TAJUK: Development of General Value Stream Mapping For Productivity Improvement And Kaizen Implementation At An Aerospace Industry

SESI PENGAJIAN: 2008/2009 Semester 2

Saya AL AMIN BIN MOHAMED SULTAN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan Penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD (Disahkan oleh:)

(TANDATANGAN PENULIS) __

(TANDATANGAN PENYELIA) __

Alamat Tetap: PT 349- 1, JALAN TEMENGGONG,
15000 KOTA BHARU,
KELANTAN DARUL NAIM.

Tarikh: 9 APRIL 2009

Cop Rasmi: __

Tarihk: __

** Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.
This report submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Management) with Honours.

By

AL AMIN BIN MOHAMED SULTAN

FACULTY OF MANUFACTURING ENGINEERING
2009
DECLARATION

I hereby, declared this report entitled

“Development of General Value Stream Mapping for Productivity Improvement and Kaizen Implementation at an Aerospace Industry”

is the results of my own research except as cited in the references.

Signature : ...
Author’s Name : Al Amin Bin Mohamed Sultan
Date :09 April 2009............
APPROVAL

This report submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management) with Honours. The member of the supervisory committee is as follow:

..............................

Pn Rohana bt Abdullah
Project Supervisor
(Official Stamp & Date)
ABSTRACT

Productivity has being the highest focus or concentration in nowadays business entity especially in manufacturing sector. The improvement in productivity means the profits are growth and unneeded activities are denied or eliminated. Among the problems that occur in the selected aerospace company production line are the difficulty to visualize the overall process flow, not able to identify the waste and also issued with ownership causing late delivery or defects. The reasons for the lateness and defect are also difficult to identify. This study focuses on the development of General Value Stream Mapping that will enable the detail process flow to be clearly understood. Next, by analyzing the VSM, the bottleneck process can be identified and Statistical Process Control using Pareto charts are can be used to identify improvement opportunities. The result of this study includes the current and future state VSM, Value added activity, bottleneck identification and kaizen proposals. This vital information can help the company to improve their productivity and be successful in the lean journey.
DEDICATION

This study is dedicated to my beloved Mum and Dad who have supported me all the way since the beginning of my studies;

*Meharunnisa Bt Sultanul Ariffin
Mohamed Sultan Bin Oli Mohamed

Also, this study is dedicated to my brothers who have been a great source of motivation and inspiration.

*Al Amir Bin Mohamed Sultan
Mohamed Sediq Bin Mohamed Sultan
Mohamed Aiman Bin Mohamed Sultan
All of the family members and relatives

&

*Pn Rohana Bt Abdullah

Project Supervisor

Thanks for your encouragement, support and motivation

*Al Amin Bin Mohamed Sultan
ACKNOWLEDGEMENT

First and the foremost, thank to Allah S.W.T for this opportunity and seeing me through some truly difficult times especially the journey of this Projek Sarjana Muda. I would like to express my warmest gratitude and appreciation to all parties who have contributed towards my success of my study especially my parents; my father Mohamed Sultan bin Oli Mohamed, my mother, Meharunnisa bt Sultanul Ariffin, grandparents, family members and friends for giving me their support and motivation during my good and hard times. I could not have survived the past period without their help and would like to take this opportunity to thanks the following persons:

- Pn Rohana bt Abdullah, PSM Supervisor
- Pn Dilaila bt Baharuddin, Industrial Supervisor
- En Effendi bin Abdullah, Academic Supervisor
- CTRM Aero Composite Sdn Bhd

This special thanks and appreciation also dedicated to all staffs of CTRM Aero Composite Sdn Bhn, UTeM and colleagues for their support guidance and contribution to the success of my study.

