Mohd Ruddin Ab Ghani
Professor of Electrical Engineering, Universiti Teknikal Malaysia Melaka
System Engineering and Control - Energy and Distribution Automation System-Optimization - Operational Research
Verified email at utem.edu.my

A decentralized proportional-integral sliding mode tracking controller for robot manipulators
M Noh Ahmad, Johari Halim Shah Osman, Ruddin A Ghani
Publication date
2002/10/28
Conference name
TENCON'02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering
Volume
3
Pages
1314-1317
Publisher
IEEE

Abstract This paper presents a decentralized proportional-integral (PI) sliding mode tracking control for a class of robot manipulators. A robust decentralized sliding mode controller is derived so that in each of the sub-system, the actual trajectory tracks the desired trajectory using the information available only on the local states. The PI sliding mode is chosen to ensure the stability of overall dynamics during the entire period ie the reaching phase and the sliding phase. It is shown theoretically and by simulation that manipulator systems ...

Total citations
Cited by 1

Citations per year

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=snUvee0AAA... 7/3/2013
Scholar articles
A decentralized proportional-integral sliding mode tracking controller for robot manipulators
Cited by 1 - Related articles - All 2 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

©2013 Google - About Google Scholar - All About Google - Provide feedback - My Citations
You searched for: A decentralized proportional-integral sliding mode tracking controller for robot manipulators

A decentralized proportional-integral sliding mode tracking controller for robot manipulators
Ahmad, M.N. ; Osman, J.H.S. ; Ruddin A Ghani, M.
Digital Object Identifier: 10.1109/TECON.2002.1182568
Publication Year: 2002, Page(s): 1314 - 1317 vol.3
IEEE CONFERENCE PUBLICATIONS

Decentralized controllers design for nonlinear uncertain systems with application on robotic systems
Ishak, M. ; Osman, J.H.S.
Digital Object Identifier: 10.1109/IEIA.2008.4852460
Publication Year: 2008, Page(s): 471 - 476
IEEE CONFERENCE PUBLICATIONS

On the trajectory tracking control of industrial SCARA robot manipulators
Veleda, A. ; Leignani, S.
Industrial Electronics, IEEE Transactions on Volume: 49 , Issue: 1
Digital Object Identifier: 10.1109/41.992266
Publication Year: 2002, Page(s): 224 - 232
Cited by: Papers (15)
IEEE JOURNALS & MAGAZINES

Application of Proportional-Integral sliding mode tracking controller to robot manipulators
Ahmad, M.N. ; Osman, J.H.S.
Digital Object Identifier: 10.1109/CCA.2003.1223266
Publication Year: 2003, Page(s): 57 - 52 vol.1
IEEE CONFERENCE PUBLICATIONS

Dynamic sliding PID control for tracking of robot manipulators: theory and experiments
Pamela-Vega, V. ; Anmoto, S. ; Yun-Hui Liu ; Hirsching, G. ; Akella, P.
Robotics and Automation, IEEE Transactions on Volume: 19 , Issue: 6
Digital Object Identifier: 10.1109/TRA.2003.819609
Publication Year: 2003, Page(s): 967 - 976
Cited by: Papers (51)
IEEE JOURNALS & MAGAZINES

Sliding PID uncalibrated visual servoing for finite-time tracking of planar robots
Pamela-Vega, V. ; Fierrro-Rojas, J.D.
Digital Object Identifier: 10.1109/ROBOT.2003.124058
Publication Year: 2003, Page(s): 3042 - 3047 vol.3
Cited by: Papers (4)
IEEE CONFERENCE PUBLICATIONS
A Decentralized Proportional-Integral Sliding Mode Tracking Controller for Robot Manipulators

MOHAMAD NOH AHMADI, JOHARI H. S. OSMAN and MOHD RUDDIN A. GHANI

1 Dept. of Robotics and Mechatronics, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Malaysia. E-mail: noh@umit.mye
2 Kolej Universiti Teknologi Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka, Malaysia.

Abstract
This paper presents a decentralized Proportional-Integral (PI) sliding mode tracking control for a class of robot manipulators. A robust decentralized sliding mode controller is derived so that in each of the sub-system, the actual trajectory tracks the desired trajectory using the information available only on the local states. The PI sliding mode is chosen to ensure the stability of overall dynamics during the entire period i.e. the reaching phase and the sliding phase. It is shown theoretically and by simulation that manipulator systems controlled by the proposed decentralized control law are practically stable.

