CONTROL OF 2 DIMENSIONAL INVERTED PENDULUM
USING MATLAB

FARHANA BT ABD RAZAK

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
BORANG PENGESAHAN STATUS TESIS

JUDUL: CONTROL OF 2 DIMENSIONAL INVERTED PENDULUM USING MATLAB

SESU PENGAJIAN: 2007/2008

Saya FARHANA BT ABD RAZAK

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

✓ TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap:
75, JALAN EMAS SURIA,
TMAN EMAS SURIA,
08000 SUNGAI PETANI, KEDAH
TARIKH: 5 MEI 2008

Disahkan oleh:

(TANDATANGAN PENYELIA)

Cop Rasm:
Fakulti Kejuruteraan Pembuatan
Universiti Teknikal Malaysia Melaka
Kerung Bersatu 1200 Ayer Keroh
75450 Melaka
TARIKH: 9 MEI 2008

* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM)
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan temoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
DECLARATION

I hereby, declared this thesis entitled “Control of a 2 Dimensional Inverted Pendulum using Matlab” is the results of my own research except as cited in references.

Signature :

Author’s Name : Farhana Bt Abd Razak

Date :
APPROVAL

This Bachelor’s Project submitted to the senate of UTeM and has been accepted as fulfilment of the requirement for the Degree of Bachelor of Manufacturing Engineering (Robotics and Automation) with Honours. The member of the supervisory committee is as follow:

.................................

Mrs Syamimi bt Shamsuddin
Project Supervisor
Faculty of Manufacturing Engineering
ABSTRACT

The problem of balancing an inverted pendulum has been a benchmark problem in demonstrating various control design techniques. The principal reasons for its popularity are its nonlinear and unstable characteristics. This project presents the design and simulation of two dimensional inverted pendulum system. The design of the system is done in MATLAB environment. The selection of the controller is the core of this study. PID controller has been chosen as the generic control loop feedback to control the system. In the simulation of inverted pendulum, PID controller is used to control both the position of the cart and the pendulum and also the pendulum angle to ensure the pendulum stands in upright position when the simulation is running. The design of the system is implemented using Simulink block diagram. From the working simulation of inverted pendulum, analysis for the factors contributing in stability of the system is carried out. The analysis covers the parameters of the system, PID controller simulation, set point method and stability of the system. Full working simulation was not able to carry out due to motion equation error but analysis is done using existing data from Simulink environment. The best combination of PID controller and the lowest settling time give the best result for inverted pendulum stability.
ABSTRAK

DEDICATION

For My beloved mother and father
ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim...

Firstly, I would like to convey my gratitude towards the Al-Mighty for giving me the strength and willingness to complete Final Year Project. I am indebted to many people in this dissertation effort. First and foremost, I would like to express my sincere gratitude and appreciation to Madam Syamimi Bt Shamsuddin, my supervisor, for her advise, support and tireless effort, who guided me to this end in this area that I like most: control of a two dimensional inverted pendulum using MATLAB. I deeply appreciate for the countless hours spent by her on this dissertation since it was first started as a pilot study. Her refinement of this dissertation is invaluable.

An extended note of appreciation is in order for Mr Arfauz Bin Abd Rahman for his constructive comments and suggestions. Thanks for his effort in reviewing the pilot study of this dissertation.

Special thanks and appreciation are goes to my parent, Abd Razak Bin Ahmad and Norain Bt Md Nor for their sacrifice, encouragement, understanding and assistance in my dissertation effort. Acknowledgement of appreciation also goes to my friends for their patience and support. Without all of you, I cannot achieve what I have today. Thank you again.

Wassalam...

Farhana Bt. Abd Razak
TABLE OF CONTENTS

Abstract ..i
Abstrak ..ii
Dedication ...iii
Acknowledgement ...iv
Table of Contents ...v
List of Figures ...ix
List of Tables ...xiii
List of Abbreviations, Symbols, Specialized Nomenclature ...xiv

1. INTRODUCTION ..1
1.1 Background ...1
1.2 Problem Statement ...2
1.3 Scope ...3
1.4 Objectives ...3
1.5 Brief History of Inverted Pendulum ...4
1.6 Project Schedule for PSM I ..6

