DESIGN OF LOW COST 3 DIGIT DIGITAL TACHOMETER

MOHD FAIZI BIN ABD HALIM

This report is submitted in partial fulfillment of requirement for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) with Honours

Faculty of Electronics Engineering and Computer Engineering
Universiti Teknikal Malaysia Melaka

May 2008
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

Tajuk Projek : DESIGN OF LOW COST 3 DIGIT DIGITAL TACHOMETER
Sesi Pengajian : 2007/2008

Saya MOHD FAIZI BIN ABD HALIM
(HURUF BESAR)
mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
syarat kegunaan seperti berikut:
1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi
 pengajian tinggi.
4. Sila tandakan (v):

☐ SULIT* (Mengandungi maklumat yang berdaiah keselamatan atau
kepentingan Malaysia seperti yang termaktub di dalam AKTA
RAHSIA RASMI 1972)

☐ TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh
organisasi/badan di mana penyelidikan dilakukan)

☐ TIDAK TERHAD

(TANDATANGAN PENULIS)
Alamat Tetap: BLOK F1, IPD LANGKAWI,
07000 KUAH LANGKAWI,
KEDAH DARUL AMAN.
Tarikh: 09 MAY 2008

(COP DAN TANDATANGAN PENYELIA)
REDZUAN B ABDUL MANAP
Ketua Jabatan (Ke Telekomunikasi)
Fakulti Ke Elektronik dan Kej Komputer (FKEK)
Universiti Teknikal Malaysia Melaka (UTeM)
Karang Berkunci 1200,
Ayer Keroh, 75400 Melaka
Tarikh: 09 MAY 2008
"I hereby declare that this report is result of my own work except for quotes as cited in the references."

Signature: [Signature]
Author: Mohd Faizi Bin Abd Halim
Date: [Date]
"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours"

Signature: ...
Supervisor's Name: ...
Date: ...
To my beloved father and mother
ACKNOWLEDGEMENT

Alhamdulillah and thanks to Allah the Almighty, because finally I could successfully finished this Projek Sarjana Muda II (PSM II) thesis. I would like to express my sincere gratitude to the people that always fully support me along this project implementation. Firstly, thanks to En Redzuan Bin Abdul Manap as a supervisor for his advices, guidelines and assistances during my PSM period. Besides, to all my friends that always gives their cooperation and ideas that is very useful for me to gains knowledge and information. And finally, thanks to all persons that involved directly or indirectly in my final project.
ABSTRACT

The problems of using analog tachometer that is found in most cars, such as inability to display exact speed reading, has led to the recent development of digital tachometer. However, this digital tachometer, that read the rounding speed of engine, can only be found in luxury and advanced cars due to the high cost and higher damage risk. Thus, the low cost digital tachometer is proposed in this project. This project is an improvement to the previous PSM project where instead of 2 digits display, the tachometer is proposed to have 3 digit displays. At the end of this project, the main objectives of displaying the speed of the vehicle shaft rotating should be achieved. And from this project, it is hoped that all standard vehicles to use this digital tachometer.
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROJECT TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>REPORT STATUS APPROVAL FORM</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>CONFESSION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>SUPERVISOR'S APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURE</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ACRONIMS</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction 1
1.2 Problem Statements 2
1.3 Project Objectives 2
1.4 Scope of Work 2
1.4.1 Project Design 3
1.4.2 Circuit Design 3
1.4.3 Hardware Implementation 3
1.5 Thesis Layout 3
II LITERATURE REVIEW

2.1 Concept and Design 5
2.2 Types of Tachometer 11
2.3 Components and Devices 14
 2.3.1 4511 (7 Segment Decoder/ Driver) 14
 2.3.1.1 Pin Connections 14
 2.3.1.2 Seven Segment Display 14
 2.3.1.3 Truth Table for Seven Segment Display 16
 2.3.1.4 Schematic Diagram 17
 2.3.2 555 Timer 19
 2.3.2.1 555 Timer Schematic 21
 2.3.3 4017 CMOS Decade Counter 22
 2.3.3.1 Pin Connection 22
 2.3.3.2 Decade Counter 23
 2.3.4 Zener Diode 24
 2.3.5 DC Motor Controller 26