Thanks.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Abstrak</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Content</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figure</td>
<td>xi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 2
1.3 Objectives 3
1.4 Scope of Study 3
1.5 Research methodology 3
1.6 Importance of study 4
1.7 Report Outline 4

2.0 LITERATURE REVIEW

2.1 Productivity 5
2.2 Lean Management 6
2.3 Lean Manufacturing 7
2.4 Waste (Muda) 9
2.5 Lean Tools and Techniques 11
 2.5.1 AFSO21 11
 2.5.1.1 Value Stream Mapping 11
 2.5.1.2 Rapid Improvement Events 11
2.5.1.3 Sort, Straighten, Shine, Standardize, Sustain and Safety 12
2.5.1.4 Standard Work 12
2.5.2 Lean Enterprise Architecture 12
2.5.3 Just-In-Time (JIT) 13
2.5.4 Kaizen 14
2.5.4.1 Kaizen and Management 14
2.5.5 5S Implementation 15
2.5.5.1 5S Principles: 16
2.5.6 Other Lean Tools and Techniques 17
2.6 Value Stream Mapping 18
2.6.1 VSM Phases 18
2.6.2 VSM tools and techniques 23
2.6.3 Process Activity Mapping 25
2.6.3.1 Types of operation 26
2.6.4 VSM Implementation Journey 27
2.6.4.1 Case Study 1: Partsco 27
2.6.4.2 Case Study 2: ABS STEEL 32
2.6.4.3 Case Study 3: Cottonseed oil Industry, India. 34
2.6.4.4 Case study 4: Telephone Manufacturer. 35
2.7 Advantages/Benefits of Lean Implementations 36
2.7.1 MIT Lean Aerospace initiative 36
2.7.2 National Institute of Standards and Technology 37
2.7.3 Lathin’s Finding 37
2.7.4 XR Associates Findings 37
2.7.5 Nystuen Findings 38
2.7.6 Freudenberg –NOK 38
2.7.7 Kotelnikov’s Findings 38
2.8 Summary 40

3.0 METHODOLOGY 41
3.1 Strategic Planning of Study 41
3.1.1 Gantt Chart 43
3.2 Data Gathering 43
3.2.1 Primary Source 43
3.2.1.1 Discussion 43
3.2.1.2 Area to Area Value Stream Mapping 43
3.2.1.3 Time Study 45
3.2.1.4 Interview the Personnel 45
3.2.1.5 Development of General Value Stream Mapping 45
3.2.2 Secondary Source 46
3.3 Data Analysis 46
3.4 Kaizen Proposal 47

4.0 COMPANY BACKGROUND 48
4.1 Background 48
4.2 Organization Group Structure 49
4.3 Corporate Information 50
4.4 Main Business 50
4.4.1 Composites Manufacturing 51
4.5 CTRM Process Flow 51
4.5.1 Panel Process Flow 51
4.5.2 Manufacturing Section For One Panel Flow 52
4.6 Summary 53

5.0 RESULT 54
5.1 Results for A2A Current Value Stream Mapping 54
5.2 Results for Current State General Value Stream Mapping 55
5.3 Results for Future State A2A VSM 56
5.3.1 Future State A2A Painting Department 56
5.3.2 Future State A2A Mechanical Assembly 2 57
5.4 Results For Future State General Value Stream Mapping 58
5.5 Value Stream Mapping Section 59
5.5.1 Section 1 59
5.5.2 Section 2 59
5.5.3 Section 3 60
5.5.4 Section 4 60
5.5.5 Section 5 61
6.0 DISCUSSION

6.1 A2A VSM Compilation
6.2 Value Added Analysis
6.3 Non Value Added Analysis
6.4 Waste Identification
6.5 Lead Time and Bottleneck Analysis
6.5.1 Pareto Analysis
6.6 Concurrent Activities
6.7 Interdepartmental Process
6.8 Kaizen Proposal and Implementation Idea
6.8.1 Phase 1 (Improve the VA Time)
6.8.1.1 Eliminating Degreasing Process (Process 2)
6.8.1.2 Change the material grade (Process 3)
6.8.1.3 Combining process 4 and 5
6.8.2 Phase 2 (Reduce the Non Value Added and Change Flow System)
6.8.3 Phase 3 (Eliminate Unnecessary Calculation)
6.8.3.1 5S
6.8.3.2 A2A Lay Up
6.8.3.3 A2A CNC
6.9 Kaizen Analysis
6.10 Summary

7.0 CONCLUSION AND RECOMMENDATION

7.1 Conclusion
7.2 Recommendations
7.2.1 Work Study 88
7.2.2 Lead time and bottleneck 88
7.2.3 Other projects and products 88

