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Abstract.  Discrete Orthonormal Transform has been a basis for digital image processing. The lesser coefficients of a 
Discrete Orthonormal Transform to reconstruct an image is the more compact support the Discrete Orthonormal 
Transform provides to an image. Tchebychev Moment Transform has been shown to provide a more compact support to 
an image than the popular Discrete Cosine Transform. This paper will investigate the contribution of each coefficient of 
the Discrete Orthonormal Transform to the image reconstruction. The error threshold in image reconstruction will be the 
primitive of Psychovisual Model to an image. An experimental result shall show that the Psychovisual Model will 
provide a statistically efficient error threshold for image reconstruction.  
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INTRODUCTION 

Discrete Orthonormal Transforms have better 
image representation capability than the continuous 
orthogonal moments. Discrete Orthonormal 
Transforms are widely used in image processing 
applications such as image texture characterization [1], 
image reconstruction [2], image dithering [3] and 
image compression [4], [5], [6]. Recently, Tchebychev 
Moment Transform (TMT) has been shown to provide 
a more compact support to image compression [6] than 
the popular Discrete Cosine Transform. Tchebychev 
moments have its own advantage in image 
reconstruction error which has not been fully explored. 
The Tchebychev moments are capable of performing 
image reconstruction exactly without any numerical 
errors [2]. They involve only algebraic expressions 
and can be computed easily using a set of recurrence 
relation.  

The visual details of image information are 
embedded into the amount of signal moment 
coefficients. In order to reduce the quantity of the 
irrelevant information to present visual image, the 
amount of moment coefficients to be encoded shall be 
determined by the psychovisual threshold of the 
human visual system (HVS) for each moment order. In 
order to estimate an ideal amount, each moment 
coefficient shall incremented one by one to analyze its 
effect on the error reconstruction. The sensitivity The 
DCT and TMT basis function are investigated in order 
to measure an optimal image representation.  

The sensitivity of the moment coefficient on each 
moment order gives significant effect on the quality 
image reconstruction. An ideal error reconstruction 

threshold will be the primitive of psychovisual 
threshold to better image reconstruction performance. 

DISCRETE ORTHONORMAL 
TCHEBYCHEV TRANSFORM  

Discrete orthonormal Tchebychev transform is an 
efficient transform based on discrete Tchebychev 
polynomials. Mukundan [4], [5], [6] originally 
explores the possibility of using discrete orthonormal 
versions of Tchebichef polynomials for image 
compression. For a given set {tn(x)} and image 
intensity f(x, y), the forward orthonormal Tchebychev 
transform of moment order m + n is given as follows 
[7]: 
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for m = 0, 1, 2, ..., M-1, n = 0, 1, 2, ..., N-1. f(x, y) 
denotes the intensity value at the pixel position (x, y). 
The Discrete orthonormal Tchebychev polynomials 
tn(x) are defined using the following n recursive 
relation: 
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for x=0, 1, ..., M-1 and n = 2, 3, ..., N�1, where 

22

2

1
142

nN
n

n �
�

�� , 22

2

2
14)1(

nN
n

n
N

�
��

��  and  

22

22

3
)1(

32
12)1(

nN
nN

n
n

n
n

�
��

�
��

�� .                           (3) 

The starting values for the above recursion can be 
obtained from the following equations: 
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The n recursion is illustrated by arrows with solid lines 
in Fig. 1. 
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FIGURE 1.  The 8×8 matrix representation of orthonormal 
Tchebychev polynomials, the solid arrows denote the n 
recursion and the dotted arrows denote x recursion. 

 
FIGURE 2.  The First four Discrete Orthonormal 
Tchebychev Polynomials tn(x) for x = 0, 1, 2 and 3. 
 

For a small image block such as N=8, coefficients 
�1, �2, and �3 are small. The n recursion given in (2) is 
practically useful having pre-computed polynomials 
tn(x) for n=0 and 1. The first four discrete orthonormal 
Tchebychev polynomials are shown in Fig. 2. 
 

The process of image reconstruction from its 
moments, the inverse TMT is given as follows:  
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for m = 0, 1, 2, ..., M-1, n = 0, 1, 2, ..., N-1, where 
),(

~
yxf denotes the reconstructed intensity value and M 

denotes the maximum order of moments used.  

DISCRETE COSINE TRANSFORM 

Discrete Cosine Transform (DCT) is widely used in 
the area of signal processing, particularly for transform 

coding of image compression. The two dimensional  
DCT is the basis of the JPEG image compression 
standard. The basis vectors of the DCT can be derived 
from the class of discrete Tchebychev polynomials [9]. 
In addition, DCT polynomial set Cn(x) of size N=8 can 
be generated iteratively as follows: 
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for x = 0, 1, 2, …, N-1. The first four one-dimensional 
DCT polynomials Cn(x) of size N=8 above are shown 
in Fig. 3 for visual purposes.   

