DECLARATION

"I hereby declare that I have read this report and my opinion this report is sufficient in terms of scope and quality for the award of degree of Bachelor of Mechanical Engineering (Thermal Fluids)."

Signature: ____________________________
Supervisor: ____________________________
Date: ____________________________

TAN CHEE FAY
Lecturer
Faculty of Mechanical Engineering
Kolej Universiti Teknikal Kebangsaan Malaysia
Karung Berkunci 1200
Ayer Keroh, 75450 Melaka.

15/12/2015
ELECTRONIC MECHANICAL DESIGN SYSTEM (E-MECH SYS) FOR CONSULTANCY SERVICES FIRE FIGHTING APPROACH

MOHD FAKZAN AKHMAR B OMAR

This report is submitted to Faculty of Mechanical Engineering in partial fulfillment of the requirements for the award of the degree of Bachelor of Mechanical Engineering (Thermal-Fluids)

Faculty of Mechanical Engineering
Kolej Universiti Teknikal Kebangsaan Malaysia

November 2005
DECLARATION

"I declare that this report "ELECTRONIC MECHANICAL DESIGN SYSTEM (E-MECH SYS) FOR CONSULTANCY SERVICES FIRE FIGHTING APPROACH" is the result of my own research except as cited in the references."

Signature:
Author: Mohd. Faizan Akymar Oonar
Date: 15.12.05
ACKNOWLEDGEMENT

In submitting this report, I would like to acknowledge Mr. Tan Chee Fai, my supervisor for Projek Sarjana Muda I (PSM I) and Projek Sarjana Muda II (PSM II), for his guidance and participation in conducting the my project titled “ELECTRONIC MECHANICAL DESIGN SYSTEM (E-MECH SYS) FOR CONSULTANCY SERVICES FIRE FIGHTING APPROACH” for two semester 2004/2005. His knowledge and insights gained pass experience and with the KUTKM as a lecturer, specifically in the field of Mechanical Engineering, were invaluable in identifying the ways to solve many problems of my project and also become as a good advisor in completing my project. The reports reflect the intelligence, dedication and fairness that Mr. Tan Chee Fai is known for. Unforgettable a big thanks Ir. Lim Chee Kian, Mr. Koh Beng Joon from City MNE Consultant and Ir. Razlae B Ani from KBM Consultant Sdn. Bhd for his advising and idea in realize this project.
ABSTRACT

Electrical Mechanical Design System is a software that design for the consultant. This system is based on Building Law 1984 and follows the specification required by Jabatan Bomba. This software is design using Microsoft Visual basic and also Microsoft Access. All the display that have been sketch will display here. However, for the database, Microsoft Access were choose as a database. E-Mech System contains of 8 types of services. There are portable fire extinguisher, external hydrant, hose reel system, dry riser system, wet riser system, down comer system, automatic sprinkler and automatic carbon dioxide extinguisher. Each service will display the information and data that fixed by Jabatan Bomba. Other than that, the figure and installation techniques also contains in this software. This software is not only for display the data but it is also the user can print the data, either installed or display data. Among that, this software also can be as database of the fire fighting. This software will help to determine the quantity, type of system, pump size, type of pipe and others. With this software, hopefully it will helps an engineer to ready up the plan in the aspect f time, calculation and so on. Lastly, hopefully it will improve the system of fire fighting in Malaysia.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF CONTENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xiv</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Scope of Project</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Thesis Outline</td>
<td>4</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Construction Consultant in Malaysia</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Mechanical & Electrical Consultant (M&E)</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Type Of Servicing In MNE Consultant</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 Landed Residential and Mixed Development</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 Factories</td>
<td>7</td>
</tr>
<tr>
<td>2.3.3 Condominium, Apartment and High Rise Flats</td>
<td>7</td>
</tr>
<tr>
<td>2.3.4 Commercial Complex, Hotels, Shopping Malls and Recreational Complexes</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Fire Fighting Services</td>
<td>8</td>
</tr>
<tr>
<td>2.4.1 Passive Fire Defense</td>
<td>8</td>
</tr>
</tbody>
</table>
2.4.3 Type Of Services
2.4.4 Literature Review
 2.4.4.1 Portable Fire Extinguishers
 2.4.4.2 External Fire Hydrant
 2.4.4.3 Hose Reel System
 2.4.4.4 Dry Riser System
 2.4.4.5 Wet Riser System
 2.4.4.6 Down coner System
 2.4.4.7 Automatic Sprinkler System
 2.4.4.8 Automatic Carbon Dioxide Extinguishing System
 2.4.4.9 Microsoft Visual Basic
 2.4.4.10 Supported Programming
 2.4.4.11 Reference Software