2. LITERATURE REVIEW ..7
2.1 Background ...7
2.2 Pendulum ...7
 2.2.1 Definition of Pendulum ..7
 2.2.2 Types of Pendulum ..8
 2.2.2.1 Simple Pendulum ...8
 2.2.2.2 Inverted Pendulum ..9
 2.2.2.3 Differentiate Between Simple Pendulum and Inverted Pendulum11
 2.3 Different Study on Inverted Pendulum ..17
 2.3.1 Case of 3 Dimensional (3D) Inverted Pendulum17
2.3.2 Case of 2 Dimensional (2D) Inverted Pendulum.................................19
2.3.3 Case of 1 Dimensional (1D) Inverted Pendulum...............................22
2.4 Controller ...23
 2.4.1 Definition of Controller ..24
 2.4.2 Type of Controller ..24
 2.4.2.1 Proportional Integral Derivative (PID) Controller25
 2.4.2.2 Artificial Neural Network (ANN) Controller28
 2.4.2.3 Fuzzy Logic Controller ..31
2.5 Previous Research of Inverted Pendulum ...33
 2.5.1 2D Inverted Pendulum Using a 3-wheeled omni-directional Robot33
 2.5.2 Artificial Neural Network Identification and Control of the IP36
2.6 Programming Platform ..37
 2.6.1 MATLAB ...37
 2.6.2 Simulink ...39
 2.6.3 Modelica ...41
2.7 Control System ..43

3. METHODOLOGY ...47
 3.1 Introduction ..47
 3.2 Planning of Study ..47
 3.3 Data Collection ...51
 3.4 Journal ..52
 3.5 Project Outline ...52
 3.6 Flow Chart ..53
 3.7 Literature Review ..54
 3.7.1 Step in Using MATLAB Software56
 3.7.2 PID Controller ...69
 3.8 Project Implementation and Modification71
 3.9 Testing ..73
 3.10 Data Analysis ...76
3.11 Writing ..76

4. DESIGN OF 2D INVERTED PENDULUM SYSTEM77

IN SIMULINK WINDOW
4.1 Introduction ..77
4.2 Design of Simulink Block Diagram ...77

 4.2.1 PID Controller Subsystem ...78
 4.2.2 2D Inverted Pendulum Subsystem ...82
 4.2.3 Pole Angle 3D Transformation Subsystem92
 4.2.4 Coordinates 3D Transformation Subsystem97
 4.2.5 Trajectory Graph Subsystem ...100
 4.2.6 Virtual Reality Inverted Pendulum Subsystem105

4.3 Combination of Subsystems for the Inverted Pendulum System110

5. SIMULATION, RESULT AND ANALYSIS OF113

INVERTED PENDULUM SYSTEM
5.1 Simulation Testing ...113
5.2 Analysis of Inverted Pendulum System ..116

 5.2.1 Calculation of Stability for Inverted Pendulum System118
 5.2.2 Analysis of Inverted Pendulum Performance139

5.3 Set Point Simulation ..144

 5.3.1 VR Sensor Simulation ...145
 5.3.2 Mouse Simulation ...146
 5.3.3 Input Signal Simulation ...147

5.4 PID Controller Simulation ...149

6. DISCUSSION, CONCLUSION AND SUGGESTION154

FOR FURTHER WORKS
6.1 Discussion ...154
6.2 Conclusion ...158
6.3 Suggestions for Further Works ...159

