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Abstract—The purpose of planned islanding is to construct a 

power island during system disturbances which are commonly 

formed for maintenance purpose. However, in most of the cases 

island mode operation is not allowed. Therefore distributed 

generators (DGs) must sense the unplanned disconnection from the 

main grid. Passive technique is the most commonly used method for 

this purpose. However, it needs improvement in order to identify the 

islanding condition. In this paper an effective method for 

identification of islanding condition based on phase space and neural 

network techniques has been developed. The captured voltage 

waveforms at the coupling points of DGs are processed to extract the 

required features. For this purposed a method known as the phase 

space techniques is used. Based on extracted features, two neural 

network configuration namely radial basis function and probabilistic 

neural networks are trained to recognize the waveform class. 

According to the test result, the investigated technique can provide 

satisfactory identification of the islanding condition in the 

distribution system. 

 

Keywords—Classification, Islanding detection, Neural network, 

Phase space. 

I. INTRODUCTION 

ISTRIBUTED generation (DG) is typically an additional 

resource located close to the load. These DGs are 

generally below a couple of MWs and it can be wind farms, 

micro hydro turbines, photovoltaics (PV) system and other 

small generators which are supplied with biomass or 

geothermal fuel. With the integration of DG resources, the use 

of multiple DGs in the distribution system becomes a common 

practice. DG integration has some advantages such as 

environmental benefits, improved reliability, increased 

efficiency, avoid transmission and distribution (T&D) capacity 

upgrades, improved power quality, and reduced T&D line 

losses [1]-[7]. However, one of the major drawbacks of the 

DG is unintentional islanding.  

The unintentional islanding occurs when the DG is 

continued to power a part of the grid system even though 

powers from the utility do not exist, due to the fault at 

upstream or any other disturbance. Failure to trip unintentional 
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islanded DG may lead to several problems in terms of power 

quality, safety and operational problems [3], [8], [9]. 

Furthermore, according to IEEE STD 1547-2001 and IEC 

61727, unintentional islanding had to be cleared within two 

second from DG and utility connection with the formation of 

island [8], [10], [11]. Therefore, various methods to detect the 

unintentional islanding conditions have been receiving great 

interest among many researchers. 

Conventionally, these islanding techniques can be classified 

into two main groups, which are remote (communication) 

techniques and local (residence) techniques. Remote islanding 

detection techniques are based on communication between the 

utility and the DGs. These techniques have better reliability, 

and they are easy to implement. However, large investments 

are needed especially for small systems. Therefore, engineers 

utilized the local techniques to detect islanding condition. The 

local techniques are further categorized into two: passive 

techniques and active techniques. The passive detection 

method utilizes measured electrical quantities such as voltage, 

current and frequency. Meanwhile, in the active detection 

method, disturbances are injected into the network and the 

island is detected based on system responses to the injected 

disturbances. In passive islanding detection methods, 

computational intelligence is commonly used. This is 

preferred because more accurate online detection is needed to 

monitor the system condition. Besides, this technique usually 

has less complexity and high computational efficiency with 

good accuracy and reliability. Some existing techniques which 

combine signal processing and neural network are highlighted 

below. 

Signal processing and neural network are widely used in 

power quality event classification and detection. These 

methods are also finding their application in islanding 

condition detection for DG protection in distribution networks. 

For instance, in [12] used discrete wavelet transform (DWT) 

integrated probabilistic neural network (PNN) to classify the 

power disturbances. It used multiresolution-analysis of DWT 

and Parseval’s theorem to extract energy distribution features 

at different resolution levels. It then classifies the features 

using PNN. Other than that, PNN is incorporated with wavelet 

transform to find the location of the fault and its type [13]. 

Realizing the potential of these intelligent methods, Yin 

presented a combined method using Fast Fourier transforms 

(FFT) with artificial neural network (ANN) classifier for 

detecting islanding detection [14]. In this method, the output 

voltages of the inverter are sampled and the signal frequency 
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domain is obtained by using FFT. However, the algorithm 

suitable for stationary waveforms and it can be implemented 

using advanced digital signal processor. To avoid the 

problems of FFT, a robust approach for islanding detection is 

introduced based on the theory of wavelet and ANN [15]. In 

this method, the feature vector is extracted by utilizing DWT 

from the modal current signal seen at the DG terminal. These 

features are then trained using back propagation method.  

