NATIONAL TECHNICAL UNIVERSITY COLLEGE OF MALAYSIA

Just In Time Practice and Management

Thesis submitted in accordance with the requirements of the National Technical University College of Malaysia for the Degree of Bachelor of Engineering (Honours) Manufacturing (Process)

By

Letchkumar A/L Muniandy

Faculty of Manufacturing Engineering
October 2005

© Universiti Teknikal Malaysia Melaka
KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA

BORANG PENGESAHAN STATUS TESIS*

JUDUL: JUST-IN-TIME PRACTICE AND MANAGEMENT

SESi PENGAJIAN: OKTOBER 2005

Saya LETCHKUMAR A/L MUNIANDY

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Kolej Universiti Teknikal Kebangsaan Malaysia.
2. Perpustakaan Kolej Universiti Teknikal Kebangsaan Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)
 - SULIT (Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 - TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 - TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap:
N0. 4, Jln Haji Yaakob 16,
Taman DamaI Kapar,
42200 Kapar

Tarih: 16/12/2005

Disahkan oleh:
(TANDATANGAN PENYELIA)

Cop Rasi:
SHAJAHAN BIN MAIDIN

Pensyarah
Fakulti Kejuruteraan Pembuat
Kolej Universiti Teknikal Kebangsaan Malaysia
Karung Berkunci 1200
Ayer Keroh, 75400 Melaka

Tarih: 16/12/2005

* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref) :
Rujukan Tuan (Your Ref):

15 Oktober 2005

Pustakawan
Perpustakawan Kolej Universiti Teknikal Kebangsaan Malaysia
KUTKM, Ayer Keroh
MELAKA.

Saudara,

PENGKELASAN TESIS SEBAGAI SULIT/TERHAD
- TESIS SARJANA MUDA KEJURUTERAAN PEMBUATAN (PROSES PEMBUATAN):
LETCHEKUMAR A/L MUNIANDY
TAJUK: JUST-IN-TIME PRACTICE AND MANAGEMENT

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk “Just-In-Time Practice and Management” mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

“BERKHIDMAT UNTUK NEGARA KERANA ALLAH”

Yang benar,

[Signature]

SHAJAHAN BIN MAIDIN
Pensyarah,
Fakulti Kejuruteraan Pembuatan
(Penyeia Utama)
06-2332046
DECLARATION

I hereby, declare this thesis entitled “Just-In-Time Practice and Management” is the results of my own research except as cited in the reference.

Signature : ..

Author’s Name : ..

Date : 16/12/2005
ABSTRACT

This research explores the Just-In-Time (JIT) practices and management and presents the results of a questionnaire survey conducted in Klang Valley. It is found that the manufacturing firms have successfully practiced elements related to manufacturing, manpower and human resource, supplier and quality aspects. In addition, the reasons and benefit of those particular elements also forwarded to the respective companies to identify how JIT has affected the manufacturing environment and productivity. The applicability of the JIT manufacturing concept in Malaysia also discussed.
ABSTRAK

DEDICATION

For my beloved parents
ACKNOWLEDGEMENTS

It would be impossible to more than scratch the surface in the form of acknowledgements to the many individuals who have helped me through the semester. However, some have contributed so much that their names literally jump off pages of my life and demand recognition.

The past one year have been overwhelming and I could not have through it without the help of the people I want to thank right here. To my supervisor Mr. Shajahan bin Maidin for giving me ample guidance and for always making time for me each time I needed help.

My parents and my brother, through their living examples of faith, courage, common sense and love gave the foundation for life.

To other lecturers in KUTKM and are whose advice, help, encouragement and belief in me was vitally important in furthering my career.

To my batch mates; Letchumanan, Kesavan, Murugan, Jaikanth, Loganathan and others I present a bouquet of flower as a sign of appreciation for their invaluable help and motivation to accomplish this thesis.

To my soul mate Thillai for constantly being there for me during my darkest times when I was in need of emotional support.

To all of you, whom I have named, please accept my deepest thanks. To you whom I have not named, please know that although you are unnamed in this work, you are not unknown to me and you are appreciated more than you know.

