SYNTHESIS OF MICROWAVE FILTER WITH
FINITE DISSIPATIVE LOSS

KONG FENG YUAN

This Report Is Submitted In Partial Fulfilment Of The
Requirements For The Bachelor Degree Of
Electronic Engineering (Wireless Communications Electronics)

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

June 2012
UNIVERSITI TEKNIKLAL MALAYSIA MELAKA
FAKULTI KEJURUTERAAN ELECTRONIK DAN KOMPUTER
BORANG PENGESANAN STATIK LAPORAN
PROJEK SARIANA MUDA II

Tujuan Projek : SYNTHESIS OF MICROWAVE FILTER WITH FINITE DISSIPATIVE LOSS

Sesi Pengajian : 2011/1012

Saya, KOONG FENG YUAN

mengakui membezakkan Laporan Projek Sarjana Muda ini diterima di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:
1. Laporan adalah hak milik Universiti Teknikal Malaysia Melaka,
2. Perpustakaan dibenarkan membuat salinan untuk tujuan penelitian sahaja,
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bagian pertukaran antara institusi pengajian tinggi,
4. Sila tandakan (✓) :

☐ SULIH*

☐ TERHAD**

☐ TIDAK TERHAD

*"(Mengandungi maklumat yang berhubungan konfiden atau khususnya Malaysia seperti yang tercantum di dalam AKTA RAHSIA RASMI 1972)

**"(Mengandungi maklumat terhad yang telah dienal atau oleh negara/negara di mana pengedaran dijalankan)"

Ditandatangani oleh:

(COP DAN TANDATANGAN PENYELIA)

© Universiti Teknikal Malaysia Melaka
DECLARATION

I hereby declare that this project report entitled “Synthesis of Microwave Filter With Finite Dissipative Loss” is based on my original work except for citations and quotations which have been duly acknowledged. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature:

Name: KONG FENG YHAN

Date: 15 JUNE 2012
"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Engineering (Electronic-Wireless Communication)."

Signature:

Supervisor: DR. YOSZA DASRIH

Date: 15 JUNE 2012
Specially dedicated to
my beloved parents for their caring support and to all my lecturers who guided me throughout completing this design.
ACKNOWLEDGEMENT

First of all, I would like to express my deep and sincere gratitude to my supervisor, Dr. Yosza Dasril for the period of two semesters. His guidance me in doing on the perfect report and use his logical way of thinking have been of great help for me. While preparing for this project, Dr. Yosza had given full attention throughout my project and always advising and gives me guidance and motivational moral support to get my project well prepared before I faced the seminar and presentation. Furthermore, I would like to extend my appreciation thanks to Dr. Zahriladha Bin Zakaria, he always helps and guides me in fulfilling and understands the task to be done. His wide knowledge was helping me to complete the project smoothly. Here, I would like to express my gratitude towards the people who have helped me with my work and for their cooperation, support, and encouragement directly or indirectly during completing this project especially my colleagues and PSM laboratory technician. Thank you very much from the bottom of my heart.
This project presents a procedure for synthesizing microwave filters with finite dissipative loss. The performance of microwave filters is depending on the Q factor of resonators. The high Q factor of resonator is leading to high performance of the filters. However, high Q factor of resonator is leading to expand its physical volume and expensive technologies. In order to solve the problem of the expansion of physical volume, the Q factor is decreased with finite dissipation element are used. Yet, it causes the degradation of the performance of the filter. Therefore, the main objective is synthesizing filter by using technique loss compensation which allow for realization of filter with lossy responses that equivalent to lossless responses although at an increased of insertion loss and return loss. This technique enables filter with finite unloaded Q_u factor to be directly synthesized while maintaining the desired selectivity in the passband. Hence, the microwave filter can be designed with low resonators, which will significantly contribute to the reduction of its physical volume with retain the sharp characteristic of filter response. In this project, the technique of filter synthesis based upon reflection-mode hybrid technique. Besides that, the numerical designs are also demonstrated and finally the tables of prototype element values for the function are also provided. The technique of filter synthesis with finite dissipative element would be useful for application where the increased loss can be tolerated as well as reduction of physical volume; thus, its useful in designing microwave filter for receiver systems such as in a satellite input multiplexer (IMUX).
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF PROJECT</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Project Background 2
1.2 Project Statement 3
1.3 Project Objective 3
1.4 Project Scope 4
1.5 Summarize of Methodology 5
1.6 Organization of Report 5