METHODOLOGY
 3.1 Project Process Flow
 3.2 Description of Methodology

SOFTWARE DEVELOPMENT
 4.1 Writing Visual Basic Project
 4.1.1 Plan the project
 4.1.2 Define the User Interface
 4.1.2.1 Set up the form
 4.1.2.2 Place Controls on the Form
 4.1.3 Set Properties
 4.1.3.1 Set the Name, Caption Properties and Font for the Label
 4.1.3.2 Set the Name, Caption properties and colour for the Text box.
 4.1.3.3 Set The Name, Caption and Font Properties for the Command Button
 4.1.3.4 Set the Name and Caption Properties for the Option button and Check button
 4.1.3.5 Set the Caption Property for the Form
 4.1.4 Code the Event Procedures for Portable Fire Extinguishers
 4.1.4.1 Write Code
 4.1.4.2 The coding list for the form Portable Fire Extinguishers
4.2 Example Flow Chart Software development (Portable Fire Extinguishers) 89

4.2.1 Description of the flow chart 90

RESULT 91

5.1 Interface for the Electronic Mechanical Design System (e-MechSys). 91

5.1.1 Intro Software And Main Window 91

5.1.2 General Data 92

5.1.3 Active Fire Protection 93

5.1.4 Picture About Services 94

5.1.5 Portable Fire Extinguishers 94

5.1.5.1 Example Information 96

5.1.6 External Hydrant 97

5.1.6.1 Example Information 98

5.1.6.2 Hydraulic Calculation 99

5.1.7 Hose Reel System 100

5.1.7.1 Example Information 101

5.1.7.2 Hydraulic Calculation 101

5.1.8 Dry Riser 102

5.1.9 Wet Riser System 103

5.1.10 Down Comer System 104

5.1.11 Automatic Sprinkler System 105

5.1.11.1 Required Performance Characteristic of Automatic Pump 106

5.1.11.2 Hydraulic Calculation 107

5.1.12 Automatic Carbon Dioxide Extinguisher System 107

DISCUSSION 109

6.1 Case study for ‘Portable Extinguisher’ 109

6.1.1 Previous project 109

6.1.2 To compare the calculation between manual calculation and calculation by using the software 110

6.2 Case study for ‘External Fire Hydrant’ 112

6.2.1 Previous project 112

6.2.2 To compare the calculation between manual calculation and calculation by using the software 112
6.3 Case study for ‘Hose Reel System’
6.3.1 Previous project
6.3.2 To compare the calculation between manual calculation and calculation by using the software
6.4 Case study for ‘Automatic Sprinkler system’
6.4.1 Previous project
6.4.2 To compare the calculation between manual calculation and calculation by using the software
6.5 Case study for ‘Wet Riser system’
6.5.1 Previous project
6.5.2 To compare the calculation between manual calculation and calculation by using the software
6.6 Case study for ‘Automatic Carbon dioxide extinguishers’
6.6.1 Previous project
6.6.2 To compare the calculation between manual calculation and calculation by using the software
6.7 Case study for ‘Dry riser system’
6.7.1 Previous project
6.7.2 To compare the calculation between manual calculation and calculation by using the software
6.8 Case study for ‘Down Comer System’
6.8.1 Previous project
6.8.2 To compare the calculation between manual calculation and calculation by using the software

