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ABSTRACT 

 

Nanofluid is an advanced fluid with enhanced thermophysical properties that has been introduced 

in many applications for better heat transfer process. In automotive cooling system, conventional 

coolants such as water and ethylene glycol could have superior thermophysical properties of 

thermal conductivity, viscosity, density  and heat transfer coefficient by introducing nanoparticles 

suspension. This study investigated the thermophysical properties of Copper/Water nanofluid by 

using mathematical modeling approach to come out with a new coolant for Louvered-fins and flat 

tube of a radiator. The nanofluid showed enhanced thermophysical properties with nanoparticles 

suspension of 2 vol.%  to 10 vol.%. By offering 10 % of copper nanoparticles concentration, the 

heat transfer coefficient of the nanofluid was increased up to 26000 W.m
-2

K
-1

 with enhancement of 

92 %. Consequently, it also enhanced the heat transfer rate in the cooling system. The different 

particles sizes of 10 nm, 50 nm, and 100 nm showed different heat transfer coefficients but the heat 

transfer rate in the radiator is similar, up to 64400 W with 10 % of nanoparticle volume fraction. 

The nanofluids showed better heat transfer characteristics as a new alternative coolant  for the 

radiator.  
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1.0 INTRODUCTION OF NANOFLUIDS AND RADIATOR 

 

Nanofluids have been a new research area for the past years as an approach to enhance the heat 

transfer rate in many applications. Many investigations through experimental works, mathematical 

modeling and simulation have been done to begin with massive implementation of nanofluids in 

important modern equipments and systems like air-conditioner, automotive cooling system, 

electronics, and medical equipment. Nanofluids is a potential fluid with superior properties to 

replace conventional fluids such as water, deionised water, refrigerant, coolant, lubricant, etc. The 

term of “nanofluids” has been introduced by Choi in 1995 at Argonne Research Laboratory as an 

advanced fluid that showed superior heat transfer properties with nanoparticle suspensions 

(Choi, 1995).   

 The nanofluids have been grouped based on their applications which occasionally called as 

nanolubricant or nanorefrigerant, which is also one kind of nanofluids which depends on the type of 

conventional fluids. Nanofluids studies mainly involved thermal conductivity and heat transfer 
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coefficient of the nanofluids since the thermophysical properties show a very significant influence 

in heat transfer processes. Murshed et al. (2007) stated that the thermal conductivity of nanofluids 

varies with three attributes; size, shape and material of nanoparticles. Other properties such as 

viscosity, density and surface tension of nanofluids have also been explored to obtain reliable 

results for massive implementation in future. The nanofluids have superior thermophysical 

properties which have been proved since past decades by many researchers due to the suspension of 

nanoparticles. The nanoparticles could be metal, non-metal or carbon nanotubes (CNTs) which 

must be dispersed in conventional fluids to produce nanofluids. 

 Eastman et al. (1997) proved that the thermal conductivity of nanofluids that contains CuO, 

Al2O3 and Cu nanoparticles with two different base fluids; water and HE 200 oil showed 60% 

improvement for the thermal conductivity as compared to the corresponding base fluids for only 5 

vol% of nanoparticles suspension. Nanoparticles suspended into the refrigerant (nanorefrigerant) 

also has higher thermal conductivity than conventional pure refrigerant (Jiang et al., 2007). The 

superior of nanofluids thermophysical properties in consequence of the nanoparticles dispersion 

have been demonstrated to the world.  Nowadays, the stage of research  is changing from 

investigating the thermophysical properties based on the nanoparticles types and  nanoparticles 

volume fraction to the development of nanofluids in diverse industries to make it useful as a new 

energy-efficient heat transfer fluid in real world application.   

