
Distance Approximation using Pivot Point in Narrow
Phase Collision Detection

Hamzah Asyrani Sulaiman1, Mohd Azlishah Othman2,
Lizawati Salahuddin3, Muhammad Noorazlan Shah

Zainudin4, Sani Irwan Md Salim5, Mohd Muzafar Ismail6

Universiti Teknikal Malaysia Melaka
Durian Tunggal, Melaka, Malaysia

1asyrani@computer.org, 2azlishah@utem.edu.my,
3lizawati@utem.edu.my, 4noorazlan@utem.edu.my,

5sani@utem.edu.my, 6muzafar@utem.edu.my,

Abdullah Bade7, Mohd Harun Abdullah8

School of Science and Technology
Universiti Malaysia Sabah

Kota Kinabalu, Sabah
7abade08@yahoo.com, 8harun@ums.edu.my

Abstract—Discrete and Continuous Collision Detection is two
common fields in Collision Detection research area where it helps
to determine time and point of contact when two object intersect.
Each technique increase speed and accuracy of the simulation
itself but depending on application, we need to have specific
solution of collision detection technique. Most computer games
and simulation maintain speed as the main important elements
while others such as medical and mechanical simulation needs to
have a very high precision collision detection technique. Thus, an
algorithm for the optimal distance computation algorithm for
continuous collision detection is shown in this paper. The basic
idea is to use an AABB for both object triangles and creating a
moveable origin point called Dynamic Origin Point (DyOP).
DyOP created by using minimum and maximum point of both
AABBs where it dynamically changes whenever the object move.
This is a novel algorithm that works better than the previously
known Gilbert Keerthi-Johnson algorithm and Lin-Canny
algorithm where it helps to reduce the complicated test and
implementation. We have shown that our technique is performed
faster than the previous algorithms by increasing speed and
nearly approximate the good distance between two nearly
intersected triangles.

Keywords— collision detection, virtual environment, distance
computation, computer graphics

I. INTRODUCTION

In developing 3-Dimensional (3D) world, various
considerations must be taken into account before the simulation
is going to be online for real-time visualization. Number of
polygons for each Virtual Environment application depends
heavily on the technique that the designer is going to develop
and propose. One might want to build a virtual city just to
highlight the environment for virtual tourism purpose while
others is really pun into concentration on building a real-time
simulation consisting complex objects that could test their
propose technique. For collision detection technique, the
researcher can just test the contact between two polyhedral,
which is a rigid bodies simulation. Hence, it is essential for
researchers or designers to properly getting the information
require when building Virtual Environment (VE) application
such as medical simulation and computer games development.

Determining the precise contact between two or more
polyhedral is not an easy task as every time steps and
movement of the objects must be calculated and computed.
Hence, the collision detection system must be properly
installed in the simulation or computer games in order to
maintain the realism of the surrounding environments.
However, the problem exists where the collision response can
only manage to react once the collision has been collided
before sending information that the objects has come into
contact. The matter of this event is how long computer can
receive input from the collided objects back to the collision
detection mechanism. Important input such as time of contact,
location of the contact and time lapse between reporting this
event back is required in order to maintain the stability of the
simulation. [1-7].

In this research, we have proposed a theoretical framework
on how to precisely know the exact distance between two
convex polyhedral compared to other methods. Instead of
performing complex algebraic solution that has been used in
various techniques to determine the distance computation
algorithm in determining collision, we have proposed a
technique that use the efficiency of Axis-Aligned Bounding-
Box (AABB) that create boundary surrounding the last piece of
triangle in Bounding-Volume Hierarchies (BVH). This
technique is called Dynamic Object Point for Distance
Computation (DOPDC) technique. It explicitly used the inner
and outer AABB capabilities that have been created using
dynamic parallel lines. Section II will describe about previous
works on collision detection and distance computation
algorithms. Section III explained in detailed regarding
Bounding-Volume Hierarchies and the theoretical framework
and the pseudo code of the algorithm along with the analysis.
Section IV conclude our framework.

