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Background. In current economic downturn, industries have to set good control on production cost,
tomaintain their profitmargin.Maintenance department as an imperative unit in industries should
attain all maintenance data, process information instantaneously, and subsequently transform it
into a useful decision. Then act on the alternative to reduce production cost. Decision Making Grid
model is used to identify strategies for maintenance decision. However, the model has limitation
as it consider two factors only, that is, downtime and frequency of failures. We consider third
factor, cost, in this study for failure-based maintenance. The objective of this paper is to introduce
the formulae to estimate maintenance cost. Methods. Fish bone analysis conducted with Ishikawa
model and Decision Making Grid methods are used in this study to reveal some underlying risk
factors that delay failure-basedmaintenance. The goal of the study is to estimate the risk factor that
is, repair cost to fit in the Decision Making Grid model. Decision Making grid model consider two
variables, frequency of failure and downtime in the analysis. This paper introduces third variable,
repair cost for Decision Making Grid model. This approaches give better result to categorize the
machines, reduce cost, and boost the earning for the manufacturing plant. Results. We collected
data from one of the food processing factories in Malaysia. From our empirical result, Machine C,
Machine D, Machine F, and Machine I must be in the Decision Making Grid model even though
their frequency of failures and downtime are less than Machine B and Machine N, based on the
costing analysis. The case study and experimental results show that the cost analysis in Decision
Making Grid model gives more promising strategies in failure-based maintenance. Conclusions.
The improvement of Decision Making Grid model for decision analysis with costing analysis is
our contribution in this paper for computerized maintenance management system.

1. Introduction

One of the main challenges in maintenance model is to improve the way we maintain
equipment and defend the maintenance decisions. Improved technology and the increased
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sophistication of maintenance personnel have led some companies to improve their reactive
approach. Proactive strategies utilize preventivemaintenance activities to prevent the failures
from occurring at an early stage [1]. Reference [2] developed analyses based on polling mod-
els, which could be used to obtain system performance metrics when preventive maintenance
is conducted. They calculated the weighted sum of mean service waiting times to measure
the overall preventive maintenance performance system. Some formulas are given by [2] to
estimate preventive maintenance and manufacturing system performance. The preventive
maintenance service is based on measurements going beyond a predetermined limit. If a ma-
chine cannot hold a tolerance, then other techniques, such as a condition-based maintenance
(CBM) and vibration-based maintenance, are initiated. All this maintenance involves costs.

In this study, we make comparison study on various maintenance techniques to es-
timate the reliability of machineries and embed them into computerized maintenance man-
agement system (CMMS). References [3, 4] used stochastic measures to analyze cost in
condition-based and failure-based maintenance in gas turbine productions. Bayesian and
Proportional hazardsmodel have been used by [5] to analyze cost in preventivemaintenance.
Later, [6] used mathematical measures to estimate cost in reliability-centred maintenance.
They used simulation studies to optimize the plant and wrote a program in computerized
maintenance management system. Reference [7] tinted few important reasons on why
industries are still lacking on decision support system:

(i) difficulty to collect raw data;

(ii) computational complexities;

(iii) complexity of modelling failure distribution;

(iv) gap between theory and practice;

(v) managers are unaware of the various types of maintenance optimization models.

As mentioned, there is little assessment of the successful applications of the main-
tenance optimization model and they are still underexplored in CMMS. Decision Making
Grid model can be used to identify strategies for maintenance decision in CMMS. However,
the model has limitation as it considers two factors only, that is, downtime and frequency
of failures. We consider third factor, cost, in this study for failure-based maintenance. In this
study, we sought to introduce costing formulae for Decision Making Grid model. This will
contribute for optimization algorithm development in CMMS.

2. Multiple Criteria Decision Making Methods

One of the most common problems in many engineering and business applications is how to
evaluate a set of alternatives in terms of a set of decision criteria. For example, let someone
intends to set up computer servers. There are a number of different configurations available
to choose from. The different operating systems are the alternatives. Here, a decision should
also consider cost and performance characteristics, such as processing unit speed, memory
capacity, network bandwidth, and number of clients. Alternatives of software, maintenance,
and expendability should be considered too. These may be some of the decision criteria for
this case, where the criteria may vary based on different purpose of the servers. The multiple
criteria decision making (MCDM) model is the problem-solving method, always used to
determine the best alternative for the above example.

The model consists of a finite set of alternatives, which decision makers have to select
or rank to a finite set of criteria, weighted according to their importance. Then, the model is
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structured to M alternatives and N decision criteria. Each alternative can be evaluated in
terms of the decision criteria. After that, the relative importance or weight of each criterion
can be estimated. Let aij , where i = 1, 2, 3, . . . , M and j = 1, 2, 3, . . . , N, denote the
performance value of the ith alternative in terms of the jth criterion. Also, let Wj denote
the weight of the criterion Cj . Then, [8] gave the core of the typical MCDM as given in the
following multicriteria matrix:

Criterion
Alternative C1W1 C2W2 C3W3 · · · CNWN

A1

A2

A3

· · ·
· · ·
· · ·
AM

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

a21

a31

· · ·
· · ·
· · ·
aM1

a12

a22

a32

· · ·
· · ·
· · ·
aM2

a13

a23

a33

· · ·
· · ·
· · ·
aM3

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

a1N

a2N

a2N

· · ·
· · ·
· · ·
aMN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(2.1)