1.0 Introduction
Controller design of robot manipulators that utilize the theory of Variable Structure System (VSS) has become a subject of interest in recent years [1]-[6]. However, most of the works were mainly concentrated on the centralized control concept. The salient feature of the VSS is Sliding Mode Control (SMC). SMC has been widely applied to systems with uncertainties and/or input couplings since it is completely robust provided the matching condition hold. The design philosophy behind the SMC is to obtain a high-speed switching control law to drive the nonlinear plant's state trajectory onto a specified and user-chosen surface called the switching surface [7],[8]. When a system is in the sliding mode, its dynamics is strictly determined by the dynamics of the sliding surface and hence insensitive to parameter variations and system disturbances.

Since the dynamics of a robot manipulator basically consists of a set of highly nonlinear and coupled state equations, some researchers treated it as a set of interconnected subsystems with bounded uncertainties and presented decentralized controller for the tracking problem. By treating each of robots joint manipulators as a subsystem, there exist couplings among the control joint torques and as such the controller design objective is to get rid of it beside the uncertainties present in the system. In [9], a class of decentralized continuous nonlinear feedback control law via the deterministic control was introduced but with the couplings among the control joint torques considered negligible. The inclusion of the input coupling was considered in the [10] and [11] where the works were basically based on the Riccati equation approach.

In this paper, a decentralized PI sliding mode control is proposed to control the manipulators. It is shown that the proposed control law guarantees that the sliding condition is always satisfied while the system stability still intact. The bounds of interconnections and the input couplings between the sub-systems are explicitly taken into account while the neighboring states are not required.

2.0 Statement of the Problem
Consider the dynamics of the robot manipulator as an uncertain composite system $S$ defined by an $N$ interconnected subsystems $S_{i}$, $i=1,2,...,N$. Each subsystem can be described by

$$\dot{x}_i(t) = \left[ A_i + \Delta A_i(t) \right] x_i(t) + \left[ B_i + \Delta B_i(t) \right] u_i(t) + \sum_{j=1}^{N} C_{ij}(t) y_j(t)$$

where $x_i(t) \in \mathbb{R}^n$, $u_i(t) \in \mathbb{R}^{m_i}$ represent the state and input of subsystem $S_i$, respectively. $A_i, B_i, A_{ij}$ and $B_{ij}$ are constant nominal matrices. $\Delta A_i, \Delta B_i, \Delta A_{ij}$ and $\Delta B_{ij}$ representing uncertainties present in the system, interconnection, input and coupling matrices, respectively.

The following assumptions are introduced:

(A1) Every state vector $x_j(t)$ can be locally observed;

(A2) There exist continuous functions $H_j(t)$, $H_k(t)$, $E_j(t)$ and $F_j(t)$ such that for all $x \in \mathbb{R}^n$ and all $t$:

$$H_j(t) = B_i H_i(t) : \frac{E_j(t)}{F_j(t)} \leq \alpha_j$$

$$\Delta H_j(t) = B_i \Delta H_i(t) : \frac{\Delta E_j(t)}{\Delta F_j(t)} \leq \alpha_j$$

$$\Delta B_j(t) = B_i \Delta E_i(t) : \frac{\Delta E_j(t)}{\Delta F_j(t)} \leq \beta_j$$

(A3) There exist a Lebesgue function $\Omega_j(t) \in \mathbb{R}$ such that:

$$\dot{x}_j(t) = A_j x_j(t) + B_j \Omega_j(t)$$

where $A_i$ and $B_i$ are the $i$th subsystem nominal system and input matrices, respectively;

(A4) The pair $(A_i, B_i)$ is controllable.