III PROJECT METHODOLOGY

3.1 Flow Chart of Project Methodology 28
 3.1.1 Literature Review 30
 3.1.2 Design and Identify the Components 30
 3.1.3 Circuit Design Using Eagle Software 30
 3.1.4 Fabrication Process 31
 3.1.4.1 Exposure 31
 3.1.4.2 Developing 31
 3.1.4.3 Etching 32
 3.1.5 Circuit Implementation on FR4 Board 32
 3.1.6 Performance Analysis 32
 3.1.7 Presentation and Final Thesis 32
IV CIRCUIT DESIGN AND RESULT

4.1 Circuit Design
 4.1.1 Circuit Diagram
 4.1.2 IC 7808 (Voltage Regulator)
 4.1.3 IC 555 (555 Timer)
 4.1.4 IC 4017 (CMOS Decade Counter)
 4.1.5 IC 4553 (CMOS 3 Digit BCD Counter)
 4.1.6 IC 4511 (7 Segment Decoder/Driver)
 4.1.7 Overall Circuit Operation
4.2 Test and Troubleshooting
4.3 Result

V CONCLUSION

5.1 Conclusion
5.2 Suggestions

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A few type of Tachometer</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Truth Table of Seven Segment Display</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Pin Connection of 555 Timers</td>
<td>20</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pin Connection of 7 Segment Decoder</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>7 Segment Display</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic Diagram of Seven Segment Decoder</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Device and Schematic symbol of the 555 timer</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Timer 555 schematic</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Pin connection of 4017 decade counters</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Decade Counter Sequence</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Photo and the Circuit Symbol for a Zener Diode</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>A Shunt Voltage Regulator Using a Zener Diode</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>The Flow Chart of Digital Tachometer Methodology</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Circuit Diagram of 3 digits Digital Tachometer</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Circuit Design in Multisim and Circuit Construct on Breadboard for IC 7808</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Schematic Design in Eagle Software for IC 7808</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Board Design in Eagle Software for IC 7808</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Circuit Design in Eagle Software for IC 7808</td>
<td>36</td>
</tr>
<tr>
<td>4.6</td>
<td>Circuit Design in Multisim and Circuit Construct on Breadboard for IC 555</td>
<td>37</td>
</tr>
<tr>
<td>4.7</td>
<td>Schematic Design in Eagle Software for IC 555</td>
<td>37</td>
</tr>
<tr>
<td>4.8</td>
<td>Board Design in Eagle Software for IC 555</td>
<td>38</td>
</tr>
<tr>
<td>4.9</td>
<td>Circuit Design in Eagle Software for IC 555</td>
<td>38</td>
</tr>
<tr>
<td>4.10</td>
<td>Circuit Design in Multisim and Circuit Construct on Breadboard for IC 4017</td>
<td>39</td>
</tr>
<tr>
<td>4.11</td>
<td>Schematic Design in Eagle Software for IC 4017</td>
<td>39</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.12</td>
<td>Board Design in Eagle Software for IC 4017</td>
<td>40</td>
</tr>
<tr>
<td>4.13</td>
<td>Circuit Design in Eagle Software for IC 4017</td>
<td>40</td>
</tr>
<tr>
<td>4.14</td>
<td>Circuit Design in Multisim and Circuit Construct on Breadboard for IC 4553</td>
<td>41</td>
</tr>
<tr>
<td>4.15</td>
<td>Schematic Design in Eagle Software for IC 4553</td>
<td>41</td>
</tr>
<tr>
<td>4.16</td>
<td>Board Design in Eagle Software for IC 4553</td>
<td>42</td>
</tr>
<tr>
<td>4.17</td>
<td>Circuit Design in Eagle Software for IC 4553</td>
<td>42</td>
</tr>
<tr>
<td>4.18</td>
<td>Circuit Design in Multisim and Circuit Construct on Breadboard for IC 4511</td>
<td>43</td>
</tr>
<tr>
<td>4.19</td>
<td>Schematic Design in Eagle Software for IC 4511</td>
<td>43</td>
</tr>
<tr>
<td>4.20</td>
<td>Board Design in Eagle Software for IC 4511</td>
<td>44</td>
</tr>
<tr>
<td>4.21</td>
<td>Circuit Design in Eagle Software for IC 4511</td>
<td>44</td>
</tr>
<tr>
<td>4.22</td>
<td>The connection of the circuit to the engine vehicle</td>
<td>47</td>
</tr>
<tr>
<td>4.23</td>
<td>The speed display by using 7 segment LED display</td>
<td>47</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>BCD</td>
<td>Binary Coded Decimal</td>
<td></td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>Control Voltage</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>Infra Red</td>
<td></td>
</tr>
<tr>
<td>ITU</td>
<td>Integrated Timing Unit</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
<td></td>
</tr>
<tr>
<td>LT</td>
<td>Lamp Test</td>
<td></td>
</tr>
<tr>
<td>NPN</td>
<td>Bipolar junction transistor NPN</td>
<td></td>
</tr>
<tr>
<td>Op-Amp</td>
<td>Operational Amplifier</td>
<td></td>
</tr>
<tr>
<td>PIC</td>
<td>Programmable Integrated Circuit</td>
<td></td>
</tr>
<tr>
<td>PNP</td>
<td>Bipolar junction transistor PNP</td>
<td></td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
<td></td>
</tr>
<tr>
<td>RPM</td>
<td>Revolution per Minutes</td>
<td></td>
</tr>
<tr>
<td>Vin</td>
<td>Input Voltage</td>
<td></td>
</tr>
<tr>
<td>Vout</td>
<td>Output Voltage</td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>Variable Resistor</td>
<td></td>
</tr>
<tr>
<td>ZD</td>
<td>Zener Diode</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Introduction

