"I declare that I have read this thesis and in my opinion, it is suitable in terms of scope and quality for the purpose of awarding a Bachelor Degree in Electronic Engineering (Industrial Electronic)."

Signature: [Signature]

Supervisor Name: MR. ZAHRLADHA BIN ZAKARIA

Date: 18TH MAY 2006
DIGITAL IC TESTER DRIVEN BY PIC16F877A
IMPLEMENTING EXHAUSTIVE TEST METHOD

FAHUKMI DARUL ADLI BIN MOHD NOOR

This project report is submitted in part fulfillment of the requirements of the award of a degree in Bachelor of Electronic Engineering (Industrial Electronic)

FACULTY OF ELECTRONIC AND COMPUTER ENGINEERING
KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA

APRIL 2006
“Hereby, I declare that this thesis is a result of my own research and idea except for works that have been cited clearly in the references.”

Signature: [Signature]
Name: FAHUKMI DARUL ADLI BIN MOHD NOOR
Date: 18th MAY 2006
Dedicated to those remembered and beloved...
Especially for parents, brothers and sisters.
ACKNOWLEDGEMENT

First of all, I would like to express my gratitude and uppermost appreciation to my supervisor, Mr. Zahriladha bin Zakaria for his support and guidance in helping me to make this project a success.

My sincere appreciation to faculty of Electronic and Computer Engineering for providing me the appropriate tools to transform my idea into a reality, and also the Bachelor Degree Project Laboratory assistant for allowing and helping me to use the facilities in the lab.

Lastly but not least, I would like to thanks my beloved parents, brothers, sisters and friends for giving me undiminished support, which is the key element in pushing me forwards the peak of success.
ABSTRACT

Testing is a critical part in IC manufacturing. The purposes of IC testing are to ensure IC components and connections between them are in good condition for uses. Hence the output yield from it’s as well as had estimated theoretically. This tester is uses the flexible programmable features of PIC16F877A microcontroller for many applications. The microcontroller was using as a central processing unit for 1 keypad, 4 7-segments displays, and input and output IC under test via a ZIF socket. Keypad was function as a medium for entering IC series number. 7-segment display was function as a platform for displaying IC under test series numbers and results of tests. ZIF socket was function as a platform to place IC under test, and as a channel for input and output IC under test to be connected to microcontroller as central processing unit. The testing method used is exhaustive method. Through this method, all input combinations are considered for tests. For this project, IC might be tested have 2 inputs so that 4 input combinations been considered for each test.
ABSTRAK

Pengujuan ialah satu proses yang kritikal dalam pembuatan IC. Tujuan pengujuan ialah untuk memastikan komponen-komponen IC dan sambungan-sambungan diantara komponen adalah dalam keadaan baik untuk digunakan dalam aplikasi tertentu. Dari itu, keluaran bagi IC tersebut dapat dipastikan seperti yang dijangka secara teori. Penguji IC ini menggunakan ciri-ciri fleksibel pengawal mikro PIC16F877A yang boleh diprogramkan untuk pelbagai aplikasi. Pengawal mikro ini digunakan sebagai pusat pemproses bagi 1 papan kekunci, 4 papanan 7-segment, dan masukan serta keluaran IC diuji melalui 1 soket ZIF. Papan kekunci berfungsi untuk masukan nombor siri IC. Paparan 7-segment berfungsi untuk memaparkan nombor IC dan keputusan ujian. Soket ZIF berfungsi sebagai tempat IC yang hendak diuji diletakkkan, dan sebagai saluran untuk masukan dan keluaran dihubungkan kepada pengawal mikro. Kaedah pengujian yang digunakan ialah kaedah melethkan. Melalui kaedah ini, semua kombinasi masukan dipertimbangkan untuk ujian. Untuk projek ini, IC diuji mempunyai 2 masukan jadi, terdapat 4 kombinasi masukan dipertimbangkan untuk setiap ujian.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statements</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Project Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Project Scope</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SUPERVISOR VERIFICATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COVER PAGE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>
LITERATURE REVIEW