7. REFERENCES ...162
3.3 MATLAB Version 6.5 Window
3.4 MATLAB Command Window
3.5 Simulink Library Browser
3.6 Resulting untitled model window
3.7 Simulink block libraries for Continuous systems
3.8 Simulink block libraries for Sources
3.9 Simulink block libraries for Sink
3.10 MATLAB window showing how to drag Simulink library block
3.11 Example Assemble and Label Susbsystems in Simulink
3.12 Untitled model window shows interconnect subsystems
3.13 Untitled model window showing how to get the Block Parameters for the subsystems
3.14 Untitled model window showing how to select Simulation parameter
3.15 Simulation Parameters
3.16 Untitled window shows Start and Stop Simulation icon
3.17 Virtual Reality Toolbox Viewer
3.18 Viewer Control Panel
3.19 Navigation panel
3.20 Example of Working Simulation in Virtual Reality Toolbox Viewer
4.1 Conversion from 2D to 3D Inverted Pendulum
4.2 PID controller block diagram
4.3 PID controller subsystem
4.4 Subsystem Mask Editor for PID Controller
4.5 PID controller block parameter
4.6 Schematic of the inverted pendulum mounted on cart
4.7 Detail 2D inverted pendulum
4.8 Subsystem of 2D inverted pendulum
4.9 Free body diagram of inverted pendulum
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10(a)</td>
<td>Free body diagram (cart)</td>
<td>84</td>
</tr>
<tr>
<td>4.10(b)</td>
<td>Free body diagram (pendulum)</td>
<td>84</td>
</tr>
<tr>
<td>4.11</td>
<td>Inverted pendulum system block diagram</td>
<td>88</td>
</tr>
<tr>
<td>4.12(a)</td>
<td>Transfer function block parameter for position</td>
<td>89</td>
</tr>
<tr>
<td>4.12(b)</td>
<td>Transfer Function Block Parameter for Angle</td>
<td>89</td>
</tr>
<tr>
<td>4.13</td>
<td>Mask of inverted pendulum subsystem</td>
<td>90</td>
</tr>
<tr>
<td>4.14(a)</td>
<td>Subsystem mask editor for 2D inverted pendulum (icon)</td>
<td>90</td>
</tr>
<tr>
<td>4.14(b)</td>
<td>Subsystem mask editor for 2D inverted pendulum (parameters)</td>
<td>91</td>
</tr>
<tr>
<td>4.15</td>
<td>2D inverted pendulum block parameter</td>
<td>91</td>
</tr>
<tr>
<td>4.16</td>
<td>Pole angle 3D transformation subsystem</td>
<td>92</td>
</tr>
<tr>
<td>4.17</td>
<td>Transformation angle from 2D inverted pendulum to 3D inverted pendulum</td>
<td>93</td>
</tr>
<tr>
<td>4.18</td>
<td>Block diagram representation of inverted pendulum system</td>
<td>94</td>
</tr>
<tr>
<td>4.19</td>
<td>Pole angle 3D transformation system block diagram</td>
<td>95</td>
</tr>
<tr>
<td>4.20</td>
<td>Coordinate transformation from 2D to 3D Inverted Pendulum</td>
<td>95</td>
</tr>
<tr>
<td>4.21</td>
<td>Coordinates 3D transformation subsystem</td>
<td>97</td>
</tr>
<tr>
<td>4.22</td>
<td>Constant block parameter</td>
<td>98</td>
</tr>
<tr>
<td>4.23</td>
<td>Sketching of 3D inverted pendulum along z-axis</td>
<td>98</td>
</tr>
<tr>
<td>4.24</td>
<td>Coordinate 3D transformation system block diagram</td>
<td>99</td>
</tr>
<tr>
<td>4.25</td>
<td>Trajectory graph block diagram</td>
<td>100</td>
</tr>
<tr>
<td>4.26</td>
<td>S-function parameter for trajectory graph</td>
<td>100</td>
</tr>
<tr>
<td>4.27</td>
<td>Mask of trajectory graph subsystem</td>
<td>101</td>
</tr>
<tr>
<td>4.28</td>
<td>Subsystem mask editor for trajectory graph parameters</td>
<td>102</td>
</tr>
<tr>
<td>4.29</td>
<td>Trajectory graph block parameter</td>
<td>104</td>
</tr>
<tr>
<td>4.30</td>
<td>Trajectory graph window</td>
<td>105</td>
</tr>
<tr>
<td>4.31</td>
<td>VR Sink block</td>
<td>106</td>
</tr>
<tr>
<td>4.32</td>
<td>VR Sink block parameter</td>
<td>106</td>
</tr>
<tr>
<td>4.33</td>
<td>V-Realm Builder 2.0 window</td>
<td>107</td>
</tr>
<tr>
<td>4.34</td>
<td>3D view of inverted pendulum system in V-Realm Builder 2.0 window</td>
<td>108</td>
</tr>
</tbody>
</table>
4.35 VR Sink block parameter with drawing command
4.36 VR Sink block with the input labels
4.37 Inverted pendulum system block diagram in Simulink window
5.1 Result for Simulink block diagram in running mode
5.2 Simulation Diagnostics Viewer
5.3 Error block diagram
5.4 Closed-loop transfer function for Assumption 1
5.5 Closed-loop transfer function for Assumption 2
5.6 Closed-loop transfer function for Assumption 3
5.7 Closed-loop transfer function for Assumption 4
5.8(a) Step response graph for assumption 1
5.8(b) Step response graph for assumption 2
5.8(c) Step response graph for assumption 3
5.8(d) Step response graph for assumption 4
5.9 Set point mode for simulation of inverted pendulum
5.10 3-D model of inverted pendulum
5.11 Trajectory graph for VR sensor set point
5.12 Trajectory graph for mouse set point
5.13 PID controller parameter for existing system to control angle
5.14 PID controller parameter for existing system to control position
5.15 Simulation of inverted pendulum using Assumption 4 for PID controller
6.1 Setup of inverted pendulum hardware
6.2 Inverted pendulum robot
LIST OF TABLE