 The superior properties and stability of nanofluids are considered as main research areas as 

it challenges the significance of nanofluids implementation in existing application such as radiator 

and air-conditioners. Suitable material of nanoparticle is crucial to be identified in order to be 

suspended in different types of base fluids. The size of nanoparticles, temperature, and optimum 

concentration of nanoparticles must be considered carefully. These factors are important to be 

considered so that high thermal conductivity and heat transfer coefficient of nanofluids could be 

obtained without causing agglomeration, instability, corrosion, high pressure drop and pumping 

power (Saidur et al., 2011; Leong et al., 2010; Han, 2008)  

 An automotive cooling system usually consists of radiator, water pump, thermostat, radiator 

pressure cap, and electric cooling fan (Maple, 2008). The radiator is the main component as it was 

designed to remove heat from an engine block by using specified coolants. Generally, the coolant of 

the radiator is either water or water and ethylene glycol (anti-freezing fluid), which flows inside the 

tubes. In fact, the coolants have poor heat transfer properties in nature. Another type of coolant is 

outside air which flows through the fins to cool down the temperature of water. Nowadays, the 

researchers and engineers from automotive industries have been applying green technology concept 

and desiring for a compact engine system with low fuel consumption. Consequently, the study of 

nanofluids as an application in the automotive industries has developed throughly. By introducing 

nanofluids with superior thermophysical properties, the radiator size can be reduced but at the same 

time, it is offering identical heat transfer rate. The frontal area of a car could be redesigned to 

reduce aerodynamic drag so that less fuel consumption is required (Leong et al., 2010; Wong et al., 

2010). 

 Argonne researchers proved that despite nanofluids thermal conductivity depends on 

temperature and particle volume fraction, it still showing high thermal conductivity than 

conventional radiator coolants (Choi, 2011). The heat transfer rate and thermal performance of 

Cu/EG coolant in an automotive radiator can be enhanced by increasing the particle volume fraction 

from 0 % to 2 % (Leong et al., 2010). The enhancement of heat transfer depends on air and coolant 

Reynolds number (Re) which is increasing with nanoparticle concentration. Mare et al. (2011), 

experimentally proved that the convective heat transfer coefficient of CNTs nanofluid increased 

about 50 % in comparison to water for the same Reynolds number. Basically, there are five factors 

that can enhance the heat transfer; Brownian motion, layering at the solid/liquid interface, Ballistic 
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phonon transport through the particles, nanoparticles clustering, and friction between the 

nanoparticles and fluid (Wang and Mujumdar, 2007). Meanwhile, Xuan and Li (2003) agreed 

dispersed phase of nanoparticles caused pressure drop slightly but the nanoparticles dispersion is 

stable either with surfactant or conventional fluid only. Razi et al. (2011) investigated the heat 

transfer and pressure drop of CuO-base oil nanofluid flow inside horizontal flattened tubes under 

constant heat flux of 2600 W/m
2
 and proved that the pressure drop of nanofluids increased with 

nanoparticle concentration. There is also a withdrawn investigation of nanofluids natural convective 

heat transfer since the suspension of nanoparticles caused higher viscosity and pressure drop as 

compared to conventional fluid (Calvin & Peterson, 2010).  

 Therefore, there are a lot of factors that need to be considered when deciding to introduce 

specified nanofluid as a new alternative for heat transfer enhancement.This study aims to improve 

the heat transfer rate in an automotive cooling system by introducing copper/water nanofluids as a 

new coolant in the system. The mathematical modeling approach is used to investigate the effects of 

nanoparticles volume fraction on the nanofluids thermal conductivity and the heat transfer 

coefficient. The thermal properties are used to determine overall total heat transfer rate of a car 

radiator.  

 

 

2.0 METHODOLOGY  

 
Three different sizes of copper nanoparticles; 10 nm, 50 nm and 100 nm are used to identify the 

effect of nanoparticle size on nanofluid thermal conductivity. The thermal conductivities of the 

nanofluids from the diverse nanoparticles sizes are used to determine the heat transfer rate of a 

louvered-fin flat tube radiator as shown in Figure 1. The heat transfer rate in the radiator considered 

only the conventional coolant; water (0% copper nanoparticle suspension) is 64.354 kW based on 

the mathematical modeling and radiator specification shown  in Table 2. 