8.0 REFERENCES 89

9.0 APPENDICES
 Appendices A
 Appendices B
 Appendices C
 Appendices D
 Appendices E
LIST OF TABLES

2.1 The 5S Element in Three Different Languages 15
2.2 The mapping tool and its origins 23
2.3 The seven value stream mapping tools 28
2.4 Proposed activity map 29
2.5 Proposed improvement methods 30
2.6 Assessment of lean tools in the steel industry 34
2.7 Percent of benefits achieved through lean transformation 37

3.1 The Gantt chart for the Study 44
3.2 Data box information that is the focus parameter in data gathering 47

4.1 Corporate Information 50

6.1 Value added and non-valued added lead time for every section. 65
6.2 Distribution of non value added time for manufacturing spoiler panel. 68
6.3 Lead Time arrangement by cumulative percentage 71
6.4 The 5S data that needs to eliminate 81
6.5 The comparison table between current state and future state value 84
6.6 Time and cost saving for the non value added activities 85
6.7 Time and cost saving from the cycle time improvement 86
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Lean enterprise transformation engineering</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Kaizen – Continuous improvement, Job Functions</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>The example of current state VSM</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>The example of Future State VSM</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>A framework model for roll-out of Partsco's supplier</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Costing the benefits</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Lean implementation benefits</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Case Study Flow Chart</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>CTRM SDN BHD Group Structure</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>CTRM AC SDN BHD Main Building</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Production Operation Process Flow</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Detail flow for one panel in manufacturing section</td>
<td>53</td>
</tr>
<tr>
<td>5.1</td>
<td>Current State General VSM for GKN panel Spoiler</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>Future State A2A Value Stream Mapping for Painting department</td>
<td>56</td>
</tr>
<tr>
<td>5.3</td>
<td>Mechanical Assembly Future State A2A VSM for GKN panel Spoiler</td>
<td>57</td>
</tr>
<tr>
<td>5.4</td>
<td>Future State General Value Stream Mapping for GKN panel Spoiler</td>
<td>58</td>
</tr>
<tr>
<td>5.5</td>
<td>Production Planning Control</td>
<td>59</td>
</tr>
<tr>
<td>5.6</td>
<td>Supplier</td>
<td>59</td>
</tr>
<tr>
<td>5.7</td>
<td>Transportation</td>
<td>60</td>
</tr>
<tr>
<td>5.8</td>
<td>Data Box Information</td>
<td>60</td>
</tr>
<tr>
<td>5.9</td>
<td>Non-Value Added Activities</td>
<td>61</td>
</tr>
<tr>
<td>5.10</td>
<td>Inventory</td>
<td>62</td>
</tr>
<tr>
<td>5.11</td>
<td>Spoiler panel</td>
<td>63</td>
</tr>
<tr>
<td>6.1</td>
<td>Value added time for spoiler panel manufacturing process</td>
<td>66</td>
</tr>
<tr>
<td>6.2</td>
<td>Distribution of non value added time for manufacturing spoiler panel</td>
<td>67</td>
</tr>
</tbody>
</table>
6.3 Manufacturing process lead time for Spoiler panel
6.4 Current State Pareto for bottleneck with lead time
6.5 Pie chart shows partition for interdepartmental time consumption
6.6 Shows the Process 2 and Process 3 to be eliminated and changed
6.7 The current process layout that suggested combining
6.8 Flow of the current flow at painting and mechanical assembly 2
6.9 The Flow for Kaizen activities from painting to mechanical assembly 2
6.10 The Pareto chart illustrate the future state lead time
6.11 The bar chart illustrate the changes from current state to future state
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>AB steel</td>
</tr>
<tr>
<td>AC</td>
<td>Aero-Composite</td>
</tr>
<tr>
<td>AFSO21</td>
<td>Air Force Smart Operations for the 21st Century</td>
</tr>
<tr>
<td>A2A</td>
<td>Area to Area</td>
</tr>
<tr>
<td>B2</td>
<td>Building 2</td>
</tr>
<tr>
<td>CO</td>
<td>Changeover</td>
</tr>
<tr>
<td>CTs/CT</td>
<td>Process Cycle Times</td>
</tr>
<tr>
<td>CTRM</td>
<td>Composites Technology Research Malaysia</td>
</tr>
<tr>
<td>E.P.E</td>
<td>Every Product Every</td>
</tr>
<tr>
<td>GRAI</td>
<td>Graphes a` Re´ultants et Activite´s Inter relies</td>
</tr>
<tr>
<td>IDEF0</td>
<td>Icam DEFinition Zero</td>
</tr>
<tr>
<td>IMVP</td>
<td>International Motor Vehicle Program</td>
</tr>
<tr>
<td>JIT</td>
<td>Just-In-Time</td>
</tr>
<tr>
<td>LEA</td>
<td>Lean Enterprise Architecture</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MPM</td>
<td>Minutes Per Million</td>
</tr>
<tr>
<td>MRO</td>
<td>Military Aerospace</td>
</tr>
<tr>
<td>NEPA</td>
<td>North East Productivity Alliance</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NNVA</td>
<td>Necessary but non-value adding</td>
</tr>
<tr>
<td>NVA</td>
<td>Non-value added</td>
</tr>
<tr>
<td>OECD</td>
<td>Economic Co-operation and Development</td>
</tr>
<tr>
<td>RIE</td>
<td>Rapid Improvement Events</td>
</tr>
<tr>
<td>SOPs</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>TPM</td>
<td>Total productive maintenance</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Production System</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UOS</td>
<td>Unit of Measurement</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>VA</td>
<td>Value added</td>
</tr>
</tbody>
</table>
VSM - Value Stream Mapping
WIP - Work-In-Process
CHAPTER 1
INTRODUCTION