CONCLUSION AND RECOMMANDATION

REFERENCES
Web Site :-
By Interview :-

APPENDIX
<table>
<thead>
<tr>
<th>NO.</th>
<th>FIGURE</th>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Portable Fire Extinguishers</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Component in External Fire Hydrant</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>A typical hydrant installation fed directly from JBA water main</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>A typical installation pressurized by fire pump</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Fixed and swing fire hose reel</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Jet and spray nozzle</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>A typical hose reel installation</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>A typical dry riser installation</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Hose Rack Assembly, outlet, inlet box, landing valve box and air release valve for dry riser system</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>4-Way, 2 Way breeching inlet and breeching box</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>2.11</td>
<td>A typical wet riser installation</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>4-Way breeching inlet, Alarm, hose cradle, air release valve, landing valve and gate valve for the wet riser system</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>2.13</td>
<td>A typical down comer system installation</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>2.14</td>
<td>4-Way breeching inlet, gate valve, air release valve, oblique landing and check valve for the down comer system</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2.15</td>
<td>A typical automatic sprinkler system installation</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>2.16</td>
<td>Sprinkler head, air release valve, ball valve, flow switch, pump, drain valve, gate valve, ‘Y’ strainer and check valve.</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>2.17</td>
<td>A typical automatic carbon dioxide extinguishing system installation</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>2.18</td>
<td>Part in the automatic carbon dioxide extinguishing system</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>2.19</td>
<td>Shows some sample Windows user interfaces.</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>
Figure 2.20: The Visual Basic environment. Each window can be moved, resized, or close.

Figure 2.21: The toolbox for Visual Basic

Figure 2.22: The Visual Basic toolbar. Each button represents a command that it can execute by clicking the button or by choosing a command from a menu.

Figure 3.23: Flow chart for the project process

Figure 4.24: Located the Microsoft Visual Basic 6.0 command and click it

Figure 4.25: The New Project dialog box may appear when you start Visual Basic. Click on the check box to prevent the box from appearing for each project

Figure 4.26: Choose Options from the Tools menu and select the Editor tab; make sure the options are set properly.

Figure 4.27: Set these options on the General tab of the Options window

Figure 4.28: Move and resize the windows so that all are visible

Figure 4.29: A sketch of the Portable Fire Extinguishers form for planning

Figure 4.30: Make the form larger by dragging its lower right handle diagonally

Figure 4.31: When click on the label tool in the toolbox, the tool’s button is activated and the mouse pointer becomes a crosshair

Figure 4.32: Drag the mouse pointer diagonally to draw the frame on the form

Figure 4.33: The frame and its default contents (Frame1) will appear

Figure 4.34: Drag the mouse pointer diagonally to draw the label on the form

Figure 4.35: The newly created label has eight small handles, indicating that it is selected.

Figure 4.36: Drag to the diagonally opposite corner and the new command button should have selection handles.

Figure 4.37: Second frame

Figure 4.38: The text box and its default contents (Text1) will appear

Figure 4.39: The third frame and the button on the frame

Figure 4.40: A new command button of the default size will appear in the centre of the form

Figure 4.41: Drag the button below the third button

Figure 4.42: 4 option buttons and to draw this button, the step is same like to draw the command button
Figure 4.43: Create another command button using the alternative method

Figure 4.44: After all button are placed into the desired location, lock them in place by selecting LOCK CONTROL from the short menu.

Figure 4.45: The currently selected control is shown in the Properties window

Figure 4.46: The Properties window. Click on the Name property to change the value in the Setting box

Figure 4.47: Type “lblDescription” into the setting box for the name property

Figure 4.48: Double click on Label 1 in the setting box to select the entry

Figure 4.49: After that, double click on MS Sans Serif in the Setting box; the Font interface appear

Figure 4.50: The Properties window

Figure 4.51: Press the delete key to delete the value of the Text Property

Figure 4.52: Change the Caption to “Design Standard”

Figure 4.53: Change the Caption property to “Portable Fire Extinguishers”

Figure 4.54: The Portable Extinguisher interface

Figure 4.55: The code window, showing the first and last lines of the sub procedure.