The state vector of the composite system $S$ is defined as

$$x(t) = [x_1(t), x_2(t), ..., x_N(t)]$$

Let $X_j(t) \in \mathbb{R}^{N}$ be the desired state trajectory:

$$X_j(t) = [x_{j1}(t), x_{j2}(t), ..., x_{jn}(t)] : x_j(t) \in \mathbb{R}^n$$

Define the tracking error, $\varepsilon_j(t)$ as

$$\varepsilon_j(t) = x_j(t) - x_{j0}(t)$$

0-7803-7490-8/02/$17.00 ©2002 IEEE.
In view of equations (2), (3) and (6), equation (1) can be written as
\[
\begin{align*}
    z_i(t) &= (A_i + B_i H_i(t)) x_i(t) + B_i H_i(t) x_{di}(t) \\
    &- B_i C_i x_i(t) + \{B_i + B_i E_i(t)\} u_i(t) \\
    &= B_i C_i x_i(t) + \{B_i + B_i E_i(t)\} u_i(t) \\
    &+ \sum_{j=1, j \neq i}^N \{A_j + B_j H_j(t)\} x_j(t) \\
    &+ \sum_{j=1, j \neq i}^N \{B_j + B_j E_j(t)\} u_j(t)
\end{align*}
\]  
(7)

Define the local PI sliding surface for \( S_i \) as
\[
\sigma_i(t) = C_i x_i(t) - \frac{1}{2} \left[ C_i A_i + C_i B_i K_i \right] z_i(t) dt
\]  
(8)

where \( C_i \in \mathbb{R}^{n_i \times n_i} \) and \( K_i \in \mathbb{R}^{n_i \times n_i} \) are constant matrices. The matrix \( K_i \) satisfies
\[
\lambda_{\text{min}}(A_i + B_i K_i) < 0
\]  
(9)

and \( C_i \) is chosen such that \( C_i B_i K_i \) is nonsingular. For this class of systems, the sliding manifold can be described as
\[
\sigma_i(t) = C_i x_i(t) - \frac{1}{2} \left[ C_i A_i + C_i B_i K_i \right] z_i(t) dt
\]  
(10)

The control problem is to design a decentralized controller for each sub-system using the PI sliding mode (8) such that the system state trajectory \( X(t) \) tracks the desired state trajectory \( X_d(t) \) as closely as possible for all \( t \) in spite of the uncertainties and non-linearities present in the system. The task can be divided into two parts: a) it must be assured that the system error dynamics is asymptotically stable during the sliding mode, and b) a decentralized controller must be designed in such a way that whatever error the system has during the initial stage, the system is directed towards the sliding surface during the reaching phase.

\subsection*{3.0 Manipulator Dynamics During Sliding Mode}

Differentiating equation (8), substitute equation (7) into it, and equating the resulting equation to zero gives the equivalent control:
\[
u_{eq}(t) = - \left[ I_{n_i} + E_i(t) \right]^{-1} \left[ (H_i(t) + K_i) x_i(t) + C_i(t) (A_i + B_i H_i(t)) x_i(t) + \sum_{j=1, j \neq i}^N \{ B_j + B_j E_j(t) \} u_j(t) \right] u_i(t)
\]  
(11)

Remark 1: The equivalent control \( u_{eq}(t) \) is only a mathematically derived tool for the analysis of a sliding motion rather than a real control law generated in practical systems.

The system dynamics during sliding mode can be found by substituting the equivalent control (11) into the system error dynamics (7):
\[
\begin{align*}
    z_i(t) &= (A_i + B_i K_i) x_i(t) \\
    &+ \left( I_{n_i} + E_i(t) \right)^{-1} (A_i + B_i H_i(t)) x_i(t) \\
    &+ \sum_{j=1, j \neq i}^N \{ B_j + B_j E_j(t) \} u_j(t)
\end{align*}
\]  
(12)

Define \( P_a A_i U_{\alpha} - B_i (C_b B_b) K_i C_i \) where \( P_a \) is a projection operator and satisfies the following two equations [12]:
\[
C_a P_a = 0 \quad \text{and} \quad P_a B_i = 0
\]  
(14)

In view of assumption (A2), then it follows that by the projection property, equation (14) can be reduced as
\[
\begin{align*}
    z_i(t) &= (A_i + B_i K_i) x_i(t) \\
    \text{Hence if the matching condition is satisfied, the system error dynamics during sliding mode are independent of the interconnection between the subsystems and couplings between the inputs, and insensitive to the parameter variations. Equation (15) shows that the error dynamics can be specified by the designer through appropriate choice of the matrix \( K_i \).}
\end{align*}
\]  
(15)

\subsection*{4.0 Decentralized Controller Design}

The composite manifold (10) is asymptotically stable in the large, if the following matching condition is held [13]:
\[
\sum_{i=1}^N \left[ \sigma_i(t) / f_i(t) \right] \sigma_i(t) < 0
\]  
(16)

\textbf{Proof}: Let the positive definite Lyapunov function be
\[
V(t) = \sum_{i=1}^N f_i(t)^2
\]  
(17)

Then
\[
\dot{V}(t) = \sum_{i=1}^N \sigma_i(t)^2 / f_i(t)^2 \sigma_i(t) > 0
\]  
(18)

Following the Lyapunov stability theory, if equation (16) holds, then the sliding manifold \( \sigma(t) \) is asymptotically stable in the large.