To all of you, good luck, God bless you; have a good forever.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstrak</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background of study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives and scope</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Problem Statements</td>
<td>3</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1 History of Just-in-Time</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Definition of Just-In-Time</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Philosophy of Just-in-time</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Elements of Just-In-Time</td>
<td>8</td>
</tr>
<tr>
<td>2.4.1 Scheduling</td>
<td></td>
</tr>
<tr>
<td>2.4.2 Kanban System</td>
<td></td>
</tr>
<tr>
<td>2.4.3 Setup Time and Lot Size Reduction</td>
<td></td>
</tr>
<tr>
<td>2.4.4 Workforce</td>
<td></td>
</tr>
<tr>
<td>2.4.5 Layout design</td>
<td></td>
</tr>
<tr>
<td>2.4.6 Quality</td>
<td></td>
</tr>
<tr>
<td>2.4.7 Supplier</td>
<td></td>
</tr>
<tr>
<td>2.5 Review from Past Researches</td>
<td>11</td>
</tr>
</tbody>
</table>
3. METHODOLOGY.. 19
 3.1 Introduction.. 19
 3.2 Study Population.. 19
 3.3 Instrument Design and Structure.. 20
 3.4 Data Collection Methods.. 20
 3.5 Response Rate... 21
 3.6 Data Analysis... 21
 3.7 Flow chart for project progress... 22

4. RESULTS ANALYSIS... 23
 4.1 Introduction.. 23
 4.2 Manufacturing systems.. 24
 4.2.1 Layout Design.. 27
 4.2.1.1 Number of Production Units.. 28
 4.2.1.2 Number of machines in a production unit.. 28
 4.2.1.3 Percentage of Machines Linked to Computer and Independent.......................... 29
 4.2.1.4 Type of Machine Setup.. 31
 4.2.1.5 Level of Satisfaction with Current Layout... 32
 4.2.1.6 Percentage of Utilization of Machines.. 33
 4.2.1.7 Number of Different Types Products in A Production Unit.................................. 35
 4.2.1.8 Percentage of Job Order Not Completed On Time In A Week............................. 36
 4.2.1.9 Duration of Time Delayed... 36
 4.2.1.10 Problem That Results in Delays for Completion of Job Order............................ 37
 4.2.1.11 Raw Material Storage and Retrieval... 38
 4.2.1.12 Handling System within Production Unit... 39
 4.2.1.13 Handling System between Production Units.. 40
 4.2.1.14 Satisfaction of Material Storage and Handling System....................................... 41
 4.3 Manpower and Human Resource.. 42
 4.3.1 Number of employees... 43
 4.3.2 Number of Employees in A Production Unit.. 43
4.3.3 Machines Operated Per Operator .. 44
4.3.4 Percentage of Multifunctional Workers ... 45
4.3.5 Training Duration Required Per Operator .. 46
4.4 Supplier ... 47
 4.4.1 Number of Suppliers .. 49
 4.4.2 Average of Percentage Supplies Not According Specification 50
 4.4.3 Average Percentage of Stock-out ... 51
4.5 Quality and Reliability ... 52
4.6 Evaluation .. 55

5.0 DISCUSSION .. 58

6.0 CONCLUSION .. 61
 6.1 Recommendation .. 62

REFERENCES .. 63

APPENDICES

A Formal letter
B Questionnaire survey
C List of respondents
D SPSS Output results
LIST OF FIGURES

1.1 Scope of research..2

2.1 Categories of waste in Just-In-Time..7

3.1 Process flow for project..22

4.1 Type of production layout...27
4.2 Chart for number of production units in company...28
4.3 Chart for number of machines in a production unit..28
4.4 Chart for percentage of machines linked to computer..29
4.5 Chart for percentage of machines independent...30
4.6 Chart for type of machine setup...31
4.7 Chart for satisfaction with current layout...32
4.8 Chart for percentage of utilization of machines in a production unit....................33
4.9 Chart for number of different types of products in a production unit....................35
4.10 Chart for percentage of job order not completed on time in a week.......................36
4.11 Chart for duration of time delayed..36
4.12 Chart for problem that result in delays for completion for job order.......................37
4.13 Raw material storage & retrieval..38
4.14 Handling system within production unit...39
4.15 Handling system between production units...40
4.16 Satisfaction with current material storage and handling system..........................41
4.17 Number of employees in company..43
4.18 Chart for number of employees in a production unit...44
4.19 Machines operated per operator...44
4.20 Percentage of multifunctional workers...45
4.21 Chart for training duration required per operator..46
LIST OF TABLES