Figure 4.56: Click the view Object button to return to the form

Figure 4.57: Flow chart for the ‘Portable Fire Extinguisher System’

Figure 5.58: The loading interface and the main menu interface

Figure 5.59: The Introduction interface about the fire fighting system

Figure 5.60: General Data interface

Figure 5.61: Introduction about Active Fire Protection

Figure 5.62: This is picture services in the Active Fire Protection

Figure 5.63: Portable Fire Extinguisher interface

Figure 5.64: The description about the law and the services

Figure 5.65: External Fire Hydrant interface

Figure 5.66: Sample drawing and the description about the services

Figure 5.67: This is the hydraulic calculation interface for the External Fire Hydrant

Figure 5.68: Hose Reel System interface

Figure 5.69: The law about this services, sample drawing and the description about the services

Figure 5.70: Hydraulic calculation for hose reel system
Figure 5.71: Dry Riser System interface 103
Figure 5.72: Wet Riser System interface 103
Figure 5.73: Down Comer System interface 104
Figure 5.74: Automatic Sprinkler System interface 105
Figure 5.75: Required Performance Characteristic of Automatic Pump for sprinkler system 106
Figure 5.76: Sprinkler Hydraulic Calculation interface 107
Figure 5.77: Automatic Carbon Dioxide Extinguisher System 108
<table>
<thead>
<tr>
<th>NO.</th>
<th>TABLE</th>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Code setting and window setting at the Options (Editor Tab) button from Tools menu</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>From grid setting and show tool tips at the Options (General Tab) button from Tools menu</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Selecting, deleting, resizing and moving control on a form</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>List for label</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>List about text box; Name Property, Text Property and the colors of the text box</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>The setting for the Command button</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>The setting for the option button and check button</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Result between Manual and software for Portable Fire Extinguisher</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>The table to be follow when upgrading this software</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Result between Manual and software for External Hydrant</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Result between Manual and software for Hose Reel System</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Result between Manual and software for Sprinkler system</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Result between Manual and software for Wet Riser System</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Result between Manual and software for Automatic Carbon Dioxide Extinguishers system</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Result between Manual and software for Dry Riser System</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Result between Manual and software for Down Corner System</td>
<td>119</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

In the early 50's it was very difficult for the architects, engineers and the building designer to submit the standard design building plans to the various local authorities and district councils in the country. In 1957, the federation of Malaya society of Architects-predecessor of Penubuhan Arkitek Malaysia (PAM) approached the Ministry of Natural resources and Local Government (Ministry of Housing and Local Government) to update the Uniform by Laws to replaces the various outdates Local Council Building by Laws and Sanitary Board Ordinances [1].

And the first draft of the UBBL was published under government Bill No. 1065 dates 5 April 1973 and was submitted to the Ministry based on the result of the submission received. The present UBBL was published by the government in 1984 for the implementation [1].

Until now the statistic, the calculation and the decision for the fire fighting system for the construction plan have done using the manual system. With this method, its may caused the project become late and delay from the schedule that can affect the fire fighting project. Form the experienced and research, to stale this problem we must build software for this fire fighting services that Mechanical
consultant can use. With this solution the consultant can do their work as quick as they can to stale the plan for the construction that they involve.

Actually the software was already in the market at over sea, and this software also has been promoted in this country, but the system does not match with Malaysian system. So that our consultant prefer to do their job manually for their construction.

To soft this problem, we prefer to build this software for fire fighting system to use in our country with our laws. A fire fighting system design needs a serious attention. This is because, this system incriminate people soul. At first stage, it must be decide and analyze the type of instrumental and the position of each instrument. Among that, it is also have to determine the arrangement of the facilities.