1.1 Background

In nowadays industrial era, the productivity is being the highest concern by the business entity in any field to compete either locally or globally. Malaysia’s total productivity grew by 4.2% to a level of RM 48,133 in year 2007 which growth was higher than selected Organization for Economic Co-operation and Development (OECD) and Asian countries (Productivity report, 2007). Manufacturing sector is one of the important portions to the growth of the Malaysian economy. There are various types of manufacturing fields such as pharmaceutical, aerospace, foods, and others.

The manufacturing key productivity indicator generated is most useful and serve as an easy and quick reference for companies to review on the current status of productivity performance. Propelled by vibrant domestic consumption and sustained exports, the Manufacturing sector registered 3.1% growth. Productivity level in manufacturing sector in year 2006 was RM 54,110 which jumped to RM 55,544 after a year. The growth in the economy was broad based with impressive performance by the services and manufacturing sectors (Productivity report, 2007).

Knowing the importance of the productivity’s issue is always the critical point the management team in the organization need to put emphasis on. The output have to meet the target as per scheduled and at the same time try to improve the productivity and reduce or eliminate the waste.
There are so many philosophies, techniques and also the tools that can be used to identify the problem in the effort to improve the productivity. However, the selected tools and techniques should be suitable to be applied to the targeted industries such as Aerospace industry because of the difference flow of process and productions.

Among the popular philosophy that has been used nowadays is Lean Manufacturing. There are many types of approach in Lean such as 5S Implementation, Kaizen Implementation, Value Stream Mapping, Jidoka and others. Recently in the Aerospace industry, where the case study will be done, the Value Stream Mapping is introduced as a tool to promote visualization beyond the single-process level and continuous improvements to achieve the optimum productivity rate.

VSM is a tool commonly used in lean continuous improvement programs to help understand and improve the material and information flow within organizations. Value Stream Mapping borne out of lean ideology captures and presents the whole process from end to end in a method that is easy to understand by those working the process - it captures the current issues and presents a realistic picture.

1.2 Problem Statement

In the manufacturing sector, the management team from all level in the organization is always trying their best to run the company without any or minor waste, and optimized until high level of efficiency and productivity. The selected aerospace company for this study which is Composites Technology Research Malaysia (CTRM) Aero Composites is having the difficulty to visualize the overall process flow of their Building no 2 (B2) production line. The industry’s new project team is not able to identify, demonstrate and reduce the waste occurring at the production line.

Besides that, they also have difficulties to identify the person that will be responsible when problems occur such as defect and lateness of shipment. There is no method to trace which process and section that contributed to the problem such as bottleneck and high percentage of waste. Therefore, this study is focused to identify the method
to recognize various types of waste utilizing the Lean Manufacturing method of Value Stream Mapping where once defined, opportunity for improvement can be identified.