Tachometers are the instrument that indicates the speed, usually in revolutions per minute (rpm), at which an engine shaft or motor is rotating. Some tachometers, especially those used in automobiles, are similar in construction and operation to automotive speedometers. Other types, often connected directly to the shaft whose speed they indicate, are small electric generators whose output voltage is proportional to the speed. This voltage is applied to a voltmeter whose dial is calibrated in speed units. Another type, it is used only with engines having an ignition system, operates by counting the pulsations of current or voltage in the ignition system, the number of these being proportional to the speed of the shaft.

The traditional tachometer is laid out as a dial, with a needle indicating the current reading and marking safe and dangerous level. Recently, digital tachometers giving a direct numeric output have become more common. The problems of using analog tachometer that can be found on most cars, such as inability to display exact speed reading, has led to the recent development of digital tachometer.
There are two types of tachometer in the market, which is analog, and digital tachometer. In this case, digital tachometer has been proposed as a title of project because compares to analog system, digital is more accurate and easy to read the measurements.

1.2 Problem Statements

There are several design of digital tachometer. At the moment, digital tachometer is used in high end automobiles because of the cost and the system requirement. In this project, it is proposed to design digital tachometer that is reduced in cost so it also can be used in standard vehicles.

1.3 Project Objectives

At the end of this project, the main objectives that need to be achieved include:

a) To design a low cost Digital Tachometer that can display exact speed reading based on how fast an engine shaft is rotating.

b) To learn on how to construct the 3 Digit Digital Tachometer circuit.

c) To display the measured speed by using 7 segments Light Emitting Diode (LED) display.

1.4 Scope of Works

In order to make sure a smooth flow of the project work, the work is divided into several scopes.
1.4.1 **Project Design**

The design solution comprised of two separate tasks; circuit design and hardware implementation. Each task is conceptually independent from the others, but each is necessary in order to the final product of work.

1.4.2 **Circuit Design**

In order to build a project and prior to hardware implementation, the circuits have to be designed. After all the task done, the circuits are ready for construction and then combined all together to make it as a one perfect project.

1.4.3 **Hardware Implementation**

In the hardware implementation, there are three main processes that need to be done to the circuit such as exposure, developing and etching process.

1.5 **Thesis Layout**

There are five main chapters in this thesis.

Chapter 1 : The project is introduced where the problem is identified and thus the project objective is outlined. Besides that, the scope of work of this project is described.