2.1 Transistor-Transistor Logic
- **2.1.1 TTL Subfamilies**
- **2.1.2 TTL Logic Level**
- **2.1.3 TTL IC Numbering**

2.2 Digital IC Testing
- **2.2.1 The Need of IC Testing**
- **2.2.2 Classification of Faults**
 - **2.2.2.1 Static Fault**
 - **2.2.2.2 Dynamic Fault**
- **2.2.3 Fault Models**
- **2.2.4 Probable Fault Condition**
 - **2.2.4.1 Stuck Inputs or Outputs**
 - **2.2.4.2 Bridge Fault**
 - **2.2.4.3 Broken or Missing Conductor**
 - **2.2.4.4 Non-Logical Fault**
- **2.2.5 Types of Tests**
 - **2.2.5.1 Exhaustive Test**
 - **2.2.5.2 Random Test**

2.3 PIC16F877A Microcontroller
- **2.3.1 I/O Ports**
 - **2.3.1.1 PORTA and TRISA**
 - **2.3.1.2 PORTB and TRISB**
 - **2.3.1.3 PORTC and TRISC**
 - **2.3.1.4 PORTD and TRISD**
 - **2.3.1.5 PORTE and TRISE**
- **2.3.2 Input Power (Vdd) and Ground (Vss)**
- **2.3.3 Crystal Oscillator and External Clock Input**
- **2.3.4 Reset**
- **2.3.5 Interrupts**
- **2.3.6 Timer**
- **2.3.7 Memory Organization**
 - **2.3.7.1 Program Memory**
IV RESULTS AND ANALYSIS

4.1 Result
 4.1.1 Hardware
 4.1.2 Testing

4.2 Analysis

4.3 Features and Specifications of Product
 4.3.1 Features
 4.3.2 Specifications

V CONCLUSION AND FUTURE SUGGESTION

5.1 Conclusion

5.2 Future Suggestions

REFERENCE

APPENDIX
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>A general tests parameter for TTL devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2</td>
<td>Truth table of NOR gate with output stuck at ‘1’</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>A lot of Special Function Registers</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Hardware components used for project</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Types of programming mode</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Pin description (during programming)</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>7-segments characters representation</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Defined table for IC tests</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Inputs pattern representation</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Specifications of the IC tester</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Basic block diagram of the designed IC tester
Figure 2.1 Basic 2 inputs TTL NAND gate with totem pole
Figure 2.2 TTL IC logic level
Figure 2.3 A typical TTL IC numbering
Figure 2.4 Example setup of an Automatic Test Equipment (ATE)
Figure 2.5 Example setup of Built In Self Test (BIST)
Figure 2.6 Example of stuck fault
Figure 2.7 Bridge fault within a 7408 AND gate package
Figure 2.8 Example of missing conductor
Figure 2.9 Simplified block diagram of PIC16F877A module
Figure 2.10 Detailed block diagram for PIC16F877A module
Figure 2.11 Crystal mode configuration
Figure 3.1 Project flow charting
Figure 3.2 Schematic diagram of keypad interfacing
Figure 3.3 Switch bouncing
Figure 3.4 7-segments display pins connection
Figure 3.5 Schematic diagram of 7-segments display
Figure 3.6 Schematic diagram of ZIF socket model
Figure 3.7 Schematic diagram of complete I/O device interfacing with PIC16F877A
Figure 3.8 Flow chart of Testing Procedure
Figure 3.9 Flow chart of Keypad Subroutine
Figure 3.10 Flow chart of Display Subroutine
Figure 3.11 Flow chart of Testing Subroutine
Figure 3.12 Flow chart of BIST Subroutine
Figure 3.13 Flow chart of PASS Subroutine
Figure 3.14 Flow chart of FAIL Subroutine
Figure 3.15 Flows of software development for PIC16F877A
Figure 4.1 Solder side view of the tester circuit
Figure 4.2 Component side view of the tester circuit
Figure 4.3 Above and side views of the complete digital IC tester
Figure 4.4 PIC16LF877A Voltage-Frequency graph
Figure 4.5 PIC16F877A Voltage-Frequency graph
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F877A</td>
<td>Microchip Microcontroller 16F87x Series</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-Transistor Logic</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>ZIF</td>
<td>Zero Insertion Force</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>DTL</td>
<td>Diode Transistor Logic</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>R</td>
<td>Resistor</td>
</tr>
<tr>
<td>ATE</td>
<td>Automatic Test Equipment</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>MCU</td>
<td>Microcontroller Unit</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>XT</td>
<td>Crystal Oscillator</td>
</tr>
<tr>
<td>SFR</td>
<td>Special Function Register</td>
</tr>
<tr>
<td>MCLR</td>
<td>Master Clear</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrical Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>ALU</td>
<td>Arithmetic Logic Unit</td>
</tr>
<tr>
<td>H</td>
<td>High</td>
</tr>
<tr>
<td>L</td>
<td>Low</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