4.1 JIT practices for manufacturing system...24
4.2 Tools, jigs and fixtures storage and retrieval.......................................32
4.3 JIT practices for supplier management...47
4.4 Quality practices in JIT companies...52
4.5 Reason for JIT implementation...55
4.6 Benefit derived from JIT implementation...56
CHAPTER 1
INTRODUCTION

1.1 Background of Study

Just in time manufacturing has great deal of attention world-wide in the last two decades. Most research has examined the practice and management in many countries. It highlighted the competitive pressure, for both foreign and domestic, fuelling the need for change in order to achieve effective manufacturing strategies. Based on past research, practitioners have implemented JIT elements in their firms with success where it has penetrated effectively and efficiently into the new global markets. Those organizations contemplating the implementation of JIT should direct their efforts and resources to successfully implement the JIT method.

This research project will focus on the JIT methods that are currently used in Malaysia. Companies that are currently following JIT methods will be chosen to conduct a survey where a list of questions seeking information such as company’s profile, elements of JIT methods that are practiced, the reasons and benefit of that particular elements will be forwarded to the respective companies. The data or findings are then compiled to determine the degree of success of JIT methods in Malaysia.

As a future engineer it is hoped that by executing this project, it will help promote JIT production system as a strategic and productive method that will upgrade the effectiveness of various manufacturing operation found in companies. The fundamental understanding on JIT manufacturing system is also highlighted to the companies that are interested in adopting the JIT method in their daily operation.
1.2 Objective and Scope

The main objective of this research was to organize overall picture of Just In-Time(JIT) practice and management in Klang Valley. This includes identifying the profile of companies, assessing the reasons for implementation and the benefits associated with their adoption of JIT. The aim of this study was examine broadly the process of JIT and discusses the practices that constitute JIT manufacturing as it has been adopted in Malaysian industries. It may help in establish principle elements of the Just-In-Time approach to manufacturing operations in this country. The objectives of this research are as follows:

a) Determine the Just-In-Time activity in manufacturing industries mainly in Klang Valley (i.e. automotive and electronic industries).
b) To identify certain areas to successfully implement JIT system and to conduct analysis to why certain elements are not successful.
c) To identify how JIT has affected the manufacturing environment and productivity performance.

The survey has been done to manufacturing firms such as automotive industries, electrical and electronic industries. Just-in-time is encompassing philosophy considering in its implementation in some areas as illustrated below and will be considered as scope of this research:

![Diagram of Scope of Research](image)

Figure 1.1: Scope of research

© Universiti Teknikal Malaysia Melaka
1.3 Problem Statement

Just in time production techniques were pioneered by the Toyota Motor Company and were widely applied in Japan during the 1970's in the automotive and electronic industries. These include: reduction of setup time, lot size reduction, buffer stock removal, multifunctional workers, dedicated production line, standardization of process and product, JIT purchase of raw materials, autonomous inspection, automation, scheduling, etc. Many of these techniques have been practiced in manufacturing industries and others. Several researchers have studied and reported on the success of these techniques in industries around the world.

In Malaysia the JIT production technique has been around for some time. As the economy grows, the country will face global challenge where it has to compete with other developing counties and emerging markets in various sectors. One of the key areas in the Malaysian economy is the Manufacturing sector. The manufacturing sector is one the biggest contributor to the Malaysian economy. As a developing nation, Malaysia has come to realize the importance of JIT. JIT manufacturing is a philosophy by which an organization seeks continually to improve its products and processes by eliminating waste. There are many benefits if the JIT method is applied. There are five major potential benefits of JIT manufacturing system, they are: reduction in inventory; quality improvement; increased productivity; increased profit; and improved competitive position.