 

 
FIGURE 1 

Louvered-fins and flat tube of a radiator 

 

The effects of nanoparticles concentration; 2 vol.% to 10 vol.% on thermal conductivity and 

heat transfer coefficient are investigated by using mathematical modeling from other studies 

(Maple, 2008; Leong et al., 2010). In advance, the properties of water, air and copper are identified 

and tabulated as shown in Table 1. From Table 1, it shows that the thermal conductivity of copper 

(nanoparticles) is significant higher than water (conventional fluid). For this reason, the main basis 

of suspending the copper nanoparticles is to enhance the thermal conductivity of the conventional 

fluid (coolant).  
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TABLE 1 

Properties of coolants and nanoparticle (Yunus, 2004) 

 

Properties 

 

Water 

(368 K) 

Air 

(303 K) 

Cu 

(300K) 

Density, ρ [kg.m
-3

] 962 1.15 8933 

Thermal Conductivity, k  [W.m
-1

K
-1

] 0.678 0.0263 401 

Specific heat,Cp [Jkg
-1

.K] 4212 1007.12 385 

Dynamic viscosity, µ [kgm
-1

s
-1

] 2.96 x 10
-4

 1.86 x 10
-5

 - 

 
Table 2 shows a geometry description of a car radiator that has been used to calculate the overall 

heat transfer rate by introducing Copper/Water nanofluid to replace the coolant. The coolant 

volumetric flow in the radiator is 0.11 m
3
.min

-1
, meanwhile the air volumetric flow and air velocity 

are 66.5 m
3
.min

-1
 and 4.47 m.s

-1
. This study used exact working condition and radiator specification 

(Maple, 2008) except the coolant (water) is changed to nanofluid with various nanoparticles 

concentration. Some analyses have been done by using mathematical modeling and Microsoft 

Office Excel 2007 by considering the inlet temperature of the coolant is 368 K, and the outside air 

is 303 K. 

 

TABLE 2 

Geometry description of automotive radiator (Maple, 2008) 

 

Radiator Dimension Unit  

Radiator length, rL   

 

 

 

 

meters 

0.4572 

Radiator width, rW  0.4318 

Radiator height, rH  0.0246 

Tube width, tW  0.0246 

Tube height, tH 1.56 x 10
-3

 

Fin width, fW  0.0246 

Fin height, fH  0.0119 

Fin thickness, fT  2.54 x 10
-5

 

Distance between fins, fD  1.59 x 10
-3

 

No. of tubes  33 

 
 

3.0 MATHEMATICAL MODELING 

 
The effective thermal conductivity of nanofluid keff, considered the effect of interfacial layers which 

have been  developed around the nanoparticles as suspending metallic particles in the coolant. The 

effective thermal conductivity has been calculated by using Equation (1) with diverse nanoparticles 

concentration and sizes (Leong et al., 2006), 
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where kp is the thermal conductivity of nanoparticle, klr is the thermal conductivity of interfacial 

layer, kf is the thermal conductivity of coolant, ø  is the particle volume fraction, � = 1 + � , 

�� = 1 + �/2, and � = h/a is the interfacial layer thickness over the radius of nanoparticle. The 

enhancement of nanofluids thermal conductivity, keh = (keff - kf )/kf x 100 is calculated to observe the 

significane of nanoparticles concentration in the conventional coolant. The dynamic viscosity of 

nanofluid, �	
	is obtained from Brinkman model (Leong et al.,2010) which considered only two 

parameters: a) the conventional coolant viscosity, �
	and b) the nanoparticles concentration, ø. 