APPENDIX A LIST OF COMPONENTS
APPENDIX B IC TESTER SCHEMATIC CIRCUIT
APPENDIX C PROGRAM OF IC TESTER
APPENDIX D DATASHEETS OF DEVICES USED
CHAPTER 1

INTRODUCTION

This chapter will explores about project introduction, project objectives, problem statement and scope of project.

1.1 BACKGROUND

In IC manufacturing process, testing is the most critical part in determining digital circuit efficiency. There are continuous efforts to effect cost reductions, upgrade quality and improve overall efficiencies. In the electronics industry, with a dramatic increase in circuit complexity and the need for higher levels of reliability, a major contributory cost of any product can be in the testing. However, in the real world we have to recognize that no process can be perfect, so that testing.

This IC tester system has been designed to carry out exhaustive tests. There are a lot of common chips used in nowadays projects but in particular project, the PIC16F877A micro controller is used. This microchip microcontroller unit is used as well as to support the pins number need to construct the IC tester that have a keypad,
4 7-segments display, a 14 pins ZIF socket, and 4 switching transistor to controlling 4 7-segments displays as peripheral devices needed to completes the tester.

For IC testing process using this tester, the user needed to place the IC would be tests on ZIF socket, apply the power to the tester, and key-in the IC under tests series numbers. IC series numbers will be displayed on 7-segments displays devices. To start the testing, the user needed to press the start button. Wait for a moment for built in test process, and finally the result of test will be displayed on the 7-segments displays devices. The testing end and to start another session, steps above are repeated.

1.2 PROBLEM STATEMENTS

Bipolar TTL IC is useful in industry causes optimum capabilities for more applications such as in telecommunication systems, traffic lights, computers, individual projects etc. Thus, the uses of good IC are so important so that all those systems will functions as needed, fulfill the purposes of its manufacturing goals and yields as targeted theoretically.

By design and accomplish this digital IC tester, hopes all problems and goals as stated will be overcomes and achieved respectively.
1.3 PROJECT OBJECTIVES

The objectives of this project are to design a digital IC tester with specifications as follows:

i. A PIC16F877A microcontroller-based tester. Using the advantages of PIC16F877A features to ensure this tester is beneficial.

ii. Using the exhaustive test method. This method of tests makes sure all possible faults are tested. Thus, the result of tests is higher acceptability.

iii. Capable to test in purely functional manner the 7400, 7403, 7408, 7409, 7432, 7437, 7438, 7486, and all their compatible logic families IC respectively.

1.4 SCOPE OF PROJECT

This project will focus on implementing exhaustive test method by using PIC16F877A as central processing unit. This project consists of two components that are the development of hardware of the IC tester, and the development of software that is an IC testing program.