In Malaysia there so many manufacturing industries that produce various products where the JIT manufacturing system has been implemented but their actual numbers are not known. The complete data such as number of companies, and types of industries that implement the JIT manufacturing system is not readily available. It is assumed that the JIT manufacturing methods that are applied and practiced is found in large and medium scale industries. The methods used and practiced by these companies are also not readily available.
Principle elements of JIT are the elements used to define the steps and methods used to access the effectiveness in the overall manufacturing system. The JIT philosophy is identified as the elimination of waste and continuous improvement in manufacturing system. Some of the elements that address elimination of waste and continuous improvement are usage of ‘PULL’ scheduling, ‘Kanban’ system, material handling, quality circles, ‘Kaizen’, layout and flow design, multifunction workforce, reduce setup times and lot sizes, production smoothing, preventive maintenance and supplier.

The reasons for implementing the JIT manufacturing system by Malaysian companies is unclear as the data is not readily available but it is assumed that the following possible reasons can be considered:

i) reduce Inventory

ii) improve product quality

iii) increase profit margin

iv) regain and maintain market share
CHAPTER 2
LITERATURE REVIEW

2.1 History of Just-in-Time

Just-In-Time is a Japanese manufacturing management method developed in the 70's. It was first adopted by Toyota manufacturing plants by Taiichi Ohno. The main concern at that time was to meet consumer demands. Because of the success of JIT management, Taiichi Ohno was named the father of JIT. After the first introduction of JIT by Toyota, many companies followed up and around the mid 70's, and JIT gained extensive support, which was widely used by many companies.

One motivated reason for developing JIT and some other better production techniques was that after World War II, Japanese people had a very strong incentive to develop a good manufacturing technique which would help them rebuild their economy. They also had a strong working ethic which was concentrated on work rather than on leisure, and this kind of motivation was what drove Japanese economy to succeed.

Before the introduction of JIT, there were a lot of manufacturing defects for the existing system at that time. This included inventory problems, product defects, risen cost, and large lot production and delivery delays. The inventory problems included the unused accumulated inventory that was not only unproductive, but also required a lot of effort in storing and managing them. In the case of the product defects, manufacturers knew that it only took one single product defect to destroy the producer’s reputation; therefore they must create a “defect-free” process. Lastly, the existing system did not manage well for fast delivery request, so, there was a need to
have a faster and reliable delivery system in order to handle customers’ needs. Therefore, the JIT manufacturing management was developed based on these problems. (Schroeder,2000)

2.2 Definition of Just-In-Time(JIT)

JIT is not about automation. JIT eliminates waste by providing the environment to perfect and simplify the processes. JIT is a collection of techniques used to improve manufacturing operations. It can also be a new production system that is used to produce goods or services. The American Production and Inventory Control Society (APICS) have the following definition of JIT:

"A philosophy of manufacturing based on planned elimination of all waste and continuous improvement of productivity. It encompasses the successful execution of all manufacturing activities required to produce a final product, from design engineering to delivery and including all stages of conversion from raw material onward. The primary elements include having only the required inventory when needed; to improve quality to zero defects; to reduce lead time by reducing setup times, queue lengths and lot sizes; to incrementally revise the operations themselves; and to accomplish these things at minimum cost." (APICS ,1992)

2.3 Philosophy of Just-in-time

Just-In-Time is a manufacturing philosophy which leads to producing the required items, at the required quality and in the right quantities at the precise time as they are required. It is an approach to achieving excellence in elimination of waste. In this case waste can be thought of as all things that don’t add value to the product. Overproduction, Inventory, defect products, transport and waiting time are some examples of what can be waste according to JIT and types of waste determined in figure 2.1. (Chase et.al, 1998)
Waste from producing more than is needed

Waste such as that associated with a worker being idle while waiting for another worker to pass him an item he needs

Waste such as that associated with transporting/moving items around a factory

Waste associated with defective items

Waste such as that associated with spending more time than is necessary processing an item on a machine

Waste associated with keeping stocks

Figure 2.1: Categories of waste in Just-In-Time

Just-In-Time manufacturing is a system of enforced problem solving. Managers have the choice between putting a huge effort in finding and solving causes of production problems, or they can learn to live with an intolerable level of interruptions in production. As everybody knows, the situation in which one has to put huge efforts is highly undesirable, and therefore the system is called enforced. (Chase et.al, 1998)
2.4 Elements of Just-In-Time