Similar to the aforementioned signal processing methods 

like DWT, a new technique called phase space method is 

gaining its popularity in signal processing specially in the field 

of electrical engineering. Phase space method reconstructs a 

time series in a higher-dimensional space. The aim of this 

construction is to show its features more clearly [16]. As a 

result of its unique feature characteristics, starting in 2000, the 

phase space is utilized in power quality disturbance 

classification based on geometrical properties [17]. 

Afterwards, [18] utilized phase space to detect, locate and 

classify the disturbances of power system signals. It has been 

evaluated with numbers of test, which involve eight different 

types of disturbances under various conditions. This method is 

able to locate the occurrence of disturbance and accurately 

classifies all eight disturbances. Meanwhile, in [19] phase 

space is used in fault detection of distance relay. It is claimed 

that the speed of the phase space fault detection technique is 

only 4 ms and it is suitable for real-time implementation. 

However, this technique is not being applied in islanding 

condition yet.  

Due to the clarity of features, high reliability, efficiency and 

speed, the phase space technique is proposed in this paper as 

the feature extraction method for detecting the islanding and 

non-islanding condition. Afterwards, the paper investigates the 

feasibility of using radial basis function (RBF) and 

probabilistic neural network (PNN) based classifier for 

differentiating the islanding event from others system 

disturbance events. The feature vectors, which are inputs to 

the classifier, were generated by processing the voltage signals 

containing the transients using the phase space method. The 

rest of the paper is organized as follows: Section II includes 

the phase space theory. Meanwhile, Section III has 

classification methods that briefly explain two of the classifier 

method that being used, which is RBF and PNN, and Section 

IV gives a system description. Section VI explains the feature 

extraction using phase space and Section VII deals with the 

structure of the proposed neural network. The test result is 

presented in Section VII. Finally, the conclusion is given in 

Section VIII. 

II. PHASE SPACE THEORY 

The aim of phase space is to analyze the time series in a 

higher-dimensional space called phase space. Mathematically, 

a phase space is a space, which all possible states of the 

system are presented. This phase state would respond to a 

unique point. It is convenient to use phase space to describe 

dynamic system. Each orthogonal coordinates of phase space 

would represent one of the instantaneous states of the system 

[16], [20]. Nonetheless, it is impractically to measure the 

entire variability of a dynamic system. Coincidentally, Taken 

has proved in [21] that it can be reconstructed from a time 

series of a single component using the embedding theorem.  

For this studied, as for a sinusoidal signal, the embedding of 

phase space can be defined by the general equation given as 

[18], [22]: 
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where, x1k can represent as x; x2k can represent as y; and  x3k 

can represent as z. Equation (1) shows the embedding signals 

to a phase space of dE=3 with a delay of a quarter of its period 

that is �=Ns/4.  
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which shows that embedded signal is an ellipse. Using x, y 

and z to represent the coordinates of the phase space x1, x2, x3, 

respectively the embedded signal in the phase space can be 

defined by the following equations 
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The projection of embedded signal on the xy-plane and yz-

plane is same, where the circle radius is the amplitude (A) and 

center is the origin of the plane.  

By using (2), Euclidean norm Ex can be obtained as,  

 

22 yxEx +=    (3) 

 

In this paper, the Ex would be utilized to extract special 

features for characterizing islanding and non-islanding events. 

The corresponding features are then used as inputs for the 

neural network.  

III. ARTIFICIAL NEURAL NETWORK THEORY 

A. Radial Basis Function  

Radial basis functions (RBF) emerged as a variant of 

artificial neural network in late 80’s. RBF is embedded into a 

two layer neural network, where each hidden unit implements 

a radial activation function. The network is characterized by 

set of input and set out output, where the middle of both input 

and output is a layer processing unit called hidden layer. Each 

input neuron corresponds to a component of an input vector x. 