1.2 Problem Statement

Fire Fighting system is divided to 8 types of services which is Portable Fire Extinguisher, External Hydrant System, Hose Reel System, Wet Riser System, Dry Riser System, Down Comer System, Automatic Sprinkler System and Automatic Carbon Dioxide Extinguisher System. Hydraulic calculation and design system is a task need to be complete before project implementation. The problem in consultancy services in hydraulic calculation is needed more time, more concentration, and the result not accurate. This is because, there are many aspects needed to be considering in the calculation like pipe sizing, effective of pipe length (pipe run), flow rate in imperial gallon per minute (igpm), loss of head and others. Human error can occur, as example in implementing the formula application and as well as very difficult to produce calculation on time especially when time available is very limited (time constrain).

In order to increase their professionalism level, software was needed as an aid to engineers in order to minimize design time and increase the efficiency. It’s
involved all mechanical services including the plumbing system. Its helps those to reduce manpower, human error and the energy wasted during the hydraulic calculation.

1.3 Objective

The idea to build this software is adapted from the phenomena that usually happen in fire fighting system. M&E Consultant as example has to take so much time to prepare their fire fighting drawing for construction work in Malaysia. On the other hand, Fire Fighting Services Software means the solution for the consultant to save their times for prepare the fire fighting drawing services.

There are a few objectives in developing this software like as listed as to computerize the element of the fire protection that was using in fire fighting services in this country, to create a solution in resolving the fire protection calculations. Design and build a software use in the fire fighting protection system calculations and to build and develop software using programmed language of 'Visual Basic for Applications (VBA)' and supporting by the Microsoft Access. This software was design not only to solve the calculations problem, but it is also can use as a project data.

1.4 Scope of Project

The scope of this project is about development of Electronic Mechanical design system (E-Mech Sys) for consultancy services in Fire Fighting system. This program will be built by using Visual Basic software and using the Microsoft Access as the database for this software development.
1.5 Thesis Outline

Thesis outline is a summary of every chapter was described to introduce about the chapter. Chapter one (1) introduced about mechanical system in consultancy services and the objectives develop of the software. Then go to the chapter two (2) where all information about consultancy services in Malaysia and the fire fighting system is discussed. It also includes about Microsoft Visual Basic and design consideration of fire fighting system. The next chapter will describe the project implementation from collect data and information until the software was verified. After that, chapter four (4) will perform all steps to develop of software by using Visual Basic. The example flow chart for system will showing in this chapter which is there had more one form. Then go to chapter five (5), where the results from software development will performed. Its include summary of case study from the previous project in Mechanical Consultant. Recommendation and conclusion will explain in the end of this chapter.
CHAPTER 2

LITERATURE REVIEW

2.1 Construction Consultant in Malaysia

In Malaysia, there are plural of consultant that operates. There are developing consultant, business consultant and many more. From the researched, the consultant that involved in building construction was chosen.

Consultant that involve in this field, have been divide into a few type which are architect, Civil and structure (C&S) consultant, Mechanical and Electrical (M&E) consultant, and contractor. Architect is a company that designs the building and C&S consultant is a company that analyzes the civil parts and the structure for the construction, M&E consultant is company that will provide the instrumentations of mechanical and electrical for the construction. However, a consultant will estimate the costing and responsible in distributing the development. Lastly is the contractor. A contractor is responsible to perform the project at the site.

This contractor must follow the rule and regulations as permitted in executing the project. Because of that, all consultant that involve, are responsible for what have been decide and agreed. It is whether from the position, type of equipment, and others regarding from their field.
2.2 Mechanical & Electrical Consultant (M&E)

In building development site, M&E consultant is a company that responsible to mechanical and electrical part. For example, the scope for deciding the equipment to use in the construction, total quantity, and others. The consultant also is responsible to do an applications and approval example in requirement of power supply from TNB. M&E consultant will support from the drafting site. This plan will then pass to the contractor for the site working. All plans will be verified and authorized by the professional engineer (Ir.) where he or she will verify and qualified the plan before authorized.