2.4.1 Scheduling

In JIT the master schedule, or final assembly schedule, is planned for a fixed period of time, say one to three months into the future, to allow work centers and suppliers to plan their respective work schedules. Within the current month, the master schedule is leveled on a daily basis. In other words, the same quantity of each product is produced each day for the entire month. Furthermore, small lots (preferably lot size equals one) are scheduled in the master schedule to provide a uniform load on the plant and suppliers during each day. The advantage of this kind of master scheduling is that it provides nearly constant demands on all downstream work centers and suppliers. (Demmy, 1988)

2.4.2 Kanban System

JIT uses a simple parts withdrawal system, called "Kanban," to pull parts from one work center to the next. Parts are kept in small containers, and only a specific number of these containers are provided. When all the containers are filled, the machines are shut off, and no more parts are produced until the subsequent (using) work center provides another empty container. Thus, work-in-process inventory is limited to available containers, and parts are only provided as needed. The final assembly schedule pulls parts from one work center to the next just in time to support production needs. If a process stops because of machine breakdown or quality problems, all preceding processes will automatically stop when their parts containers become full. (Im and Lee, 1989)

Kanban are printed cards in clear plastic cases. Every item or box of items that flows through its production process carries its own kanban. Kanban come off of items that have been used or transported and go back to the preceding processes as
orders for additional items. There are two kinds of kanban; one is ‘Parts withdrawal kanban’ and another is ‘Production instruction kanban’. Withdrawal kanban are for communication between processes. Production instruction kanban are for communication inside processes. Operators remove withdrawal kanban from parts and material they have used. Those kanban send back to the preceding processes to withdraw additional items. Production instruction kanban come off of items that the following processes have withdrawn. They go back into their processes as instructions to make additional items to replace the ones that have been withdrawn. (Zhiwei et al,1994)

2.4.3 Setup Time and Lot Size Reduction

The objective of JIT is to produce parts in a lot size of one. In many cases, this is not economically feasible because of the cost of setup compared with inventory carrying cost. The JIT solution to this problem is to reduce the setup time as much as possible, ideally to zero. The setup time is not taken as given; rather, it is considered a cause of excess inventory. Low setup times result in small, economical lot sizes and shorter production lead times. Driving down the setup time for machines is a key to the JIT system. With shorter lead times and less material in process, the production system is also much more flexible to changes in the master schedule. (Zhiwei et al,1994)

2.4.5 Workforce

With an emphasis on quick changeovers and smaller lots, multifunction workers are required. Cross-training is needed so that workers can switch from one machine to the next and so that they can perform their own setup and maintenance. This requires a broader range of skills than traditional manufacturing. JIT requires not only broader skills but much greater teamwork and coordination since inventory
is not available to cover up problems in the system. The entire production system must be more closely coordinated by the workers. (Yasin and Marwan, 1996)

2.4.6 Layout design

The layout of the plant is much different with JIT since inventory is held on the shop floor and not put in a storeroom between processes. Inventory is kept out in the open, so it is readily available to the next process. Since inventory is typically kept low only a few hours or days of supply plants can be kept much smaller because of the reduced storage space needed. One comparison showed only one-third the space was needed when compared with conventional plants. (Lulu, 1990)

2.4.7 Quality

Quality is absolutely essential with a JIT system. Not only do defects produce waste; they can also grind the production process to a halt. Since there is no inventory to cover up for mistakes, perfect or nearly perfect quality is required by a JIT system. JIT, however, facilitates improved quality since defects are quickly discovered by the next process. Quality problems rapidly gain plant wide attention as the production line stops when problems occur. A JIT system is designed to expose errors and get them corrected rather than covering them up with inventory. (Demmy, 1988)

2.4.8 Supplier

Finally, supplier relations are radically changed by a JIT system. Suppliers are asked to make frequent deliveries (as many as four times per day) directly to the production line. Suppliers receive Kanban containers; just as in-plant work centers do, since suppliers are viewed as an extension of the plant. Changes in shipping procedures and close proximity of suppliers are often required to integrate suppliers effectively with JIT procedures. Suppliers are also required to deliver perfect quality goods. (Schroeder, 2000)