Mohd Ruddin Ab Ghani
Professor of Electrical Engineering, Universiti Teknikal Malaysia Melaka

System Engineering and Control - Energy and Distribution Automation System - Optimization - Operational Research
Verified email at utem.edu.my

Title
A class of sliding mode control for mismatched uncertain systems

Authors
Yahaya Md Sam, Johari Halim Shah Osman, Ruddin A Ghani

Publication date
2002

Conference name
Research and Development, 2002. SCORED 2002. Student Conference on

Pages
31-34

Publisher
IEEE

Description
Abstract A proportional-integral sliding mode control is proposed for a system with mismatch uncertainties. The proposed controller is able to improve the chattering phenomenon. A simulation study for a numerical example is given to illustrate the effectiveness of this control design.

Total citations
Cited by 4

Citations per year

Scholar articles

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=snUvee0AAA... 7/3/2013
A class of sliding mode control for mismatched uncertain systems
Cited by 4 - Related articles

Dates and citation counts are estimated and are determined automatically by a computer program.

©2013 Google - About Google Scholar - All About Google - Provide feedback - My Citations
A class of sliding mode control for mismatched uncertain systems

Sam, Y.M.; Osman, J.H.S.; Ghani, R.A.
Digital Object Identifier: 10.1109/SCOPE-ID-2002.1033046
Publication Year: 2002, Page(s): 31 - 34
IEEE CONFERENCE PUBLICATIONS

Integral sliding mode control for a class of nonlinear mismatched uncertain systems

Qun Zeng; Zhichang Zhao; Liankun Sun
Digital Object Identifier: 10.1109/ISCCCA.2008.4776269
Publication Year: 2008, Page(s): 1 - 4
Cited by: Papers (2)
IEEE CONFERENCE PUBLICATIONS

Sliding mode control for a class of linear mismatched uncertain systems

Gang Ding; Jin Liu; Zhanhao Zhao
Computer and Information Application (ICCCIA), 2010 International Conference on
Digital Object Identifier: 10.1109/ICCCIA.2010.5141564
Publication Year: 2010, Page(s): 175 - 177
IEEE CONFERENCE PUBLICATIONS

Output feedback sliding mode control for a class of mismatched uncertain systems

Dong Xinchuang
Publication Year: 2018, Page(s): 132 - 136
IEEE CONFERENCE PUBLICATIONS

Sliding mode control for a class of uncertain dynamic systems with mismatched uncertainties

Sah, Y.M.; Osman, J.H.S.; Ghani, R.A.
Control and Automation, 2002. ICCA. Final Program and Book of Abstracts: The 2002 International Conference on
Digital Object Identifier: 10.1109/ICCA.2002.1220556
Publication Year: 2002, Page(s): 169
IEEE CONFERENCE PUBLICATIONS

Sliding Mode Observer Based Sliding Mode Controller for Slosh-Free Motion Through PID Scheme

Bandyopadhyay, B.; Gandhi, P.S.; Kuroda, S.
Industrial Electronics, IEEE Transactions on Volume: 55, Issue: 9
Digital Object Identifier: 10.1109/TIE.2008.2026380
Publication Year: 2008, Page(s): 3432 - 3442
Cited by: Papers (15)
IEEE JOURNALS & MAGAZINES

Sliding Mode Control for Slosh-Free Motion Using a Nonlinear Sliding Surface

Kuroda, S.; Sorgeon, S.K.; Bandyopadhyay, B.; Gandhi, P.S.,
Mechatronics, IEEE/ASME Transactions on Volume: 18, Issue: 2
Digital Object Identifier: 10.1109/TMECH.2011.2183256
Publication Year: 2013, Page(s): 714 - 724
IEEE JOURNALS & MAGAZINES

Robust sliding mode control for a class of uncertain hybrid linear systems with Markovian jump
A Class of Sliding Mode Control for Mismatched Uncertain Systems

Yahaya M. Sam, Johari H. S. Osman, and Ruddin A. Ghani

Faculty of Electrical Engineering
University Technology of Malaysia
81300 UTM Skudai, Johor, MALAYSIA.

Kolej Universiti Teknologi Malaysia,
75450 Melaka, MALAYSIA.

Abstract—A proportional-integral sliding mode control is proposed for a system with mismatch uncertainties. The proposed controller is able to improve the chattering phenomenon. A simulation study for a numerical example is given to illustrate the effectiveness of this control design.

Key words—Robust Control, Sliding Mode Control, Mismatched Uncertainties.