Chapter 2 : Literature review such as the different concept in designing the tachometers that are constructed beforehand, types of tachometer and components required to build the tachometer.
Chapter 3: Methodology of this project is outlined in this chapter. The flow of the project works for two semester period is explained.

Chapter 4: Circuit Design and Results. In this chapter, the schematic diagram of the tachometer circuit is illustrated and the project results is described and discussed.

Chapter 5: In this chapter, conclusion of the project is explained and few further work suggestion is made.
CHAPTER II

LITERATURE REVIEW

2.1 Concept And Design

Existing project is reviewed in this chapter to get an idea about the project design, conception and any information that related to improve the project. There are many tachometer projects that have been done by other people with different concepts and design. In this literature review, a few concepts in designing tachometer is described. Consequently, a lot of information is gained to help low cost 3 digit digital tachometer design.

Early tachometer design is based on the principles of the monostable multivibrator, which has one stable state and one quasistable state. The circuit is normally in the stable state, producing no output. However, when a triggering current pulse from the ignition system is received, the circuit transitions to the quasistable state for a given time before returning again to the stable state. In this way, each ignition pulse produced a clean pulse of fixed duration that is fed to the gauge mechanism. The more such fixed duration pulses the gauge receives per second, the higher it reads. The monostable multivibrator is still used in tachometers today, although the tendency is to
use voltage pulses rather than current pulses, the latter requiring that the ignition coil current passes through the tachometer on its way to the coils. [1]

Later design tachometer was in no way to do any improvement on the early type; indeed the change seems to have been made to be more economical. Integrated Circuit (IC) where in their infancy in the late 1960’s and was both expensive and not proven to be robust in automobile applications. While a very sophisticated monostable multivibrator can now be bought for a few pennies as an IC, Smith’s Industries choose to use discreet components in the MGB tachometers. The early design used 17 components but this was changed in the late tachometer to a far inferior circuit using just 7 components. The later design tachometer was never intended for use in positive ground vehicles.

In 1998, Andrew Huang [2] in his project took advantage of the integrated timing unit (ITU) feature of the SH-I to determine the duration between ignition pulses in the engine of his Toyota Corolla. From this number, it is easy to derive the number of RPMs. The signal from the engine is taken off the ignition diagnosis port, found near the driver’s side shock absorber housing in the engine compartment. That signal is a 12V p-p nominal square wave with ignition occurring in the rising edges. The two cautions when using this signal are that there are 400V spikes on the rising edge, and that grounding this signal is potentially very damaging to the igniter. An opto-isolator is used to help protect against the spikes, and the wire carefully routed and the ignition is shorted to the ground. On the back end of the opto-isolator, a Transistor-Transistor Logic (TTL) buffer is used to provide a little extra protection in case the opto-isolator breaks down.

Steves [3] has created a tachometer that only made from the electronic kits. The display unit for the tachometer has only 2 digits and in the ordinary way it will display on hundreds and thousand of revolutions. 10 pulses per revolution is simply gave by the times 10 converters and enables the same equipment to display tens and hundreds of revolution without complicating the electronics. In the project, an infra-red transceiver/
receiver is used which is mounted on a magnetic base and is angle adjustable to enable a
good single to be established. To get more accurate reading, the x10 converter is used
with the Stirling engine.

Sourabh Biyani [4] has built a tachometer and developed the speed measurement
of the motor in Rotation per Minute (RPM) and displays it over 3 ½ digit display. The
infra red sensor is also used to get the pulses. However, to calculate the output from the
sensor, IC 74C925 is used in this project. IC 4029B is also used with other circuit to
reset and set the IC 74C925 to zero. When the IC is reset the count is initialized to zero
and the counting continues for 10 second in the background. In front the counter
displays the previously counted signal as it is now latches. Thus in every 10 second, the
display changes if there is any change in the RPM of the rotating shaft.

Simple tachometer design is used by Steve [3] while developing the object
Avoiding Detector. An infrared (IR) LED is used that is oscillated at the frequency of 38
kHz pointed at the propeller. When the propeller passes in front of the IR then the light
is reflected back to the detector which brings the output voltage low. As the propeller
blade passes away from the LED light is no longer reflected back to the sensor so the
output voltage goes high. The pulse is counted over a certain time period, and then the
number of counts is divided by the time. Since the sensor is counting two blades the
number needs to be divided by two to get the engine speed.