2 LITERATURE REVIEW

2.1 Basic Filter Types 7
 2.1.1 Low Pass Filter 8
2.1.2 High Pass Filter

2.1.3 Bandpass Filter

2.1.4 Bandstop Filter

2.2 Microwave Filter

2.2.1 Background of Microwave Filter

2.2.2 Application of Microwave Filter

2.2.3 Miniaturization Technique for Microwave Filter

2.2.4 Scattering Parameter

2.3 Lossy Filter

2.3.1 Propertise of Filter with Finite Q Element

2.3.1.1 Resonator Q

2.3.1.2 Effect of Finite Q on Response

2.3.2 Loss Compensation Technique

3 METHODOLOGY

3.1 Methodology Introduction

3.2 Software in Used

3.2.1 Advanced Design System (ADS)

3.2.1.1 Benefits of ADS

3.2.2 Maple

3.3 Design Procedure

3.3.1 Loss Compensation Technique

3.3.1.1 Classical Predistortion

3.3.1.2 Predistorted Reflection-Mode

3.3.1.3 Predistorted Reflection-Mode Hybrid

3.3.1.4 Even/Odd-Mode Predistortion
4 RESULTS AND DISCUSSIONS

4.1 Simulation Result of Even/Odd-Mode Predistortion 30
4.1.1 Butterworth Filter 31

4.1.1.1 Simulation Result for Lowpass Prototype 31
4.1.1.2 Simulation Result for Bandpass Prototype 35
4.1.2 Chebyshev Filter 45
4.1.2.1 Simulation Result for Lowpass Prototype 49
4.1.3 Combline Filter 53
4.1.3.1 Simulation Result for Chebyshev Bandpass Prototype 53

5 CONCLUSION AND RECOMMENDATIONS 57

5.1 Conclusion 58
5.2 Recommendation 60
5.2.1 Physical Layout 60
5.2.1.1 Coaxial Resonator 60
5.2.1.1 Substrate Integrated Waveguide (SIW) 61

REFERENCES 62
APPENDICES 64
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Element values for third order Butterworth low-pass prototype</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Element values for third order Butterworth Band-pass prototype</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Element values for third order Butterworth Band-pass prototype at 2 GHz for 50 Ohms system</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Element values for third order Butterworth Band-pass prototype at 6.5 GHz</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Element values for third order Chebyshev low-pass prototype</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Element values for third order Chebyshev Band-pass prototype</td>
<td>51</td>
</tr>
<tr>
<td>4.7</td>
<td>Network element values after impedance scaling to 50 Ohms</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of Loss Compensation Technique</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Low-pass frequency response</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>High-pass frequency response</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>System level block diagram of a band-pass filter</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Bandpass frequency response</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>System level block diagram of a band-stop filter</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Band-stop frequency response</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>RF front end of the cellular base station</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>A two port network</td>
<td>13</td>
</tr>
<tr>
<td>2.9</td>
<td>The filters with the finite component</td>
<td>15</td>
</tr>
<tr>
<td>2.10</td>
<td>The effect of dissipation on the pole pattern</td>
<td>16</td>
</tr>
<tr>
<td>2.11</td>
<td>The frequency response of the presence of loss in the resonator</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart of Methodology</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Simulation response of band-pass filter with various unloaded Q_u factor</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Three port Circulator</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>The hybrid reflection-mode filter</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Representation of Simplified Circuit</td>
<td>31</td>
</tr>
<tr>
<td>4.1(a)</td>
<td>Third-order Butterworth low-pass prototype with the schematic circuit</td>
<td>32</td>
</tr>
</tbody>
</table>
4.1(b) Third-order Butterworth low-pass prototype with the simplified circuit 33

4.1(c) Third-order Butterworth low-pass response offset by 6 dB which equivalent to ideal frequency response 34

4.2 Representation of Simplified Circuit for Capacitor, Inductor and Resistor 35

4.2(a) Third-order Butterworth Band-pass prototype with the schematic circuit 36

4.2(b) Third-order Butterworth Band-pass prototype with the simplified circuit 37

4.2(c) Third-order Butterworth Band-pass response offset by 6 dB which equivalent to ideal frequency response 38

4.3(a) The schematic circuit with Third-order Butterworth band-pass prototype at 2 GHz in a 50 Ohms system 39