 
FIGURE 3.  One-dimensional Discrete Cosine 
Transform of set Cn(x) for n = 0, 1, 2, 3. 

 
The definition of two-dimensional DCT for an 

input image A and output image B is given as follows 
[9]:  
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for p = 0, 1, 2, …, M-1 and q = 0, 1, 2, …, N-1, where  
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The inverse of two-dimensional DCT is given as 
follows: 
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for p = 0, 1, 2, …, M-1 and q = 0, 1, 2, …, N-1. 

EXPERIMENTAL DESIGN 

A psychovisual model design will be conducted via 
quantitative experiment. The 80 images (24-bit RGB 
with 512×512 pixels) are chosen to be the input 
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images. They are 40 natural images and 40 graphical 
images. They are transformed by TMT and DCT, 
quantized and reconstructed back to approximate the 
original image.The image reconstruction error shall be 
calculated by obtaining the differences between image 
reconstruction g(i, j, k) and original image f(i, j, k) 
which defined as follows: 
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where the original image size is M×N and the third 
index refers to the value of three color components. In 
addition the mean square error (MSE) and Peak Signal 
to Noise Ratio (PSNR) are also chosen here calculated 
to obtain to measure the quality of image 
reconstruction. 

MOMENT ORDERS 

This section provides a compact representation of 
the moment coefficient and the inverse moment 
coefficient. The block size S is taken to be 8. Based on 
the discrete orthonormal Tchebychev moments as 
defined in (1)-(5), a kernel matrix K(S×S) is given as 
follows: 
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Given an image block F(S×S) with f (x, y) denotes 
the intensity value of the image pixels for each colour 
component, the moment matrix T(S×S) is defined in (1) 
above as follows: 
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T

SSSS KFKT ���� �            (12) 
This process is repeated for every block in the original 
image to generate Tchebychev moments. The inverse 
moment relation used to reconstruct the image block 
from the above moments is as follows: 

T
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where G(S×S) denotes the matrix image of the 
reconstructed intensity value. This process is repeated 
for every S×S block of an image.  

In general, moment order describes the numerical 
quantities at some distance from a reference point or 
axis [10]. Each 8×8 block image is arranged in a linear 
order of the moment coefficient. The implementation 
of moment by M(S×S) where S=8 for TMT is as 
provided below: 
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The moment of order zero m(0,0) represents the total 
intensity of an image [11]. The first order moment is 
represented as symbols m(1,0) and m(0,1). The second 
order moment is represented as symbols m(2,0), m(1,1) 
and m(0,2) and so on. The moment coefficients of each 
order are incremented one by one up to a maximum 
quantization value from an order zero to order 
fourteen. Recently, the first author proposed the 
quantization table for TMT image compression [6].  

The quantization value is to determine the amount 
of moment coefficient for the visual quality image 
representation. The quantization is used as a threshold 
of the visibility HVS tolerance to reduce the quantity 
of moment coefficients. 

 
FIGURE 4.  Average reconstruction error of an 
increment on Tchebychev moment coefficients on the 
luminance for 40 natural color images. 

PSYCHOVISUAL MODEL ON TMT  

The reconstruction error scores of an increment 
based on the quantization table [6] from an order zero 
to the order fourteen produces a curve. In order to 
produce a psychovisual threshold, the new a smooth 
transitional curve is needed which results in an ideal 
curve of average error scores. The average 
reconstruction error of an increment Tchebychev 
moment coefficients on luminance (Y) and 
Chrominance (U) for 40 natural images are shown in 
Figs. 2 and 3.  

The blue line as depicted in Figs. 4 and 5 presents 
image reconstruction error for each moment order 
based on a quantization table value in [6] respectively. 
An ideal psychovisual threshold for luminance and 
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chrominance is represented by a red curve. The 
authors propose a function as depicted by a red line in 
Figs. 4 and 5 for psychovisual error thresholds of 
Tchebychev basis function for luminance fVL and 
chrominance fVR which are defined as follows: 
fML(x) = �0.00009895x6 + 0.0045x5 – 0.07129x4       

+ 0.4354x3 – 0.6352x2 – 0.737x + 4.       (15) 
fMR(x) = �0.00008837x6 + 0.0041x5 – 0.0661x4  

+ 0.4111x3 – 0.6368x2 – 0.4389x + 3.      (16) 

 
FIGURE 5.  Average reconstruction error of an 
increment on Tchebychev moment coefficients on the 
chrominance for 40 natural color images. 
 