\textbf{Theorem}: The global hitting condition (16) of the composite manifold (10) is satisfied if every local control \( u_i(t) \) of system (7) is given by:
\[
u_i(t) = - (C_b B_b)^{\top} \gamma_{\alpha} \left| x_i(t) \right| + \gamma_{\alpha} \left| x_i(t) \right| + \gamma_{\alpha} \left| x_i(t) \right| \text{sgn}(\sigma_i(t)) + \sigma_i(t)
\]  
(19)

where
\[
\gamma_{\alpha} = \frac{\alpha_i C_i B_i}{\{(1 + \alpha_i N_{\alpha}) + \sum_{j=1, j \neq i}^N \{ C_b B_b \} (C_b B_b)^{\top} \}^{\top}}
\]  
(20)

\textbf{Proof}: In view of equations (7), (8), (18) and (19), it can be shown that the rate of change of the Lyapunov function is
\[
\dot{\theta}(\tau) \leq \sum_{j=1}^{n} \left( \frac{1}{2}\eta_j \beta_j \|R_j\| \right) + \sum_{j=1}^{n} \left( |\tau_j| \|C_j^\perp \| \right) + \sum_{j=1}^{n} \left( \frac{1}{2}\alpha_j \beta_j \|R_j\| \right) + \sum_{j=1}^{n} \left( \frac{1}{2}\alpha_j \beta_j \|R_j\| \right) \times \tau_j \\
- \left( \sum_{j=1}^{n} \left( \frac{1}{2}\eta_j \beta_j \|R_j\| \right) \right) + \sum_{j=1}^{n} \left( \frac{1}{2}\alpha_j \beta_j \|R_j\| \right) \times \tau_j \\
+ \left( \sum_{j=1}^{n} \left( \frac{1}{2}\eta_j \beta_j \|R_j\| \right) \right) + \sum_{j=1}^{n} \left( \frac{1}{2}\alpha_j \beta_j \|R_j\| \right) \times \tau_j \\
- \left( \sum_{j=1}^{n} \left( \frac{1}{2}\eta_j \beta_j \|R_j\| \right) \right) + \sum_{j=1}^{n} \left( \frac{1}{2}\alpha_j \beta_j \|R_j\| \right) \times \tau_j \\
(24)
\]

Let equations (20)-(23) hold, then the global hitting condition (16) is satisfied.

**Remark 2:** The conditions imposed by equations (20)-(23) not only guarantee that the global hitting condition (16) is met, but also assure that based on the Lyapunov theory, the system dynamics are stable in the large during the reaching phase.

### 5.0 Simulation of a Two-Link Manipulator

Consider a two-link manipulator (in the horizontal plane) with rigid links of, nominally equal length \(l\) and mass \(m\) as shown in Figure 1. The dynamics of the manipulator can be found in [2].

Define
\[
[x_1^T \ x_2^T \ y_1^T \ y_2^T]^T
\]

Suppose that the bounds of the \(\dot{x}_1(t)\) and \(\dot{y}_1(t)\) are:
- \(-150^\circ \leq \dot{x}_1 \leq 150^\circ \), \(0^\circ \leq \dot{y}_1 \leq 50^\circ \),
- \(-35^\circ \leq \dot{x}_2 \leq 100^\circ \), \(0^\circ \leq \dot{y}_2 \leq 30^\circ \)

With these bounds, the plant can be represented in the form of equation (1) with the nominal value of \(A_n, \dot{A}_n, \dot{B}_n\) and \(E(t)\) is calculated as:
\[
A_n = \begin{bmatrix}
0 & 1.6384 \\
0 & 0
\end{bmatrix}, \quad A_n = \begin{bmatrix}
0 & 0 \\
0 & -2.4210
\end{bmatrix}, \\
A_n = \begin{bmatrix}
0 & 0 \\
0 & 0.9794
\end{bmatrix}, \quad A_n = \begin{bmatrix}
0 & 0 \\
0 & -2.6496
\end{bmatrix}, \\
B_1 = \begin{bmatrix}
1.0858 \\
0
\end{bmatrix}, \quad B_2 = \begin{bmatrix}
8.4151 \\
0
\end{bmatrix}, \\
B_n = \begin{bmatrix}
-1.9498 \\
0
\end{bmatrix}, \quad B_n = \begin{bmatrix}
-1.9498
\end{bmatrix}
\]