4.3(c) Third-order Butterworth Band-pass response offset by 6 dB which equivalent to ideal frequency response for the scaling 50 Ohms system 41

4.4(a) The schematic circuit with Third-order Butterworth band-pass prototype at 6.5 GHz 42

4.4(c) Third-order Butterworth Band-pass response offset by 6 dB which equivalent to ideal frequency response for the scaling 50 Ohms system which operates at 6.5 GHz 44

4.5(a) Third-order Chebyshev low-pass prototype with the schematic circuit 46

4.5(b) Third-order Chebyshev low-pass prototype with the simplified circuit 47

4.5(c) Third-order Chebyshev low-pass response offset by 6 dB which equivalent to ideal frequency response 48

4.6(a) Third-order Chebyshev band-pass filter in a 50 Ohms system with the schematic circuit 50

4.6(b) Third-order Chebyshev band-pass filter with the simplified circuit 51

4.6(c) Third-order Chebyshev band-pass response offset by 6 dB which equivalent to ideal frequency response 52
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>Combline band-pass transformation of a capacitor with dissipative element</td>
</tr>
<tr>
<td>4.7(a)</td>
<td>Schematic representation of Third-Order Chebyshev combline resonators filter in a 50 Ohms systems</td>
</tr>
<tr>
<td>4.7(b)</td>
<td>Simulated response of third-order Chebyshev combline resonators filter with 6 dB offset</td>
</tr>
<tr>
<td>5.1</td>
<td>The top view of physical layout for coaxial resonator</td>
</tr>
<tr>
<td>5.2</td>
<td>Overall structure of SIW Band-pass Filter</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>Advanced Design Software</td>
</tr>
<tr>
<td>SIW</td>
<td>Substrate Integrated Waveguide</td>
</tr>
<tr>
<td>Qₜ factor</td>
<td>Quality factor</td>
</tr>
<tr>
<td>CST</td>
<td>Computer Simulation Tecnology</td>
</tr>
<tr>
<td>LPF</td>
<td>Low Pass Filter</td>
</tr>
<tr>
<td>HPF</td>
<td>High Pass Filter</td>
</tr>
<tr>
<td>BPF</td>
<td>BandPass Filter</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Basic Integration Formulas</td>
<td>63</td>
</tr>
<tr>
<td>B</td>
<td>Transfer Function</td>
<td>64</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

This chapter presents the motivation of the project, background, objective as well as the problem statement of the project. It also briefly explains on the scope that will be covered and the summary of methodology for this project. Lastly, the thesis outline will be presented for this project.
1.1 Project Background

Microwave filters play an important role in various aspects of the application along with the rapid development of wireless communication systems. The application of microwave filters such as terrestrial communication, satellite communications, earth stations, and radar system. The application of the microwave and RF filters are used in all these systems in order to discriminate between wanted and unwanted signal frequencies. Good examples for the former applications are mixers and multiplexer. Therefore, a consequence of the continuing evolution of standards in communications caused the filter performance requirements are becoming increasingly difficult to meet. Theoretically, high resonator Q (unloaded quality factor) is needed in order to get the high performance of lossless filters which are leading the costly filter and expansion on physical volume of the filters [1]. Therefore, a low resonator Q with loss called as lossy filter is needed so that to have a low cost and thus reduction of physical volume of the filters.

The background of this project is there have many synthesis of lossless filter from polynomials which generates extensive tables of their associated component values for various types of filters so that design procedure by synthesis process is not required for the designer. However, the synthesis of lossy filter to generate the tables of their associated component values is limited currently compared to the lossless filters. Therefore, the importance of this project is introduced to synthesis the technique of lossy filter with finite dissipation element which is have a low resonator Q factor and it will focus mainly on Butterworth and Chebyshev filter in order to generate the component values to bring the convenience to the filter designer to skip the synthesis process which is time consuming and thus have the shorten path to design of the lossy filters.
1.2 Problem Statement

Over the past decade, the explosive growth in wireless personal communication and other portable receiver and transmitter application as generated a significant market for low-loss, smaller size, lightweight, and lower cost filters. The design of high performance with highly selective filters which requires high Q resonators will contribute to significant physical volume or expensive technologies. However, there have certain application focuses of demand for smaller size, lower cost and higher performance in microwave filters has increased. Therefore, they try to design a lossy filter with finite dissipation element which has a low Q resonator to achieve the reduction of physical volume. Nevertheless, there have an issue with using low Q resonator which is degraded in the performance of the filter. The effect of losses on a bandpass filter is to round the passband and hence reduce selectivity. With this, it is possible to design purely passive filter to have a sharp, selective response even with low Q resonators by applied the technique known as predistortion.