2.3 Type Of Servicing In MNE Consultant

In M&E Consultant, there are many types of services that they provide for the following range of Mechanical and Electrical Consultancy services. In the construction, this service has been fixed according to the design and type of building. There are as list as below:

2.3.1 Landed Residential and Mixed Development

a) Internal Electrical and Telephone Installation
b) Electrical Infra-works
c) Street Lighting Installation
d) Telephone Infra-works
2.3.2 Factories

a) Internal Electrical and Telephone Installation
b) Electrical Infra-works and Compound Lighting
c) Lightning Protection System
d) Air-Conditioning and Mechanical Ventilation system
e) Fire-Fighting Installation
f) Cold and Hot Water Supply Services
g) Sanitary Plumbing Services

2.3.3 Condominium, Apartment and High Rise Flats

a) Internal Electrical and Telephone Installation
b) MATV System
c) Electrical Infra-works
d) Security System
e) Lightning Protection System
f) Fire-Fighting Installation
g) Cold and Hot Water Supply Services
h) Sanitary Plumbing Services
i) Lift Installation
j) Swimming Pool Installation

2.3.4 Commercial Complex, Hotels, Shopping Malls and Recreational Complexes

a) Internal Electrical and Telephone Installation
b) MATV System
c) Electrical Infra-works
d) Security System
e) Lightning Protection System
f) Fire-Fighting Installation
g) Cold and Hot Water Supply Services
h) Sanitary Plumbing Services
i) Lift Installation

2.4 Fire Fighting Services

Fire fighting system becomes a need from Jabatan Bomba Malaysia which is focus on safety level for each type of project. This system has been divided into Passive and Active fire defense.

2.4.1 Passive Fire Defense

Passive fire defense is basically a planning matter and must be considered at the planning stage in the building design. The selection of the fire resisting materials, sub division of the building into fire tight cells or compartments both vertically and horizontally to contain an outbreak of fire and spread of fire are basic precautions at the planning stage. Effective passive fire precautions represent good planning, good design, and sound construction, which could complement other basic functions of a building [1].

2.4.2 Active Fire Defense

Active fire defense is basically the manual or automatic fire protection system such as: fire alarm, detectors (heat and smoke) rising mains, hose reels, fire telephone, CO2 fixed installation, automatic sprinkler and smoke spills system etc. to
give a warning of an outbreak of fire and containment and extinguishment of a fire. The provisions of adequate and suitable facilities to assist rescue and fire suppression operation are also within the active fire defense strategies.

The overall fire defense strategies for development project in Malaysia are based on the "Fire Safety Philosophy" of the Malaysian Uniform Building By-Laws 1984 where life safety is the first consideration [1]. The fire prevention and operational requirement for both external and internal fire suppression must be considered together. It must also be possible for the fire fighter to operate at any point in the building. Facilities must be built into the building to enable the fire fighter to reach the top - most floors and carry out rescue and internal fire suppression operations[1].

In this system, it has been done regarding to the preliminary and the concept of drawing. There are few rules that must be followed from Jabatan Bomba Malaysia. For example fire alarms, detectors (heat and smoke) rising mains, hose reels, fire telephone, CO2 fixed installation, automatic sprinklers and smoke spills system and the other safety system of the building development.

Architect will determine the type of building, the usage and the area of the project. The architect will apply for the qualification of the building layout that develops from Jabatan Bomba Malaysia. If the qualification is fail, so the architects have to do the changes about the design and required for the approval again. After an approval, the negotiator of M&E will ready up the fire fighting for the project and then submit to the Jabatan Bomba Malaysia for the qualification. MNE consultant will arrange the inspection of the building with 'Jabatan Bomba Malaysia'. If the department has agreed with the safety ness, then they will bring out a covered letter for the project.