1.1 Project Schedule for Final Year Project 6
5.1 Parameter of inverted pendulum system 116
5.2 Summary of pole location for Assumption 1 125
5.3 Summary of pole location for Assumption 2 129
5.4 Summary of pole location for Assumption 3 133
5.5 Summary of pole location for Assumption 4 137
5.6 Summary of transfer function 139
5.7 Settling time for inverted pendulum system 143
5.8 Trajectory graph for different parameters 148
5.9 Capability of PID controller to control the position of inverted pendulum 150
5.10 Capability of PID controller to control the angle of the pendulum 151
6.1 Difference of motion equation between current study and previous study 155
LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>FLC</td>
<td>Fuzzy Logic Controller</td>
</tr>
<tr>
<td>IP</td>
<td>Inverted Pendulum</td>
</tr>
<tr>
<td>K_p</td>
<td>Proportional Gain</td>
</tr>
<tr>
<td>K_i</td>
<td>Integral Gain</td>
</tr>
<tr>
<td>K_d</td>
<td>Derivative Gain</td>
</tr>
<tr>
<td>MATLAB</td>
<td>Matrix Laboratory</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>PD</td>
<td>Proportional Derivative</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional Integral</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional Integral Derivative</td>
</tr>
<tr>
<td>1D</td>
<td>One Dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

Research in the field of science and technology is widening throughout the world. Its aim is to produce products that are able to reduce human energy in doing work. All researches in this field also aim to investigate phenomena that occur in the engineering field. Malaysia is among the countries that is actively involved in the field of research concerned which the hope that this country can contribute to the use of sophisticated technology. One of the continuous researches that is being undertaken in the engineering field is as the control of inverted pendulum.

Extensive research on the balancing of inverted pendulum has been done throughout the world using various techniques. Based on the research, scientist found that inverted pendulum is one of the well known example used to illustrate various control techniques. This system is widely applied in area such as rocket control, crane operation, and antiseismic control of buildings. The inverted pendulum is an example of an unstable non linear system.

Non-linear control is a sub-division of control engineering which deals with the control of non-linear systems. The behavior of a non-linear system cannot be described as a linear function of the state of that system or the input variables to that system. A
nonlinear system is one whose behavior cannot be expressed as a sum of the behaviors of its parts. In technical terms, the behavior of nonlinear systems is not subject to the principle of superposition. Non-Linear system is investigated with respect to the dynamics of the inverted pendulum. The inverted pendulum is an example of an unstable highly non-linear system. This problem has been a research interest of control engineers. Consequently, it has received much attention, as it is an extremely complex and challenging control problem.

The inverted pendulum system is a Control Engineering problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearity and lack of stability. The system consists of an inverted pole hinged on a cart which is free to move in the x-axis direction. The term “inverted” means opposite position and “pendulum” means a weight hung from a fixed point.

1.2 Problem Statement

The problem of balancing an inverted pendulum has been a benchmark problem in demonstrating and motivating various control design techniques. The principal reasons for its popularity are its nonlinear and unstable characteristics, uncertainty in friction terms, lack of state variable measurements, and the easy way disturbances are introduced in the process. In addition, the problem is also representative of some other well-known control problems, such as that rocket taking off, cranes with hanging loads, and the apparatus also has the attraction of inexperienced people who attempt to control using hand motion. The inverted pendulum is among the most difficult systems to control in the field of control engineering. There is a need for a control method which addresses the non-linearity of an operating system, incorporating an adaptation capability.
Due to its importance in the field of control engineering, it has been a task of choice to be assigned for students to analyze the inverted pendulum model and propose a linear compensator according to the PID control law in the MATLAB environment.

1.3 Scope

The scope of this final year project is to design a two dimensional inverted pendulum using MATLAB software. This project will focus on the design of the inverted pendulum controller using PID (proportional integral derivative) close loop system. The design also can able to control the inverted pendulum in the upright position when the working control model is achieved. PID controller needs to stabilize the angle of inverted pendulum in the simulation environment.