Tan Van Nguyen [5] said that although we can use an analog tachometer, the
digital one has less cost, better performances, less sensitive to temperature and easier to
implements in a custom IC. Tachometer design by him is control the actuator for the
heads of an optical-disk drive. But in his project, he also applies to other motor-control
application.

Digital tachometer is also created by Eelke Visser [5]. For his tachometer, the
display is updated every quarter of a second. To reduce errors the measurement is taken
during an interval of about 0.25 seconds. In this interval the time is measured from the
first to the last pulse and the amount of pulses are counted. The number of pulses measured is counted from zero. The formula that he used to calculated the RPM is:

\[
RPM = 30000000 \times \frac{\text{Number of pulses measured}}{\text{Time from first to last pulse}}
\] \hspace{1cm} (2.1)

The 30000000 is defined as 30 x 1000000. The 1000000 are used because the time is in microsecond’s measurement. The amount of revolutions per minute (RPM) is shown. Therefore, the frequency (1/ Time) have to be multiplied with 60. However, 4 cylinder 4 stroke engines is ignited twice a revolution to get 60/ 2 =30. The formula is then produced by putting all the parameter together. This number is then put on the display.

A digital tachometer is constructed by Jim McGhee for his son in 1999 at his Ford F150 XL pickup truck [6]. The tachometer was installed in March of 2001. It was built by using PIC16C715, MAX7219 for LED display driver and also two Micrel MIC4574 voltage regulators. It also had LM34CZ temperature sensor for internal temperature readout.

A tachometer is created by Josepino by using PIC16F628 [7]. The sensor that can be used is optical sensor and magnetic or by using a switch. High voltage is informed since it can damage the PIC. If the input signal is more than 5 Volt, a driver as TTL, CMOS, Operational Amplifier (Op-Amp) or transistors is suggested as a solution.

A digital tachometer is designed by Embed Engineer [8]. High impedance, low power analog circuit to produce a clean digital pulse is designed when a magnet or sensing cog passes by the sensor. The circuit operated from ½ Hz at 20mm to over 10 kHz at 1mm. For their project, a Microchip PIC16C932 was used to capture the pulses, measured the period between them and invert the data to obtain speed. The result for the tachometer was displayed on a directly-driven 4 digit LCD display and the system could be configured via DIP switches to the number of pulses per shaft rotation, and the
desired output unit (RPM, Hz etc). An integrating mode could display accumulated shaft rotation instead of shaft speed.

In a Cypress Microsystem PSoC Design Challenge [9], there is one project that created ‘A Non Contact Auto Ranging Digital Tachometer’. The project is for digital tachometer that can be used in measuring RPM of a rotational object. The components including the microcontroller, the digital and analog block are supplied by the PSoC device CY8C27223. The circuit for this project utilized an IR LED and a sensor to sense the rotation and LCD display to display the RPM. This digital tachometer can be used in robotic, machine tools and others.

An author in his website [7] mentioned that he decided to design a fully digital tachometer system to avoid the problems occur in his previous project such as the readings provided by the tachometer are not really accurate. Any tachometer simply measures the rate at which some events occurs and it done by counting the events such as contact closures, electrical pulses and others for a given period of time and then dividing the number of events by the time to get a rate. In this case, he had a rate of 1 pulse per engine revolution and using a tachometer that calibrated in events per minute, he could display revolutions per minute. In a spark ignition engine, tachometer typically use different mechanism to obtain engine speed, knowing how many cylinders and assuming a 4-stroke engine, which takes two revolutions to complete a full cycle, then calculation for relationship of ignition pulses to revolutions can be done as follows.

\[
Pulses \ Per \ Revolution = \frac{Number \ Of \ Cycles}{2} \tag{2.2}
\]

The first modification to his digital tachometer circuit that had been done is to increase the input pulse rate from 1 to 2 (or more) pulses per revolution.

In 1987, there is a team that design and build an electronic tachometer using optical sensing technology to measure the propeller RPM in a single engine aircraft with