II. RESEARCH BACKGROUND

Collision detection research studies have been performed
well by many top researchers in various fields such as
computational geometry, robotics, computer games and
animation and computer graphics [3, 8-24]. Some of the main
references for other researcher in term of survey papers are
[22, 25-32]. Hence in this section, we described few selected

2013 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME)

106

Bandung, November 7-8, 2013

�������������	
���������

���
�������

Figure 2 Outer AABB for removing those lines that are not required
for Distance Computation Calculation

Figure 4 Final configuration of Distance Computation calculation
where points/lines that close to only the nearest intersection of area
that might come into contact is required

technique that are related to the work of collision detection
especially in discrete and continuous collision detection.

III. THEORITICAL FRAMEWORK

In this paper we will describes our theoretical framework of
our propose technique that use the capabilities of Axis-Aligned
Bounding-Box to calculate the distance between two objects
down to the distance between two triangles.

A. Region Creation
At first, from the Bounding-Volume Hierarchies (BVH)

that enclosed the triangle down to the last piece of triangle, we
will use the AABB for each of the triangle that approximately
close to each other. By maintaining one of the axes that has the
shortest distance between two AABBs, we can create an
invisible AABB just to enclose both of BV into one
(combined). By doing this, we can get a new region that has
two triangle that might close together to create a contact or
determine the contact between them. Figure 1 explain how one
of the axes can approximately know which triangles that most
likely can come into contact and then determine the distance.

B. Parallel Line Elimination using Outer AABB techniques
Parallel Line Elimination (PLE) stands for elimination of

the axes lines that we do not require for distance computation
between both triangles. In this case, we need to search for any
lines that we do not need for intersection and distance
computation testing. Figure 2 explains the situation.

From the Figure 2, we found that using the maximum and
minimum point that created AABB, we can do the elimination.
Given Axmin and Axmax as minimum and maximum points of
first triangle (the leftmost), and Bxmin and Bxmax for the second
triangle (the rightmost). First we will perform comparison
between Axmin and Bxmin in order to determine which one will be
having the greater or lower value. We perform elimination or
remove the lower value, as it is not require for distance
computation algorithm. This only applies for X-axis where the
nearest distance most likely to lies between Axmax and Bxmin.
Thus in this case Axmin is lower that Bxmin and we will select
Axmin as candidate to be removed from our distance
computation calculation. The same thing applies for maximum
points comparison between both triangles in X-axis where

between Axmax and Bxmax, only Bxmax will be removed from our
calculation as the Bxmax is largest value of all X-axis. In short,
between Axmin , Axmax , Bxmax, and Bxmin, remove any points that
has highest and lowest X-axis values thus leaving only the X-
axis point that most likely the nearest of X-axis that can come
into contact.

Outer AABB is one of the techniques that can be used to
eliminate those lines that we do not need in order to calculate
the distance between those two triangles. By finding the
maximum and minimum points of all triangles (that we used to
create AABB for each triangle), we can create a new Outer
AABB to find any points that belong to Outer AABB creation.
In previous paragraph we have explained how to find the
lowest and highest value for each axis. However, we can
perform faster elimination by performing Outer AABB
technique. Figure 3 shows Outer AABB technique.

It works be enclosing the triangle that might come into
contact (nearest) with the big AABB. Then, once we have
found points that created Outer AABB (big AABB), we can
determine which point that most likely to create them. In this
case, Aymax, and Bymin are belongs to Outer AABB creation and
thus we removed them from our distance computation
calculation. Figure 4 shows the final configuration for us to
compute the distance.

C. Midpoint of AABB
From a closer look at the ‘empty box’ that lies between the

two triangles in AABB, we now can find the midpoint of the
AABB as one of the main component for distance computation
calculation. We will then transforming the old origin point
located at the coordinates (0,0,0) into the new one (let say

Figure 1 Parallel Line Elimination process to remove any lines
that we do not require for nearest intersection contact.

2013 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME)

107

Bandung, November 7-8, 2013

Xneworigin, Yneworigin, and Zneworigin). Figure 5 explains the
procedure to determine a new origin point for distance
computation algorithm that we develop.

From Figure 5, a New Origin Point (NOP) can easily be
calculated by using the formula below:

the same process will happens to the y coordinate by changing
it to:

Once NOP has been calculated, we will save it into the
memory for distance computation calculation after this.

D. Figures and Tables Middle Box of AABB for
Intersection Points

The Middle Box of AABB is an “empty box” that
temporarily created to find the midpoint of rectangle in order
to initialize NOP. Once the NOP has been saved into memory,
the process of distance computation calculation continues with
the process of finding the nearest side of triangle that may
come into contact. Figure 5 shows the corresponding behavior
that need to be check in order to find the nearest side of
triangle.

where is the interception of y axis that need to be
calculated first.