 

( )
 µµ  

2.5
1

1

fnf

φ−
=            (2) 

 

  The density, �	
	 and specific heat, Cp,nf of the nanofluid have been calculated from 

Equation (3) and Equation (4) as following, 

 

                                                            (3) 

 

( )

nf

pp,pfp,f

nfp,

-1

ρ

φρρφ CC
C

+
=         (4) 

 

where �
	and �
	are the densities of coolant and nanoparticle, meanwhile Cp,f  and Cp,p  are the 

specific heat of coolant and nanoparticle. To determine the heat transfer rate, the universal heat 

transfer equation from Maple, (2008) is used as shown in Equation (5), 

 

aacc AhAhUA

111
+=           (5) 

 

where hc is the heat transfer coefficient of the coolant (W.m
-2

K
-1

), ha is the heat transfer coefficient 

of air meanwhile Ac and Aa are the coolant surface area and air surface area (m
2
). To determine the 

heat transfer coefficent, Nusselt number (Nu) must be identified. The Dittus Boelter equation is 

used since the flow inside the tubes is turbulent based on the calculated Reynolds number, Re. The 

Dittus Boelter equation, Reynolds number and Prandtl number, Pr as well as the heat transfer 

coefficient are calculated as following (Leong et al., 2010), 
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where v is the velocity of the nanofluid, (ms
-1

), and DH is the hydraulic diameter. The hydraulic 

diameter is determined by using the following equations (Maple, 2008),  

 

 
WP

4A
D

min
H =                    (10) 

 

 tW.tHAmin =                    (11) 

 

tH)2(tWWP +=                     (12) 

 

  The universal heat transfer coefficient, UA of the nanofluid is determined by using NTU, a 

dimensionless modules which defined the number of transferred units shown in Equation (13).  

NTU is determined by considering the air surface area, the nanofluid surface area and the heat 

transfer coefficient of the conventional coolant.  

 

minC

UA
NTU =                     (13) 

 

Cmin in Equation (13) is obtained by comparing the thermal capacity rate of both coolants; the 

nanofluid and the air. The thermal capacity rate of the nanofluid, CRnf or thermal capacity rate of 

the air, CRa is calculated by using a general equation of thermal capacity rate, CR in Equation (14). 

The higher  calculated value of CR is considered as Cmax and the lower value is Cmin. 

 

µρCCR
 p=                     (14) 

 

The heat exchanger (radiator) effectiveness is determined by applying Equation (15), 

 

min

NturatioC
max

C

C )e(1

e1ε

−−
−

−=                    (15) 

 

where Cratio = Cmin /Cmax (Maple, 2008). To find the total transfer rate Q (W), the different between 

the nanofluid temperature, Tnf,in and air temperature, Ta,in must be identified and substituted into 

Equation (16) based on Leong et al., (2010) and Yunus (2004) studies. 

 

)-(Q inair,innf, min TTεC=                     (16) 

 
 

4.0 RESULTS AND DISCUSSION 

 
Figure 1 shows the enhancement of nanofluid thermal conductivity with particle volume fraction. 

By suspending 10 % of copper nanoparticles into the water, the thermal conductivity of the 

nanofluid can be enhanced more than 100 % for nanoparticles size of 10 nm. The other particle 

sizes of 50 nm and 100 nm show quite similar enhancement of thermal conductivity up to 100 %. 

The result proved that the particle size contributed significant effects on thermal properties and the 

thermal conductivity of nanofluid is increasing significantly with nanoparticles concentrations. The 

increasing size of nanoparticles has decreased the thermal conductivity of nanofluids.  
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The localized convection in the coolant because of nanoparticles Brownian motion is one of 

the reasons that enhance the thermal conductivity. Besides, the formation of interfacial layer 

between the copper nanoparticles and basefluid (water) is also contributing to the percentage of 

enhancement. The interfacial layer thermal conductivity (kl) is two times higher as compared to the 

basefluid (Leong et al., 2006). Therefore, instead of depending on the nanoparticles concentrations 

and particle sizes, the formation of interfacial layers around the nanoparticles is also contributing to 

improve the overall thermal conductivity of nanofluids. By using different nanoparticle volume 

fraction of 2 vol.% to 10 vol.%, the viscosity of nanofluids is also increasing and influencing the 

values of Reynolds number. The viscosity of nanofluids solely depends on nanoparticle volume 

fraction according to Brinkman model. By increasing the viscosity, the Reynolds number should be 

smaller. However, another important thermophysical property that need to be considered in 

determining the Reynolds number is the density of nanofluids. The effects of nanoparticles 

suspension on nanofluid density has increased the Reynolds number in this study.  