1. INTRODUCTION

The control of dynamical systems, whose mathematical models contain uncertainties, has occupied the attention of researchers in recent times and has been extensively studied. These uncertainties could be due to parameters, constant or varying, which are unknown or perfectly known, or due to unknown or imperfectly known inputs into the system [1]. Sliding mode control (SMC) has been widely applied to systems with uncertainties since it was introduced about three decades ago. A salient feature of the control is that it is completely robust to systems with matched uncertainties [2]. It is certainly true that many systems can be classified under this category. However, there are many systems which unfortunately are affected by uncertainties which do not satisfy the matching condition. A sliding mode control scheme for mismatched uncertain systems has been recently developed by [3,4,5,6]. These researchers used traditional methods to design the sliding surface which contribute to chattering problem.

In this paper we will consider a class of uncertain dynamical systems in mismatched condition and design the sliding surface based on proportional-integral (PI) sliding mode control. We also propose a new control scheme to control such a system with mismatched uncertainties.

2. SYSTEM DEFINITION

Consider the following uncertain systems [4]:

\[x(t) = Ax(t) + Bu(t) + f(x,t) \]

where \(x(t) \in \mathbb{R}^n \) is the state vector, \(u(t) \in \mathbb{R}^m \) is the control input, and the continuous function \(f(x,t) \) represents the uncertainties with the matched and mismatched parts. Note that \(f(x,t) \) is uniformly bounded with respect to time \(t \), and locally uniformly bounded with respect to state \(x \). The following assumptions are taken as standard:

Assumption i: There exists a known non-negative function such that

\[\| f(x,t) \| \leq \beta(x,t) \]

where \(\| \cdot \| \) denotes the standard Euclidean norm.

Assumption ii: The pair \((A, B)\) is controllable and the input matrix \(B \) has full rank.

3. SWITCHING SURFACE DESIGN

In this study, we utilized the PI sliding surface defined as follows:

\[\sigma(i) = Cx(t) - \int_0^t (CA + CBK) \sigma(x(t)) dt + \]

where \(C \in \mathbb{R}^{n \times n} \) and \(K \in \mathbb{R}^{n \times m} \) are constant matrices. The matrix \(K \) satisfies \(\lambda (A + BK) < 0 \) and \(C \) is chosen so that \(CB \) is nonsingular. It is well known that if the system is able to enter the sliding mode, hence \(\sigma(i) = 0 \). Therefore, the equivalent control, \(u_{eq}(i) \) can thus be obtained by letting \(\sigma(i) = 0 \) [7], I.e.

\[\sigma(i) = Cx(t) - (CA + CBK)x(t) = 0 \]

If the matrix \(C \) is chosen such that \(CB \) is nonsingular, this yields

\[u_{eq}(i) = Kx(t) - (CB)^{-1} Cf(x,t) \]
Substituting equation (4) into system (1) gives the equivalent dynamic equation of the system in sliding mode as:
\[x(t) = (A + BK)x(t) + (I_n - B(CB)^{-1}C) f(x, t) \]

(5)

Theorem 1: If
\[\| F(x, t) \| \leq \beta_1(x, t) = \| I_n - B(CB)^{-1}C \| \beta(x, t) \]
then the uncertain system in equation (5) is boundedly stable on the sliding surface \(\sigma(t) = 0 \).

Proof:

For the simplicity, we let
\[\hat{A} = (A + BK) \]
(5a)
\[\hat{F}(x, t) = (I_n - B(CB)^{-1}C) f(x, t) \]
(5b)

and rewrite (5) as
\[x(t) = \hat{A} x(t) + \hat{F}(x, t) \]
(6)

Let the Lyapunov function candidate for the system is chosen as
\[V(t) = x^T(t) P x(t) \]
(7)

Taking the derivative of \(V(t) \) and substituting equation (5) into it, gives
\[\dot{V}(t) = x^T(t) [\hat{A}^T P + P \hat{A}] x(t) + x^T(t) P \hat{F}(x, t) \]

(8)

where \(P \) is the solution of \(\hat{A}^T P + P \hat{A} = -Q \)
for a given positive definite symmetric matrix \(Q \).
It can be shown that equation (8) can be reduced to:
\[\dot{V}(t) = -\lambda_{\min}(Q) \| x(t) \|^2 + 2 \beta_1(x, t) \| x(t) \|^2 \]
(9)

Since \(\lambda_{\min}(Q) > 0 \), consequently \(\dot{V}(t) < 0 \) for all \(t \) and \(x \in B^e(\eta) \), where \(B^e(\eta) \) is the complement of the closed ball \(B(\eta) \), centered at \(x = 0 \) with radius \(\eta = \frac{2 \beta_1(x, t)}{\lambda_{\min}(Q)} \) . Hence, the system is boundedly stable.