From the Figure 5, the process of finding the right edge of
intersection area started by using all points that created the

Middle Box of AABB. By utilizing the Axmax, Aymin, Bxmin, and
Bymax, we can easily create an edge and thus it can be declared
as the nearest edge that might come into contact. Line
equations for both edges must be calculated in order to obtain
points or triangle that intersected with a line that is created
from the NOP to both edges. From Figure 6, we can obtains
two line equations of two points.

IV. EXPERIMENTAL WORKS AND ANALYSIS

In our experiments, we have conducted two tests that
represented the speed of the distance computation and the
accuracy of the distance by comparing with all the algorithms.
We have loaded the environment with 10 types of triangles
that is iterated with different types of triangle. From 10 types
of triangle, we iterated for 90 times where each triangle will be
tested against another shape of triangle. Our experiments do
not involve the same type of triangle in order to maintain the
randomization of our algorithm with others. Moreover, it is a
rare case where each triangle in certain object will be tested
against the same size. For example, if the object contains more
than 1 million of triangle in random movement and angle,
compute the distance with another object that also might have
more than 1 million of triangle, thus, it will have a very
minimum percentage that we will be having the same triangle
size intersection. Hence in this experiments, we conducted 90
tests (where each triangle will be tested with the other nine
thus resulting 90 tests) in order to perform analysis of DyOP,
Lin Canny, and GJK algorithm.

In this experiments, we set up the environment by iterating a
moving triangle with a static triangle. Each moving triangle
will be tested against another shape of triangle. Given the
name for each triangle is Obj1 until Obj10, thus we iterated
Obj 1 with Obj2, Obj1 with Obj3, Obj1 with Obj4, Obj1 with
Obj5, Obj1 with Obj6, Obj1 with Obj7, Obj1 with Obj8, Obj1
with Obj9, and Obj1 with Obj10. Where Obj1 became the
moving triangle candidate while others become the static
triangle for our experiments. For another iteration, we will
repeat the process for Obj2, Obj3 until Obj10 and skipped any
same Obj testing. In this case, no such thing as Obj1 with
Obj1, Obj2 with Obj2, and others. For all triangles, a total 90
iterations/tests will be conducted. We also setup a fixed
distance for all algorithms. Instead of randomization, we need
to check the efficiency of the algorithm by maintaining only a
single fixed distance. Thus, all the algorithm will be conducted

Figure 5 Middle Box of AABB located just between two
triangles and contains Middle Point AABB or NOP

Figure 6 Trigonometric rules of finding the distance between
two points

2013 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME)

108

Bandung, November 7-8, 2013

their test using the same distance check. The time frame is
captured for nine iterations for each Obj1 until Obj10. Figure
7 shows our result of this experiment.

Figure 7 Speed Computation for Distance Computation

Based on figure 7, the highest of percentage between
DyOP and LinCanny algorithm is 187.2727273% while the
lowest being 75%. This means that our DyOP has proven to
provide faster distance computation algorithm other than the
other algorithms. We also have a 107.2727273% increase for
DyOP versus GJK algorithm and the lowest being 78.125%.
This proven enough to us that our algorithm works in better
efficiency than the other algorithms.

CONCLUSION AND FUTURE WORK

We have presented our current research progress on
development of a novel algorithm of Distance Computation
using Axis Aligned Bounding Box (AABB) Parallel
Distribution of Dynamic Origin Point. Currently, the
experimental process in being carried out using C++
programming language in Visual Studio C++ 2010. Stanford
3D model has been used in our experiments in order to
maintain the standard 3D object that had been used for
collision detection testing.

Based on all experiments, we concluded that our proposed
algorithm of DyOP is more superior to the other two
algorithms of GJK and Lin-Canny. The speed of computing
distance is increase between ranges of 150% to 180% for
certain type of triangles. Although the implementation of GJK
and Lin-Canny is following the implementation style of our
code is not based on any other codes. But we followed strictly
the concept of GJK and Lin-Canny in order to avoid any
changes of the method. This is because there is numerous
implementation style and code exists for both method but all
just follow the same concept with their own style of
implementation. However, in this research, all the concept and
theoretical aspect of GJK and Lin-Canny is based on the
original paper.