Using equation (3), the bounds of \(H(t)\) and \(E(t)\) can be computed:
\[
\|H(t)\| \leq \alpha_m = 0.08471, \quad \|H(t)\| \leq \alpha_m = 0.2889, \\
\|H(t)\| \leq \alpha_m = 0.6458, \quad \|H(t)\| \leq \alpha_m = 0.5, \\
\|E(t)\| \leq \beta_n = 0.1385, \quad \|E(t)\| \leq \beta_n = 0.6297, \\
\|E(t)\| \leq \beta_n = 1.5519, \quad \|E(t)\| \leq \beta_n = 0.2777
\]

It is assumed that each sub-system is required to track a pre-specified cycloidal function of the form:
\[
\theta_{\alpha}(\tau) = \begin{cases} 
\theta_1(\tau) + \frac{\Delta_{\alpha}(2\pi f \tau \sin(2\pi f \tau))}{\tau} & 0 \leq \tau \leq \tau \\
\theta_1(\tau) & \tau \leq \tau
\end{cases}
\]

where \(\Delta_{\alpha} = \theta_\alpha(\tau) - \theta_\alpha(0), \quad i = 1, 2\). In this example, the desired trajectories are set to traverse from \(90^\circ\) to \(90^\circ\) and from \(180^\circ\) to \(0^\circ\) for subsystem 1 and subsystem 2, respectively. The final time, \(\tau\), is set at 10 s.

In this study, the gains are chosen as follows:
\[
K_1 = [0.13288 \ 2.7683] \quad \text{so that } \lambda(A_1 + B_1K_1) = (-1, -2), \\
K_2 = [0.7130 \ 0.3053] \quad \text{so that } \lambda(A_2 + B_2K_2) = (-2, -3).
\]

Therefore, from equations (20)-(23):
\[
\gamma_1 = 1.40; \gamma_2 > 1.72; \gamma_1 > 0.25; \gamma_2 > 1.13; \\
\gamma_2 = 4.19; \gamma_1 > 0.91; \gamma_2 > 1.14; \gamma_2 > 4.48
\]

For simulation purposes, two sets of controller parameters are chosen:

**Set 1:**
\[
\gamma_1 = 0.5, \quad \gamma_2 = 0.5, \quad \gamma_1 = 0.5, \quad \gamma_2 = 0.5
\]

**Set 2:**
\[
\gamma_1 = 3, \quad \gamma_2 = 3, \quad \gamma_1 = 2, \quad \gamma_2 = 2, \\
\gamma_2 = 5, \quad \gamma_2 = 5, \quad \gamma_2 = 5, \quad \gamma_2 = 5
\]

In Set 1, the controller parameter is selected to study the performance of the system if the gain conditions of equations (20)-(23) are not met, while in Set 2 the controller parameters is selected to represent a situation where the conditions imposed on the controller are met. The output trajectories for subsystem 1 and subsystem 2 for the proposed decentralized controller utilizing the parameter supplied by Set 1 are shown in Figure 2. It can be seen that the tracking performance for both subsystems are unsatisfactory. The simulation was run again but this time with the decentralized controller parameter was supplied from Set 2. The results are shown in Figure 3. As predicted theoretically, the tracking performance is good for both subsystems.

### 6.0 Conclusion

In this paper, a decentralized PI sliding mode controller is proposed for robot manipulators. It is shown mathematically that the error dynamics during sliding mode is stable and can easily be shaped-up using the conventional pole-placement technique. The controller utilizes only the information available on the local states and the system stability is guaranteed during the reaching phase as well as the reaching phase. Application to a two-link shows that the proposed controller renders the uncertainties system tracks the desired trajectory in spite of the uncertainties, nonlinearities and coupling inherent in the system.

**REFERENCES**


Figure 1: A two-link manipulator.

Figure 2: The output trajectories for Set 1.

Figure 3: The output trajectories for Set 2.