1.3 Objectives

The objectives of this study are:

1. To develop the General Value Stream Mapping (VSM)
2. To identify and analyze the bottleneck and opportunity to reduce the waste
3. To propose Kaizen project implementation

1.4 Scope of Study

This study is focused on the development of General Value Stream Mapping for Panel Spoiler and data gathering activities will be at the mainly under control of Program Building No 2 (B2) CTRM AC. The VSM will be used to identify the bottleneck problem in order to come up with the recommendation for Kaizen opportunities.

1.5 Research Methodology

The study was started with the identification of problem statement. Then, the objectives are presented in order to clearly define the deliverables of the study. Next, the literature review was conducted to identify the method to be used for the study. The data collection was done at the first step to collect information about this study. Then, Gantt chart will be used to manage the project. Data collection and information gathering can be divided into two (2) sources, which are primary source and the secondary source. The findings will then be interpreted by analyzing the data to get the result before final report writing take place.
1.6 Importance of study

The importances of this study are:

1. To provides the tools that can identify the overall process flow in details in the industry.
2. To demonstrates and visualize the activity that does and does not add value to the final product.
3. To established the general value stream mapping for the selected area and product.
4. To identify the process and the section those contributed to the bottleneck and looking for opportunity decrease the waste in the panel Flap manufacturing process.
5. To provides the correct data and time study compilation to the aerospace industry.
6. To be the reference for future benchmarking process.

1.7 Report Outline

This report will be segmented into five (5) chapters. Chapter 1 generally discusses about the introduction which consists of problem statements, objectives, scope of study, importance of the study and the study outlines. Chapter 2 is the literature review. Based on the information gathered and data collected, this chapter discusses the definition, various techniques of lean tools and the benefits of lean tools and the implementation techniques to be used in industries. Next, chapter 3 discusses the methodology adopted in the study, divided into two (2) sources which are primary and secondary source. This chapter will discuss the study methodologies that will be used to collect the relevant data to support the development and analysis of the study. Chapter 4 is background of company, Chapter 5 is results and Chapter 6 is the analysis and discussion. Lastly, Chapter 7 is a conclusion and recommendation for this study.
CHAPTER 2
LITERATURE REVIEW

This chapter briefly goes through and discusses about the Productivity and the Lean journey which were implemented in various industries especially in manufacturing sector. Beside that, it also discusses about the lean tools and techniques which are used in industries in terms of the basic information itself to understand the reasonable and applicable tool to be used in this study. In addition, this chapter also includes the actual case studies on VSM implementation in order to have better information on the studies on the method to developing VSM for this study.

2.1 Productivity

One of the primary responsibilities of a management team is to achieve productive use of an organization’s resources. The term productivity is used to describe this. Productivity is an index that measures output (goods and services) relative to the input (labor, materials, energy, and other resources) used to produce them (Stevenson, 2005).

Productivity measures are useful on a number of levels. For an individual department or organization, productivity measures can be used to track performance over time. This allows managers to judge performance and to decide where improvements are needed.

Productivity levels are also important for industries and companies. For companies, a higher productivity relative to their competitors gives them a competitive advantage over their competitors in the marketplace. With higher productivity, they can afford out perform competitors’ process at the same time realize greater profits. For an
industry, higher relative productivity means it is less likely to be supplanted by foreign industry.

Consumer demands for a high degree of manufacturing responsiveness and reduced lead-times, unpredictability in the marketplace, resulting difficulties in forecasting, and pressures for reduced inventories are placing an increasing focus on the design efficiency of manufacturing systems and their supply chains (Matson and McFarlane, 1998).

2.2 Lean Management

The concept of lean management can be traced to the Toyota production system (TPS), a manufacturing philosophy pioneered by the Japanese engineers Taiichi Ohno and Shigeo Shingo (Inman, 1999).

The Toyota production system is a technology of comprehensive production management. The basic idea of this system is to maintain a continuous flow of products in factories in order to flexibly adapt to demand changes. The realization of such production flow is called Just-in-time production, which means producing only necessary units in a necessary quantity at a necessary time. As a result, the excess inventories and the excess work force will be naturally diminished, thereby achieving the purposes of increased productivity and cost reduction.

It is well known, however, that Henry Ford achieved high throughput and low inventories, and practiced short-cycle manufacturing as early as the late 1910s. Ohno greatly admired and studied Ford because of his accomplishments and the overall reduction of waste at early Ford assembly plants (Hopp and Spearman, 2001).