Remark: For the system with uncertainties satisfy the matching condition, i.e., \(\text{rank} [\beta \ f(x, t)] = \text{rank} [\beta] \), then equation (5) can be reduced to
\[x(t) = (A + BK)x(t) \] . Thus asymptotic stability of the system during sliding mode is assured.

We now design the control scheme that drives the state trajectories of the system in equation (1) onto the sliding surface \(\sigma(t) = 0 \) and the system remains in it thereafter.

4. VARIABLE STRUCTURE CONTROLLER DESIGN

For the uncertain system in equation (1) satisfying assumptions (i) and (ii), the following control law is proposed:
\[u(t) = -(CB)^{-1} [CAx(t) + \phi \sigma(t)] - k(CB)^{-1} \frac{\sigma(t)}{\| \sigma(t) \|} + \delta \]
(10)
where \(\phi \in \mathbb{R}^n \) is a positive symmetric design matrix, \(k \) and \(\delta \) are the positive constants.

Theorem 2: The hitting condition of the sliding surface (2) is satisfied if
\[\| A + BK \| \| x(t) \| \geq \| f(x, t) \| \]
(11)

Proof:

In the hitting phase \(\sigma^T(t) \sigma(t) > 0 \) ; using the Lyapunov function candidate \(V(t) = \frac{1}{2} \sigma^T(t) \sigma(t) \), we obtain
\[\dot{V}(t) = \sigma^T(t) \sigma(t) \]

(12)

It follows that \(\dot{V}(t) < 0 \) if condition (11) is satisfied. Thus, the hitting condition is satisfied.

5. EXAMPLE

To illustrate the performance of the proposed controller, consider the system as given in reference [2,3,4], i.e.
\[x(t) = Ax(t) + Bu(t) + f(x, t) \]
where
\[A = \begin{bmatrix} -0.03 & 0.01 & 0.01 \\ -0.05 & -0.15 & 0.05 \\ -0.09 & 0.03 & -0.17 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

and \(f(x,t) = \Delta A(t)x(t) + f_1(t) \). In order to show the robustness of the proposed controller with respect to the mismatched condition we consider the following cases for the function \(f(x,t) \):

Case I: Both the matrices \(\Delta A(t)x(t) \) and \(f_1(t) \) satisfy the matching condition; i.e. we consider the case where \(\Delta A(t) \) and \(f_1(t) \) as given below:

\[
\Delta A(t) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0.5 \sin(0.14t) & 0 & 0 \end{bmatrix}
\]

and

\[
f_1(t) = \begin{bmatrix} 0 \\ 0 \\ 5 \sin(1.14t) \end{bmatrix}
\]

Case II: The matrix \(f_1(t) \) satisfy the matching condition as given as in Case I while the matrix \(\Delta A(t) \) with mismatched condition as given below:

\[
\Delta A(t) = \begin{bmatrix} 0.01 + 0.44 \sin(1.14t) & 0.01 + 0.004 \cos(1.14t) & 0.008 + 0.002 \sin(6.28t) \\ 0.35 + 0.22 \sin(1.14t) & 0.05 + 0.02 \cos(1.14t) & 0.04 + 0.01 \sin(6.28t) \\ 0.05 \sin(1.14t) & 0 & 0 \end{bmatrix}
\]

In both cases, we choose \(K = [-4.03 - 0.67 - 0.45] \) such that \(\lambda(A + BK) = (-0.1, -0.3, -0.4) \), \(C = [450 50 10] \), \(\delta = 1000 \), \(k = 10 \) and \(\delta = 0.0001 \). Figure 1 shows the state responses for both cases subjected to the initial condition \(x(0) = [10 \ 0 \ 0]^T \). Figure 2 displays the sliding surface for both cases with respect to time. The corresponding control input for both cases is shown in Figure 3. The results also shows that the state trajectory hit and slide on the sliding surface as intended for both cases. This clearly demonstrates that the nonlinear system with mismatched uncertainties utilizing the proposed controller is practically stable.

6. CONCLUSIONS

In this paper, the PI sliding mode control technique is proposed for controlling uncertain system where the uncertainties does not satisfy the matching condition. It has been shown mathematically and through computer simulations that the proposed control scheme capable of controlling the uncertain system and is practically stable with respect to the mismatched uncertainty condition.

7. REFERENCES

Fig 1: State responses for matched and mismatched conditions.

Fig 2: Sliding surface for matched and mismatched conditions.

Fig 3: Controlled input for matched and mismatched conditions.