In this study, the nanoparticle volume fraction has more significant effects on density rather 

than viscosity of the nanofluid. Therefore, the Reynolds number is increasing with nanoparticles 

concentration. The Reynolds number is important to be used in identifying the type of flow in the 

tubes. As the Reynolds number is increasing from 15000 to 21000, it shows that the turbulence flow 

inside the radiator rectangular tubes becomes more “chaos”. Since the advanced coolant consists of 

nanoparticles, the turbulence flow increases conduction and convection processes since there are 

more contacts occurred between the nanoparticles and the tubes wall. This contributes to better heat 

transfer rate in the cooling process. 

 

 
 

FIGURE 2 

Nanofluid thermal conductivity as a function of nanoparticle volume fraction 

 
In Figure 3,  the overall heat transfer coefficient of nanofluid of different nanoparticle sizes 

are increasing with nanoparticle volume fraction. The coefficient of 10 nm nanoparticles increased 

about 9 % of percentage enhancement with 2 % of volume fraction, and constantly increasing up to 

92 % with 10 % of volume fraction, respectively. The heat transfer rate of the radiator is also 

increasing from 64356 W to 64376 W for 10 nm nanoparticles suspension as shown in Figure 4. 

The overall heat transfer rate enhancement shows insignificant value which is about 0.03 %. In 

Figure 4, the results of heat transfer rate for three different particle size are similar eventhough the 
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heat transfer coefficients quite varies as compared to each other. There are many factors that 

influence the results. One important factor is the flow rate of the outside air. This study assumed 

that the air flow rate is constant by focusing the influence of nanoparticles concentration on the 

thermal conductivity and heat transfer coefficient of nanofluid. The temperature of coolants should 

be varied due to operating temperature and air flow. High temperature different between two 

surfaces and air flow tend to increase the heat transfer rate. The fins construction is also one of the 

important factors that could influence the heat transfer rate by extending the surface area and 

choosing high conductive material. This study showed that copper/water nanofluid as the advanced 

coolant has increased the heat transfer rate of the radiator. Therefore, the combination of the major 

factors that influence the heat transfer characteristics of the radiator will produce high energy-

efficiency automotive cooling system. 

 

 
 

FIGURE 3 

Overall heat transfer coefficient as a function of nanoparticle volume fraction 

 

 

 
 

FIGURE 4 

Heat transfer rate of a louvered-fin and flat tube radiator 
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5.0 RECOMMENDATION FOR FUTURE WORK 
 

In automotive cooling system, the radiator is a main component that linking to other components 
such as water pump and hoses. By using nanofluid as the new coolant, there are possibilities of 
nanoparticles agglomeration and sedimentation inside the tubes, hoses and clogging the water 
pump. The corrosion issue in the cooling system cannot be neglected as adding metallic particle 
could damage the efficiency of the existing system.This problem might lead to parts wear, pressure 
drop increment, and higher energy consumption. Therefore, more investigations on other parts need 
to be proceed in order to introduce nanofluid as the advanced-coolant in the cooling system. It is 
important to have practical knowledge of nanofluids performance in real world cooling system so 
that the important aspects such as fuel consumption, construction cost, quality and safety can be 
identified before high-volume production of nanofluids-radiator. 
 
 
6.0 CONCLUSION 

 
Based on the mathematical modeling approach, the thermal conductivity of Cu/Water nanofluid is 
increasing significantly with nanoparticle volume fraction of 2 % to 10 % but decreasing with the 
increment of particle size. The suspension of nanoparticles into the conventional coolant has 
increased the heat transfer coefficient significantly up to 26000 W.m-2K-1 with the percentage 
enhancement is about 92 % for smallest nanoparticles size of 10 nm. Eventhough with different 
nanoparticle sizes, the enhancement of heat transfer rate is similar and depending significantly on 
nanoparticle volume fraction. The overall heat transfer rate of louvered-fin and flat tube radiator 
shows approximately up to 0.03 % enhancement as considering both types of coolants; the 
nanofluids and air.  
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