The ideal error reconstruction for each moments 
order is used to determine the tolerance on image 
representation to the HVS. These functions are used as 
thresholds for each block 8×8 moment coefficients to 
reduce the amount of codes on moment coefficients.  

PSYCHOVISUAL MODEL ON DCT 

The effects of incrementing DCT coefficients based on 
from minimum value to the  maximum JPEG 
quantization tables on a given order are measured by 
image reconstruction error to get a threshold function. 
The average full error score of an increment DCT 
coefficient on luminance (Y) and chrominance (U) for 
40 natural images are shown in Figs. 6 and 7.   

 

FIGURE 6.  Average reconstruction error of an 
increment on DCT coefficient on the luminance for 40 
natural color images. 

The green and blue lines represent image 
reconstruction error from the minimum to maximum 
values on the JPEG quantization table. The curve from 
order zero to fourteen of average reconstruction error 
is analysed to get a smooth transition to produce an 
ideal curve of average error scores. An ideal 
psychovisual threshold for luminance and 
chrominance is represented by a red curve. 

 
FIGURE 7.  Average reconstruction error of an increment 
on DCT coefficient on the chrominance for 40 natural color 
images. 
 
With reference to Figs. 6 and 7, the authors propose a 
psychovisual threshold for DCT basis function for 
luminance fVL and chrominance fVR of the quantization 
tables which are defined as follows: 
 
  fVL(x) = 0.00005715x6 � 0.002x5 + 0.0202x4  

– 0.0561x3 + 0.1683x2 – 0.1743x + 2        (17) 
fVR(x) = 0.0002785x5 � 0.0082x4 + 0.0471x3 

– 0.2082x2 + 0.0588x + 1.7                      (18) 
for x = 0, 1, 2, ..., 14. 

 
TABLE 1. Reconstruction error score between 8×8 
DCT and 8×8 TMT for 40 real images 

Image  
Measure 

Default Quantization Psychovisual threshold 
8×8 DCT 8×8 TMT 8×8 DCT 8×8 TMT 

Full Error 5.5348 5.2584 5.4987 5.2456 
MSE 70.9635 58.1587 69.5199 57.4476 
PSNR 31.1903 31.3721 31.2516 31.3790 
 
TABLE 2. Reconstruction error score between 8×8 
DCT and 8×8 TMT for 40 graphical images. 

Image  
Measure 

Default Quantization Psychovisual threshold 
8×8 DCT 8×8 TMT 8×8 DCT 8×8 TMT 

Full Error 6.1479 4.71429 5.8087 4.6034 
MSE 113.8332 68.20336 100.0520 62.5664 
PSNR 29.7903 31.4483 30.2278 31.6477 

 
The statistical reconstruction error of psychovisual 

model for Tchebychev moments for 40 real and 40 
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graphical images respectively are shown in Table 1 
and Table 2. The psychovisual threshold on TMT 
gives significantly better performance than DCT 
especially on graphical images. The experimental 
results show that psychovisual threshold performs 
better on both DCT and TMT by giving lower 
reconstruction error. In order to observe the 
effectiveness of a psychovisual threshold for 8×8 
Tchebychev basis function, the reconstruction image is 
zoomed in 400%. 

  
FIGURE 8.  Original baboon image and its zoomed left eye.  
 

  
FIGURE 9.  Output Images from quantization table (left) 
from standard JPEG against psychovisual threshold. 

  
FIGURE 10.  Output Images from quantization table (left) 
from original TMT against psychovisual threshold. 
 

The experimental results of image reconstruction 
from TMT using psychovisual threshold as depicted 
on the right of Fig. 10 is closer toward to the original 
image.  

CONCLUSSION 

Moment functions based on discrete orthonormal 
Tchebichef polynomials have been used recently in 
image compression. This paper has introduced 
psychovisual model based on image reconstruction 
error. These threshold functions represent the 
contribution of each moment coefficient to reconstruct 
the compressed image. This psychovisual threshold is 
then used to determine the amount of moments to 
represent the visual details of image information. The 
experimental results show that the psychovisual model 

provides an efficient reconstruction error for a better 
image quality. Psychovisual model provides an 
optimal compact image representation from a 
minimum representation of moment coefficients. 
Image reconstruction using psychovisual model based 
on orthonormal Tchebychev moments has been used 
as an example to illustrate the efficient image 
compression based on the proposed psychovisual 
threshold. The psychovisual model can be suitability 
modified for an adaptive image compression to 
generate custom quantization tables. The proposed 
psychovisual model can be used to do high image 
compression rate and still get high quality image 
reconstruction. 
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