1.3 Project Objective

In this project, the main objective is to overcome the aforementioned problems, which introduce the miniaturization technique for microwave filters in such a way as minimizing unloaded Q resonator to obtain a small physical volume of microwave filters and make them behave like high Q resonators with high performance by applied the passive loss compensation techniques to retain a sharp characteristic in the frequency response.
The objectives of this project are summarized as follows:

1. To synthesized the technique for microwave filters by introducing dissipative element and to design a lossy filter with minimizing unloaded Q factor of the resonators without degrading the filter performance.

2. To generate a table of element values for the filter prototypes according to the degree respectively.

1.4 Project Scope

The scope that covered in this project involves the synthesis technique and the software tools that needed in simulation. In order to run this project smoothly, the type of techniques had been studied so that the procedure that involved in each technique can be understood. The techniques include Classical Predistortion, Predistortion Reflection-Mode, Reflection-Mode Hybrid and Even- or Odd-Predistortion. Moreover, there is involving 90% in mathematical of synthesizing the technique for the microwave filter with finite dissipative loss. Besides that, it is necessary to get familiar with the software on simulation such as Maple of the mathematical process and Advanced Design System Software (ADS) of the circuit simulation in order to compare between the Maple simulation and ADS simulation based on the frequency response. However, part of procedure to obtain the hardware is not covered in this project. The technique will be applied to produce a Butterworth Lossy filter. However, Chebyshev Lossy filter will be proceed as well if time available.
1.5 Summarize of Methodology

Before starting the project implementation, the literature review is carried out to gain some information from journals, articles and reference books to study on the nature of microwave filters. In order to implement this project, all the techniques of loss compensation that involved of synthesis the microwave filter with finite dissipative loss have been study. For the simulation part, software Maple and Advance Design System (ADS) are chosen to simulate the results that obtained and the comparison will be done to ensure the element values that obtained from the mathematical modeling is correct so that to get the desired performance as the expected result for the filter.

1.6 Organization of Report

This thesis is structured into several chapters as follows:

Chapter 1 is describing the project background of this project which is the purpose for starting this project. Next, it describes the problem statement and the objectives of this project means that the target that have set to achieve in this project. Lastly, the chapter 1 is closed up with the methodology and the scope of the project to shows the step and taken to complete the goal and stated clearly of the scope that covered and not covered in this project so that the process of the project will not out of focused.
In Chapter 2, the overview of the general knowledge of the filters and the literature study of the predistortion technique of the microwave filter to the details of each technique and the procedure that involved. Besides that, review of some published journals on various titled predistortion techniques is the main discussion of this chapter. To ease the job of reading and understanding, this chapter is divided into few sections based on the subtitle and each technique of loss compensation technique.

Chapter 3 focuses on the project implementation which discusses details on the procedure involved of each predistortion technique of the lossy filter. The most important tools on top view of the project flow is the flow chart of this project which can clearly explains on the process flow during the project implementation.

Chapter 4 is presents on the results that regarding to each technique that have been done. The results of each table of transfer functions and their associated component values of the filters carried out based on each technique. The performances of each technique are examined based on the frequency response of the microwave filters. The orders of the Butterworth and Chebyshev Filters will applied by each type of the predistortion technique and summarize into the table.

Lastly, chapter 5 concludes this project and recommendation for the future works can be done to improve the performance of the microwave filters.
CHAPTER II

LITERATURE REVIEW

2.1 Basic Filter Types

The ideal filter network is a network that provides perfect transmission for all frequencies in certain pass-band regions and infinite attenuation in the stop-band regions. Such ideal characteristics cannot be obtained, and the goal of filter design is to approximate the ideal requirements to within an acceptable tolerance [2]. Filters are used in all frequency ranges to provide as nearly perfect transmission as possible for signals falling within desired pass-band frequency ranges, together with rejection of those signals and noise outside the desired frequency bands. It is sometimes wanted a selectively circuit in filtering one frequency or range of frequencies out of a combine of different frequencies in a circuit. Therefore, a circuit designed to perform this frequency selection is called a filter.