Our DyOP algorithm is implemented in 2D environment
where it is the easiest part to see the contribution of this
algorithm. It is the fundamental idea that we need to chase
down to the bottom of complex model, which is a triangle in

order to visualize properly what is the idea of DyOP compared
to any other methods. Moreover, it is to give other researcher
about an overview about this new and novel algorithm at the
fundamental level before implement it into any other
applications. However, our experiments is just based on
distance computation only and not involving any collision
response or penetration distance calculation.

ACKNOWLEDGMENT

We would like to thank for Centre for Telecommunication
Research and Innovation (CeTRi) for research feedback and
Dr. Abdullah Bade and Prof. Datuk Dr. Mohd Harun Abdullah
from Universiti Malaysia Sabah for PhD supervision.

REFERENCES

[1] L. Hanwen and W. Yi, "Coherent hierarchical collision detection
for clothing animation," in Haptic Audio Visual Environments
and Games (HAVE), 2011 IEEE International Workshop on,
2011, pp. 129-134.

[2] W. Zhao and L. Wang, "A fast collision detection algorithm
suitable for complex virtual environment," in Transportation,
Mechanical, and Electrical Engineering (TMEE), 2011
International Conference on, 2011, pp. 502-505.

[3] N. M. Suaib, A. Bade, and D. Mohamad, "Collision Detection
Using Bounding-Volume for avatars in Virtual Environment
applications," in The 4th International Conference on
Information & Communication Technology and Systems, Institut
Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia, 2008,
pp. 486 - 491.

[4] G. Jianhong, H. Hanwu, Z. Wenxuan, and L. Yanfei, "Research
on real-time collision detection for vehicle driving in the virtual
environment," in International Conference on Information and
Automation, 2008. ICIA 2008. , 2008, pp. 1834-1839.

[5] M. Haciomeroglu, R. G. Laycock, and A. M. Day, "Dynamically
populating large urban environments with ambient virtual
humans," Comput. Animat. Virtual Worlds, vol. 19, pp. 307-317,
2008.

[6] J. Willmott, L. I. Wright, D. B. Arnold, and A. M. Day,
"Rendering of large and complex urban environments for real
time heritage reconstructions," presented at the Proceedings of
the 2001 conference on Virtual reality, archeology, and cultural
heritage, Glyfada, Greece, 2001.

[7] J. X. Chen, N. d. V. Lobo, C. E. Hughes, and J. M. Moshell,
"Real-time fluid simulation in a dynamic virtual environment,"
Computer Graphics and Applications, IEEE, vol. 17, pp. 52-61,
1997.

[8] B. Chen, X. Ye, L. An, and Y. Wang, "Detection of Collision
and Self-Collision Using QPSO for Deformable Models," in
Intelligent System Design and Engineering Application (ISDEA),
2012 Second International Conference on, 2012, pp. 1028-1031.

[9] H. Qu and W. Zhao, "Fast Collision Detection of Space-Time
Correlation," in Computer Science and Electronics Engineering
(ICCSEE), 2012 International Conference on, 2012, pp. 567-
571.

[10] K. Okada, M. Inaba, and H. Inoue, "Real-time and Precise Self
Collision Detection System for Humanoid Robots," in Robotics
and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, 2005, pp. 1060-1065.

[11] Y. Chun-yan, Y. Dong-yi, W. Ming-Hui, and P. Yun-he, "A new
horizontal collision detection scheme for avatar with avatar in
collaborative virtual environment," in Machine Learning and

2013 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME)

109

Bandung, November 7-8, 2013

Cybernetics, 2005. Proceedings of 2005 International
Conference on, 2005, pp. 4961-4966 Vol. 8.

[12] O. Arcila, S. Dinas, and J. M. Banon, "Collision detection model
based on Bounding and containing Boxes," in Informatica
(CLEI), 2012 XXXVIII Conferencia Latinoamericana En, 2012,
pp. 1-10.

[13] B. He, Y. Wang, and J. Zhao, "An improved method of
continuous collision detection using ellipsoids," in Computer-
Aided Industrial Design & Conceptual Design, 2009. CAID &
CD 2009. IEEE 10th International Conference on, 2009, pp.
2280-2286.