1.4 Objectives

The aim of this project is to design and build a working control model that can balance two dimensional inverted pendulum in an upright position by using MATLAB software. Throughout this project, the following objectives will be achieved:

a) To conduct literature study on existing controller designs for the inverted pendulum.

b) To design and build a control model for 2 dimensional inverted pendulum using PID controller.

c) To build a working simulation and make analysis from the control model in MATLAB environment.
1.5 Brief History of Inverted Pendulum

The simple linear pendulum has long proved a useful model for more complicated physical systems, and its behavior in the small-amplitude limit provides a realistic yet solvable example for students in introductory classes. While the force-free, frictionless pendulum can be solved exactly for all amplitudes in terms of elliptic integrals, the solution is hardly illuminating, rarely found useful, and when damping and external driving are included, the equations of motion become intractable. With the advent of desktop computers, however, it has become possible to study in some detail the rich nonlinear dynamics of the damped, force driven pendulum and gain significant insight into its sensitivity to initial conditions for certain values of the system parameters (Chye, 1999).

In 1581, Galileo, a physicist, began studying at the University of Pisa. While at the University of Pisa, Galileo began his study of the pendulum while, according to legend, he watched a suspended lamp swing back and forth in the cathedral of Pisa. However, it was not success until 1602 that Galileo made his most notable discovery about the pendulum. The period (the time in which a pendulum swings back and forth) does not depend on the arc of the swing (the isochronism). Eventually, this discovery would lead to Galileo's further study of time intervals and the development of his idea for a pendulum clock (Helden, 2004).

Early studies of the inverted pendulum system were motivated by the need to design controllers to balance rockets during vertical take-off. At the instance of time during launch, the rocket is extremely unstable. Similar to the rocket at launch, the inverted pendulum requires a continuous correction mechanism to stay upright, since the system is unstable in open loop configuration. This problem can be compared to the rocket during launch. Here, rocket boosters have to be fired in a controlled manner, to maintain the rocket upright (Chye, 1999).
The inverted pendulum is a classic problem in dynamics and control theory and widely used as benchmark for testing control algorithms (PID controllers, neural networks and genetic algorithms). Variations on this problem include multiple links, allowing the motion of the cart to be commanded while maintaining the pendulum, and balancing the cart-pendulum system on a see-saw. The inverted pendulum is related to rocket or missile guidance, where thrust is actuated at the bottom of a tall vehicle. Another way that an inverted pendulum may be stabilized, without any feedback or control mechanism, is by oscillating the support rapidly up and down. If the oscillation is sufficiently strong (in terms of its acceleration and amplitude) then the inverted pendulum can recover from perturbations in a strikingly counterintuitive manner (Jeffers, 2001).

![Inverted Pendulum](callinan_2003.png)

In 1898, E. Wiechert of Gottingen introduced a seismograph with a viscously damped pendulum as a sensor (Wiechert, 1899). The damping was added to lessen the effects of the pendulum eigen-oscillations. Wiechert's first seismograph was a horizontal-pendulum instrument, which recorded photographically. After a trip to Italy to study seismometers used in that country, he decided to build a mechanically-recording seismograph. For a sensor, he used an inverted pendulum stabilized by springs and frees to oscillate in any direction horizontally (Wiechert, 1904). The seismograph was completed in 1900.
Besides classroom theory and various control design methods, digital control exposure is important to the many practical aspects of implementing a digital control system. This requires a good foundation in control theory as well as knowledge in computer interfacing techniques, system modeling, instrumentation and digital signal processing. The modeling of inverted pendulum shall be created in MATLAB.

1.6 Project Schedule for Final Year Project

Table 1.1 shows the Gantt chart for the study which will be carried out through a two semester period.

<table>
<thead>
<tr>
<th>Seq</th>
<th>Activity</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jul</td>
<td>Aug</td>
</tr>
<tr>
<td>A</td>
<td>Problem statement identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Research scope and objectives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Finding literature (books, journals, articles) that relate to the study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Selection of software and controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Report Writing for PSM 1 (Proposal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Presentation Preparation for PSM 1 (Proposal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Report Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>PSM 1 Report submission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Presentation for PSM 1 (Proposal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Data Collection and Design Consideration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Project Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Result Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Reflection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Report Writing for PSM 2 (Final Report)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Report Submission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Presentation Preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Hand Cover submission</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Plan
- Actual

Table 1.1: Project Schedule for Final Year Project