The middle layer consists of n neurons and one bias neuron. 

Each input neuron is fully connected to middle layer neuron 

except the bias one. Each middle layer neuron computes a 

kernel function (activation function) which is usually the 

following Gaussian function [23]. More details on RBF can be 

found on [23]  
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where Ci and �i the center and the width of the ith neuron in 

the middle layer, respectively. ||.|| denotes the Euclidean 

distance. The weight vector between the input layer and the ith 

middle layer neuron corresponds to the center Ci in (4). 

B. Probabilistic Neural Networks  

A probabilistic neural network (PNN) is a neural network 

that is usually utilized in classification techniques. It is based 

on Bayesian classifier technique that is commonly used in 

classical pattern-recognition application [24]. PNNs contain 

four layers such as the input layer, the pattern layer, the 

summation layer and the output layer, where each layer has 

their own function in classifying the features [25]. 

The learning speed of PNN model is very fast, making it 

suitable for fault diagnosis and signal classification problem in 

real time. In addition, online adaptation to new patters can be 

easily implemented by way of modifying its training database 

with new patterns and will able to categorize correctly.  

IV. TEST SYSTEM DESCRIPTION 

The system model is based on real system data from [26], 

[27]. In this study, the power system simulation tool 

DigSilent
®
 is used to simulate the system model. The test 

system model consists of a radial distribution system with two 

identical DG units, which is fed by 120 kV, 1000MVA source 

at 50 Hz frequency illustrated in Fig. 1. The DG units are 

placed within a distance of 30-km with a distribution line of π-
sections. This DG unit is designed with 1200Vdc and 

controlled by a decoupled power control. The details of the 

studied system are given in Table I. 

 

 

Fig. 1 Power distribution system with multiple DG interface 

 

The voltage signals are retrieved at the target DG location 

for islanding and non-islanding conditions (others 

disturbances). The possible simulation scenarios studied are 

given as follows: 

1. Normal Condition 

2. Switching Capacitor at PCC point, near DG1 and near 

DG2. 

3. Switching Load at PCC, near DG1 and near DG2 

4. Single Line to ground fault at PCC, near DG1 and near 

DG2 (A-G, B-G, C-G) 

5. Double Line to ground fault at PCC, near DG1 and  near 

DG2 (AB-G, BC-G, CA-G) 

6. Three phase fault at PCC, near DG1 and near DG2. 

7. Single Line to ground fault at Line 1, Line 2 and Line 3 

(A-G, B-G, C-G) 

8. Double Line to ground fault at Line 1, Line 2 and Line 3 

(AB-G, BC-G, CA-G) 

9. Three phase fault at Line 1, Line 2 and Line 3. 

10. Malfunction of circuit breaker at DG terminal (islanding) 

11. Tripping of main circuit breaker and tripping of other DG 

apart from the target one (islanding) 
 

TABLE I  

SYSTEM MODEL DESCRIPTION 

Parameter Description 

External Grid Grid represented by 120KV source and 1000MVA 

L1 Load with 15MW and 3MVar 

L2 & L3 Load with 8MW and 3MVar 

DG1 & DG2 1200Vdc 

T1 Transformer 120/25 kV 

T2&T3 Transformer 25/0.6 kV 

Line 1 25kV with 10km length 

Line 2 & Line 3 25kV with 20km length 

PCC Point Common Coupling 

A & B 
Point near by the respective DG (A is point near 

DG1; B is point near DG2) 

V. FEATURE EXTRACTION 

It is important to select suitable input features before 

implementing and trained in the neural network. The input of 

features of RBF and PNN is selected by extracting the three 

phase voltage signal using the phase space method. The 

purposed of feature extraction is to identify the specific 

signature of the voltage signal, which could differentiate 

between the islanding and any other event condition. 

Seventeen features are extracted from the data collected for 

training. This section described the input features accordingly 

as shown in Table II. 