[14] S. Zhang, Z. Jiang, and L. Li, "A Collision Detection Method
Based on the Virtual Occluders," in Computer Science-
Technology and Applications, 2009. IFCSTA '09. International
Forum on, 2009, pp. 410-413.

[15] W. Meiping, S. Liyun, and R. Zhijun, "A Hierarchical Collision
Detection Algorithm for VA," in Control and Decision
Conference (CCDC), 2010 Chinese, 2010, pp. 4315-4319.

[16] M. M. Ismail, M. A. Othman, H. A. Sulaiman, M. H. Misran, R.
H. Ramlee, A. F. Z. Abidin, et al., "Firefly algorithm for path
optimization in PCB holes drilling process," 2012, pp. 110-113.

[17] Z. Wei and L. Lei, "Improved K-DOPs collision detection
algorithms based on genetic algorithms," in Electronic and
Mechanical Engineering and Information Technology (EMEIT),
2011 International Conference on, 2011, pp. 338-341.

[18] S. Yanchun and S. Xingyi, "Research and improvement of
collision detection based on oriented bounding box in physics
engine," in Communication Software and Networks (ICCSN),
2011 IEEE 3rd International Conference on, 2011, pp. 73-76.

[19] H. A. Sulaiman, A. Bade, and N. M. Suaib, "Balanced
hierarchical construction in collision detection for rigid bodies,"
in Science and Social Research (CSSR), 2010 International
Conference on, 2010, pp. 1132-1136.

[20] H. A. Sulaiman, A. Bade, D. Daman, and N. M. Suaib,
"Collision Detection using Bounding-Volume Hierarchies in
Urban Simulation," presented at the The 5th Postgraduate
Annual Research Seminar, Faculty of Computer Science &
Information System, UTM, 2009.

[21] R. e. Weller, J. Klein, and G. Zachmann, "A Model for the
Expected Running Time of Collision Detection using AABB
Trees," in Eurographics Symposium on Virtual Environments
(EGVE), Lisbon, Portugal, 2006.

[22] C. Ericson, Real-Time Collision Detection (The Morgan
Kaufmann Series in Interactive 3-D Technology) (The Morgan
Kaufmann Series in Interactive 3D Technology): Morgan
Kaufmann Publishers Inc., 2004.

[23] S. Redon, A. Kheddar, and S. Coquillart, "CONTACT: arbitrary
in-between motions for collision detection," in 10th IEEE
International Workshop on Robot and Human Interactive
Communication, 2001, 2001, pp. 106-111.

[24] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, "A fast
procedure for computing the distance between complex objects
in three-dimensional space," Robotics and Automation, IEEE
Journal of, vol. 4, pp. 193-203, 1988.

[25] H. A. Sulaiman, A. Bade, and N. M. Suaib, "Bounding-Volume
Hierarchies Technique for Detecting Object Interference in
Urban Environment Simulation," in Second International
Conference on Environmental and Computer Science, 2009.
ICECS '09, 2009, pp. 436-440.

[26] M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha, "Interactive
continuous collision detection between deformable models using
connectivity-based culling," presented at the Proceedings of the
2008 ACM symposium on Solid and physical modeling, Stony
Brook, New York, 2008.

[27] S. H. Kockara, T.; Iqbal, K.; Bayrak, C.; Rowe, Richard;,
"Collision Detection - A Survey," presented at the IEEE
International Conference on Systems, Man and Cybernetics,
2007. ISIC., 2007.

[28] G. V. D. Bergen, Collision Detection in Interactive 3D
Environments. United States of America: Elsevier, Inc., 2004.

[29] M. C. Lin and D. Manocha, "Collision and Proximity Queries,"
in In Handbook of Discrete and Computational Geometry, 2nd
Ed. vol. 35, ed Boca Raton, FL: CRC Press LLC, 2004, pp. 787-
807.

[30] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha, "Fast
continuous collision detection for articulated models," presented
at the Proceedings of the ninth ACM symposium on Solid
modeling and applications, Genoa, Italy, 2004.

[31] S. A. Gottschalk, "Collision queries using oriented bounding
boxes," The University of North Carolina at Chapel Hill, 2000.

[32] G. Zachmann, "Virtual Reality in Assembly Simulation -
Collision Detection, Simulation Algorithms, and Interaction
Techniques," Department of Computer Science, Darmstadt
University of Technology, Germany, 2000.

2013 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME)

110

Bandung, November 7-8, 2013

