pseudo-codes, the fully program for this project can be built, which is implemented in Projek Sarjana Muda 2 (PSM 2).
1.2 Problem Statements

The problem of the project is how to develop a program in SolidWorks and Visual Basic software in order to recognize the feature and save the part files into designated storage folders saved on feature-based modelling analysis. To overcome this problem, several topics related found out and understand how the programming could work. They are AutoCAD, CATIA, SolidWork, UniGraphics, ProEngineer, CAD/CAM, Visual Basic, and SolidEdge.

1.3 Objectives of The Project

The objectives of this project are as below:

(i) To understand feature based modelling concept.
(ii) To apply feature based modelling concept within CAD models.
(iii) To create an intelligent CAD files storage system based on feature based modelling.

1.4 Scope of The Project

The scopes of this project are as follow:

(i) Feature Based Modelling.
(ii) Visual Basic Programming Language.
(iii) CAD System.
(iv) Programming.
(v) Case Study.
CHAPTER 2
LITERATURE REVIEW

2.1 CAD

2.1.1 CAD System

2.1.2 Types of CAD Applications

2.1.2.1 CATIA

2.1.2.2 SolidWorks

2.1.2.2.1 The SolidWorks Approach

2.1.2.2.1.1 Parts

2.1.2.2.1.2 Assemblies

2.1.2.2.1.3 Drawings
2.1.2.3 Pro/Engineer

2.1.2.4 UniGraphics

2.1.2.5 SolidEdge

2.2 Programming in CAD

2.2.1 Advanced Programming Interface (API)

2.2.1.1 Visual Basic Application (VBA)

2.3 Feature-Based Modeling

2.3.1 Introduction

2.3.2 Design by Feature

2.3.3 Interactive Feature Definition / Feature Identification

2.3.4 Feature Models

2.3.5 Feature Model & Domain Specific Language
2.1 CAD

2.1.1 CAD System

Engineers, architects and other design professionals use Computer-aided design (CAD), which is the wide range of computer-based tools that assist them in their design activities. Within the Product Lifecycle Management process, it is the main geometry authoring tool and involves both software and sometimes special-purpose hardware.

CAD is sometimes translated as "computer-assisted", "computer-aided drafting", or a similar phrase. Related acronyms are CADD, which stands for "computer-aided design and drafting", CAID for Computer-aided Industrial Design and CAAD, for "computer-aided architectural design". There are some subtle differences in meaning and application, though all these terms are essentially synonymous.

Some of the capabilities of modern CAD systems include:

- Wireframe geometry creation.
- 3D parametric feature based modelling.
- Solid modelling.
- Freeform surface modelling.
- Automated design of assemblies, which are collections of parts and/or other assemblies.
- Create engineering drawings from the solid models.
- Reuse of design components.
- Ease of modification of designs and the production of multiple versions.
- Automatic generation of standard components of the design.
- Simulation of designs without building a physical prototype.
Below, as shown in Figure 2.1, is the CAD standard development process flowchart.

![The CAD Standards Development Process](http://www.markcad.com/cadstandards/cadstddevflow.htm)

Figure 2.1: The CAD Standards Development Process
2.1.2 Types of CAD Applications

2.1.2.1 CATIA

CATIA is the CAD/CAM/CAE commercial software suite developed by Dassault Systemes. It is marketed world-wide by IBM. It is commonly referred to as 3D PLM software. All stages of product development are supported, from conceptualization, through design (CAD) and manufacturing (CAM) until analysis (CAE).

It provides open development architecture through interfaces which can be used to customize or develop applications. The API’s are supported in Fortran and C for V4 and Visual Basic and C++ for V5. These API’s are called as CAA2 (or CAA V5). These interfaces provide a seamless integration for products developed on the CATIA suite of software.

CATIA V4 is principally a surface based boundary representation package. CATIA V5 is a parametric solid/surface feature based package.

CATIA is widely used throughout the engineering industry, especially in the automotive and aerospace sectors, where CATIA V4, CATIA V5 and NX (Unigraphics) are the three dominant systems.

(http://en.wikipedia.org/wiki/CATIA)
2.1.2.2 SolidWorks

SolidWorks is a product of the SolidWorks Corporation. It is a simple to use and affordable program that can be run on Windows platforms. It is primarily designed as a high-end cost-effective alternative to 2D CAD packages.

A newly-founded SolidWorks Corporation was introducing it in 1993 to act as competitor for products like AutoCAD/MDT, SDRC I-DEAS (now Unigraphics NX) and Pro/ENGINEER among many others.

To provide users with a way to harness the power of 3D without paying more than average 2D CAD software packages was the main focus of this company, plus having more features, like generating 2D drawings directly out of 3D models, and vice versa, with a single click, or finite element analysis in one package.

2.1.2.2.1 The SolidWorks Approach

SolidWorks has a quite simple approach to modeling and assembling, which is unlike other CAD packages. The geometry is defined by all dimensions. SolidWorks employs a feature-based system that can be rolled back to previous states in case something must be changed or multiple configurations of the same part must be handled, in order to create volume and modifications. Mates are created to assemble components, which define the relative positions of the components to each other.
In addition, SolidWorks has a hierarchy of putting all the things together, which can be traced as follows:

![SolidWorks Hierarchy](image)

Figure 2.2: SolidWorks Hierarchy

By according to the main design methodology, a simple geometry parts are created. When placed in an assembly, they interact between each other. At every time, for archiving or manufacturing purposes, drawings can be created out of either parts or assemblies.

2.1.2.2.1.1 Parts

By following a feature based approach, parts are modeled. In order to define the primary geometry of the part, sketches must be created first.

![Sketching Square](image)

Figure 2.3: Sketching Square