The features with mean value of Ex during the period of 

fault or after first transient period to the next transient period 

of disturbance is obtained from the following equation:  
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where n is number of the sample points.  Meanwhile, features 

with standard deviation (SD) of Ex can be calculated as: 
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where xE is the mean of Ex and ixE  is the number of 

elements in the individual value of Ex for i=1,2,3….n 
 

TABLE II 
SELECTED FEATURES  

Features Description Features Description 

F1 
Duration of 

Disturbance 
F10 

Min Ex during 

Disturbance DG1 

F2 
Mean Ex during 

Disturbance DG1 
F11 

Min Ex during 

Disturbance DG2 

F3 
Mean Ex during 

Disturbance DG2 
F12 

Min Steady State 
during Disturbance 

DG1 

F4 
Mean Steady State 
during Disturbance 

DG1 

F13 
Min Steady State 
during Disturbance 

DG2 

F5 
Mean Steady State 
during Disturbance 

DG2 

F14 
SD Ex during 

Disturbance DG1 

F6 
Max Ex during 

Disturbance DG1 
F15 

SD Ex during 
Disturbance DG2 

F7 
Max Ex during 

Disturbance DG2 
F16 

SD Steady State 

during Disturbance 
DG1 

F8 

Max Steady State 

during Disturbance 
DG1 

F17 

SD Steady State 

during Disturbance 
DG2 

F9 

Max Steady State 

during Disturbance 
DG2 

  

 

Fig. 2 shows an example of a single phase fault at phase A 

measured at DG1 terminal and corresponding phase space 

representation. The data in Fig. 2 (b) are grouped into two. 

Group one data is used to extract the features of total event 

such as the duration of event, while group two data represents 

steady state period during disturbance where transients are 

minimal. Fig. 2 also exhibits some of the features such as 

mean, maximum, minimum and SD of Ex values that are 

extracted.  

 

 

 

Fig. 2 Phase space feature extraction 

VI. STRUCTURE OF PURPOSED NEURAL NETWORK 

In this study, three networks are used in which each of the 

networks represent phase A, B and C respectively as shown in 

Fig. 3. The extracted seventeen features are the inputs to each 

neural network model which is developed in MATLAB® 

software.  

 

 

Fig. 3 Structure of classification technique 

 

Fig. 4 summarizes the description of input and outputs of 

neural network used for training and testing islanding 

detection scheme.  

 

 

Fig. 4 Description of inputs and outputs of the training and simulation 

data for neural network for one phase 

 

A data set consisting of 268 samples are used for each of 

the phases, which divided into training, validation and testing.  

In these cases, 134 samples (60%) of data are used for the 

training and 67 samples (20%) of data are applied for 
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validation and testing. Table III shows the number of samples 

for training, validation and testing data. 
 

TABLE III 

NUMBER OF SAMPLES FOR TRAINING, VALIDATION AND TESTING 

Data types Number of sample data, h 

Training 134 

Validation 67 

Testing 67 

 

For the RBF and PNN implementation, the same 134 

training data sets consisting of seven particular events are 

generated, while data sets with 67 different samples have been 

used for testing purposes. Table IV shows the target value 

based on the type of event class. The output of both RBF and 

PNN are then compared with the actual target data.  

The overall procedure of islanding and non-islanding 

detection is shown in Fig. 5.  
 

TABLE IV 

SETTING OF EVENT TYPE 

Event Type Target 

Normal Condition 1 

Line to Ground Fault 2 

Line to Line to Ground Fault 3 

Three phase to Ground Fault 4 

Load Switching 5 

Capacitor Switching 6 

Islanding 7 

 

 

Fig. 5 Proposed islanding and non-islanding (other disturbance) 

scheme 

VII. TEST RESULT 

A. RBF Performance 

The performance of islanding classification and detection 

using the phase space and RBF classifier was evaluated using 

testing data after being trained by the RBF model. This test 

data contains non-islanding and islanding events. Here, some 

of the sample of RBF testing results is shown as in Table V in 

which the yellow cells in the table denote the misclassification 

of events. As shown in the table, the RBF results are compared 

with actual or target value. The RBF outputs are not in crisp 

value in the range of 1 to 7. Hence, the RBF numbers have to 

round first before it is compared with the actual target value. 