For the hardware development of this tester, a circuit comprise of a 3x4 keypad used by user to enter the IC series number, 4 7-segments displays to display the IC series numbers that have been entered by user and also to display the test result, a ZIF socket to place IC under test, a circuit for the microcontroller in expanded mode is developed and others component like capacitors and transistor needed for this project stabilize and function properly.
For the software development of this tester, the program written would be able to control all the hardware parts. Meaning that, all the I/O being used in this tester is totally software controlled. The program written will also be able to generate Exhaustive Test Vector pattern to test the IC. The fault-free output look up table of all ICs included in this project scope will be parts of the program also. The look up table is used for the purpose of comparing the test result to determine whether the IC under test is function properly or defects.

This IC tester will functional to operate in frequency range of 1MHz till 4MHz depends on the microcontroller peripheral set up and programming. This IC tester is capable to tests functionality a lot of TTL IC. The IC types have been tested by this tester are:

- 1. 7400 – Quad 2-input NAND gates
- ii. 7403 – Quad 2-input open collector NAND gates
- iii. 7408 – Quad 2-inputs AND gates
- iv. 7409 - Quad 2-input open collector AND gate
- v. 7432 – Quad 2-input OR gates
- vi. 7437- Quad 2-input NAND buffer
- vii. 7438- Quad 2-input open collector NAND buffer
- viii. 7486 – Quad 2-input XOR gates
- ix. TTL 74 series compatible with all have been listed- 74, 74LS, 74S, 74ALS, 74AS.

Figure 1.1 shows a basic block diagram of designed IC tester in this project. That Figure depicts the combination of hardware developments and software developments of this IC tester project.
Figure 1.1: Basic block diagram of the designed IC tester
CHAPTER II

LITERATURE REVIEW

This chapter will discuss about transistor-transistor logic, types of faults, types of testing method those considered for this project, and about the PIC16F877A microcontroller features and architectures.

2.1 TRANSISTOR-TRANSISTOR LOGIC

Transistor-Transistor Logic, TTL refers to the technology for designing and fabricating digital integrated circuits that employ logic gates consisting primarily of bipolar transistors. It overcomes the main problem associated with Diode Transistor Logic, DTL i.e. lack of speed. [5]

Basic gate logic used for TTL IC is a NAND gate. Figure 2.1 is the schematic diagram for TTL NAND gate. The input A and B to a TTL circuit is always through the emitter of the input transistor, which exhibits a low input resistance. The base of the input transistor is connected to the +5V, which causes the input transistor to pass an amount of current when the input voltage to the emitter is logic ‘0’. Letting a TTL
input 'float' (left unconnected) will usually make it go to logic '1', but such a state is vulnerable to stray signals, which is why it is good practice to connect TTL inputs to Vcc using 1 kΩ pull-up resistors. [5]

Figure 2.1: Basic 2 input TTL NAND gate with totem pole [2].
2.1.1 TTL Subfamilies

TTL ICs are grouped according to families. ICs that belong to the same family contain similar performance specifications. There are two major TTL IC families: the 7400 series that is the most common family of TTL ICs and the 5400 series of ICs. The difference between the two IC families is: the 5400 series of ICs are fabricated to higher specifications are used primarily in military applications. Most TTL ICs are further categorized according to their subfamilies. These subfamilies are listed within the IC number and indicate special features that the chip may contain. The number 32 stands for a quad 2 input OR gate IC. Listed below are the most commonly used subfamilies and how the numbering would appear on an IC.

i. S=Schottky TTL logic 74S32.
ii. L=low-power TTL logic 74L32.
iii. LS=low-power Schottky TTL logic 74LS32.
iv. ALS=advance low-power Schottky TTL logic 74ALS32.
v. AS=advance Schottky TTL logic 74AS32.
vi. F=FAST Fairchild Advanced Schottky TTL logic 74F32.
vii. H=high speed TTL logic 74H32.

Schottky TTL IC is fabricated using Schottky transistors and diodes. These devices normally do not go into saturation and therefore provide faster switching times. The low-power power ICs operate at less of a power drain than the normal IC's.