From the Table V, note that the SL denotes as load switching, 

SC is capacitor switching, LG denotes as line to ground fault, 

LLG is line to line to ground fault, LLLG is three phase to 

ground fault and I is islanding condition. From the 

observation, it shows that most of the misclassifications are 

recorded as fault of types and also the islanding events.  

B.  PNN Performance 

Table VI shows several samples of PNN testing result in 

which the yellow cells in the table denote the misclassification 

of events. However, the PNN was testing the 67 sets of test 

data. From the Table VI, note that the SL denotes as load 

switching, SC is capacitor switching, LG denotes as line to 

ground fault, LLG is line to line to ground fault, LLLG is 

three phase to ground fault and I is islanding condition. Table 

VI shows that most of the misclassification is recorded in load 

and capacitor switching cases. Comparing the testing result of 

PNN and RBF, it can be concluded that the performance of 

PNN is better than RBF in detecting and classifying islanding 

condition. 

The comparison of neural network classification accuracy 

for islanding and non-islanding events of the phase 

respectively is depicted in Table VII. It is observed that the 

overall accuracies of non-islanding condition in the case of 

RBF are 88.718%, while 94.872% for the PNN cases. 

However, from the observation, the RBF cannot detect the 

islanding condition at all. Meanwhile, the average accuracies 

of islanding in PNN are most perfect, which is 100%. The 

performance comparison for computation time is represented 

in Table VIII. It is shown that learning epochs, training time 

and testing time of PNN is much lower than RBF. Thus, the 

PNN-based technique is more accurate and faster compared to 

other existing techniques for islanding detection. 
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TABLE V 
RBF TESTING RESULT 

Case Actual RBF-A Round Case Actual RBF-B Round Case Actual RBF-C Round 

SL 5 4.9081 5 SL 5 5.1344 5 SL 5 4.9521 5 

SC 6 6.0533 6 SC 6 6.1178 6 SC 6 6.2794 6 

SC 6 5.9072 6 SC 6 5.3348 5 SC 6 6.1878 6 

LG 2 2.0462 2 LG 2 2.2024 2 LG 2 2.5955 3 

LLG 3 3.0384 3 LLG 3 2.846 3 LLG 3 2.7022 3 

LG 2 2.1744 2 LG 2 3.1022 3 LG 2 0.541 1 

LLG 3 4.0237 4 LLG 3 2.8829 3 LLG 3 -20.221 -20 

LG 2 1.9905 2 LG 2 2.1702 2 LG 2 1.8132 2 

LLLG 4 2.5498 3 LLLG 4 4.2646 4 LLLG 4 3.129 3 

LG 2 1.9543 2 LG 2 1.9916 2 LG 2 1.8237 2 

LLG 3 2.0169 2 LLG 3 3.2049 3 LLG 3 -31.127 -31 

LLG 3 3.2548 3 LLG 3 3.0152 3 LLG 3 2.3049 2 

LLG 3 2.7168 3 LLG 3 3.0336 3 LLG 3 3.867 4 

LLLG 4 4.0821 4 LLLG 4 3.9572 4 LLLG 4 4.0517 4 

LLLG 4 4.0354 4 LLLG 4 3.9791 4 LLLG 4 3.0662 3 

LG 2 1.9656 2 LG 2 2.3403 2 LG 2 2.4988 2 

LG 2 1.7735 2 LG 2 2.5248 3 LG 2 1.712 2 

LG 2 1.9192 2 LG 2 1.8725 2 LG 2 2.0795 2 

LG 2 1.8088 2 LG 2 1.8466 2 LG 2 2.0808 2 

LG 2 2.4213 2 LG 2 2.6713 3 LG 2 2.1685 2 

LG 2 2.0238 2 LG 2 2.1249 2 LG 2 2.044 2 

LLG 3 2.721 3 LLG 3 2.9909 3 LLG 3 4.2374 4 

LLG 3 2.9528 3 LLG 3 2.9967 3 LLG 3 3.1164 3 

LLLG 4 3.9019 4 LLLG 4 3.2527 3 LLLG 4 3.1592 3 

LLLG 4 3.878 4 LLLG 4 4.2321 4 LLLG 4 3.882 4 

LG 2 1.9165 2 LG 2 2.0909 2 LG 2 1.2157 1 

LG 2 2.5805 3 LG 2 2.1808 2 LG 2 1.6186 2 

LG 2 2.1589 2 LG 2 2.0236 2 LG 2 2.2894 2 

LG 2 2.2079 2 LG 2 1.8411 2 LG 2 0.9667 1 

LLG 3 2.8944 3 LLG 3 2.6315 3 LLG 3 2.9744 3 

LLLG 4 4.0597 4 LLLG 4 3.4842 3 LLLG 4 4.0495 4 

LLLG 4 3.8481 4 LLLG 4 3.8853 4 LLLG 4 3.8639 4 

I 7 12.3201 12 I 7 12.323 12 I 7 10.616 11 

I 7 -0.2188 0 I 7 2.4451 2 I 7 4.8138 5 
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TABLE VI 

PNN TESTING RESULT 

Case Actual PNN-A Case Actual PNN-B Case Actual PNN-C 

SL 5 5 SL 5 5 SL 5 5 

SL 5 6 SL 5 6 SL 5 6 

SL 5 6 SL 5 6 SL 5 6 

SL 5 5 SL 5 5 SL 5 5 

SC 6 6 SC 6 6 SC 6 6 

SC 6 6 SC 6 5 SC 6 6 

SC 6 6 SC 6 5 SC 6 5 

LG 2 2 LG 2 2 LG 2 2 

LLG 3 3 LLG 3 3 LLG 3 3 

LG 2 2 LG 2 2 LG 2 2 

LLG 3 3 LLG 3 3 LLG 3 6 

LG 2 2 LG 2 2 LG 2 2 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LG 2 2 LG 2 2 LG 2 2 

LG 2 2 LG 2 2 LG 2 2 

LG 2 2 LG 2 2 LG 2 2 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LG 2 2 LG 2 2 LG 2 2 

LG 2 2 LG 2 2 LG 2 2 

LG 2 2 LG 2 2 LG 2 2 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLG 3 3 LLG 3 3 LLG 3 3 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

LLLG 4 4 LLLG 4 4 LLLG 4 4 

I 7 7 I 7 7 I 7 7 

I 7 7 I 7 7 I 7 7 
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TABLE VII 

COMPARISON OF NEURAL NETWORK CLASSIFICATION ACCURACY 

 Classification accuracy (%) 

Events RBF PNN 

Phase A 

Islanding 0 100 
Non-Islanding 96.923 96.923 

Phase B 

Islanding 0 100 
Non-Islanding 90.769 93.846 

Phase C 

Islanding 0 100 
Non-Islanding 78.461 93.846 

Total Accuracy 
Islanding 0 100 

Non-Islanding 88.718 94.872 

 
TABLE VIII 

PERFORMANCE COMPARISON BETWEEN NEURAL NETWORKS  

Parameter RBF PNN 

Learning Epochs 125 1 
Training CPU Time (Sec) 0.123759 0.115925 

Testing CPU Time (Sec) 0.722817 0.203702 

VIII. CONCLUSION 

An effective method for the islanding and non-islanding 

detection using neuro-phase space technique is presented in 

this paper. The method uses three classifiers for each phase 

and takes a measurement of voltage signals as the inputs. The 

phase space techniques were utilized for extracting all the 

special features for classifying the transients. The features 

extracted from phase space technique are very simple and 

effective. Two types of classifiers namely RBF and PNN were 

investigated. The results show that the PNN classifier 

performs better than RBF classifier. The PNN algorithm takes 

less computation and it efficiently classified the islanding and 

non-islanding events. 
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