The decision matrix is constructed, complete with the priority rating of each alter-
native with respect to each criterion, using a suitable measure. The evaluation ratings are
then aggregated, taking into account the weights of the criteria, to get a global evaluation for
each alternative and a total ranking of the alternatives. Given the above decision matrix, the
decision problem considered in this study is how to determine which is the best alternative
with the N decision criteria combined. For instance, if the decision problem is to select the
best project to be funded, then one is only interested in identifying the best candidate project.
In another case, if it is to allocate the budget among a number of competing projects, then one
may be interested in identifying the relative importance of each project, so that the budget
can be distributed proportionally to the significance of each project.

In a simple MCDM situation, all the criterions are expressed in terms of the same
unit, such as Saudi Riyals, hours, and metres. However, in many real-life MCDM problems,
different criteria may be expressed in different units. Examples of such units include pound
figures, political impact, regional impact, and so forth. These multiple dimensions make an
MCDM problem more complicated. That is why research in MCDM is numerous, diverse,
and found in many applications, as is shown by the examples given in Table 1.

Reference [17] used multiple criteria evaluation of multifamily apartment block’s
to benchmark maintenance contractors. They built the model for maintenance contractor
evaluation and the determination of its selection. Later, [18] applied the model in Lithuanian
case study. Reference [7] introduced another model, Decision-Making Grid (DMG) for
similar problem to identifymaintenance strategies. He revealed that DMG is themost suitable
model for continuous improvement in MCDM by identifying top ten worst production ma-
chines. This is because when machines in the top ten lists of worst performers have been
appropriately dealt with, then others will move down in the list and resources can be directed
at these new offenders. If this practice is continued from time to time, then all machines will
eventually be running optimally.
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Table 1: Research on MCDMmodel.

Researcher Focus Application Approach

[9, 10]

Design, development, and
implementation of CMMS with
criteria analysis and decision
mapping customized features on
maintenance maturity grid and
decision analysis

Automotive sector Mathematical formulas
DMG

[11]
Development of procedure and
algorithm to evaluate alternatives
in flexible manufacturing system

Mathematical analysis
and simulation

MCDM algorithm with
fuzzy data

[7, 12]

Development of hybrid
intelligent approaches systematic
analysis of the system with
combination on multiple criteria
analysis and fuzzy rule-based
techniques

Mathematical calculation
and simulation using
fuzzy logic

DMG multiple criteria
decision analysis fuzzy
logic rules

[13, 14]

Solution to perform a
multivariate design and multiple
criteria analysis of alternate
alternatives based on the
enormous amount of
information. Development of
multivariate design method and
multiple criteria for a building
refurbishment’s analysis

Public building of Vilnius
Gediminas Technical
University

Decision-Making matrix
Weightage analysis

[15]

Optimization framework on
optimal maintenance planning
arrangement of maintenance
schedules for PM by considering
few criteria: availability,
maintenance cost, life cycle costs,
and tolerance level

Paper production,
nuclear production plant

Multiple-objective
genetic algorithm
MATLAB toolbox

[16]

Survey result to show the
applicability of an approach
based on a combination of
distribution-free tolerance
interval and genetic algorithms
for testing and maintenance
optimization of safety-related
systems

Simulation using Monte
Carlo and genetic
algorithm

Multiple-objective
genetic algorithm

3. Decision-Making Grid Model

There are many researchers who have studied the DMG and apply it in the equipment
management area. We extended the study of these three selected reviews. In the first, [9]
has introduced the DMG model to help maintenance management identify breakdown
maintenance strategies. In short, DMG is a control chart in two-dimensional matrix forms.
The columns of the matrix show the three criterions of the downtime, whilst the rows of the
matrix show another three criterions of the frequency of the failures. The model consists of
these three steps:
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(i) criteria analysis;

(ii) decision mapping;

(iii) decision support.

Here, a better maintenance model for quality management can be formed by handling
both the rows and columns of the matrix, respectively. The matrix offers an opportunity to
decide what maintenance strategies are needed for decision-making, such as to practice OTF,
FTM, SLU, CBM, and DOM.

The second important review was undertaken by [10], in which implementation of
DMG in CMMS was discussed in detail. They extended the theory of the maintenance
maturity grid and implemented it into a disk brake pad manufacturing company in England.
The results can provide maintenance policies in the respective functional group in production
lines, to achieve their common goal to reduce downtime. Later, [7], in the third review,
comprehended the model and demonstrated the hybrid intelligent approach using the DMG
and fuzzy rule-based techniques. In this study, the DMG is extended with costing analysis in
small and medium food processing companies to identify the maintenance strategies.

DMG is used in this study as the model is flexible and considers OTF, FTM, SLU, CBM,
DOM, TPM, and RCM strategies in the same grid. The model is able to analyze multiple
criteria and is the best choice when the number of machines is less than fifty [19]. It can be
used to detect the top ten problematic machines on the production floor with several system
conditions. This is with regards to failures such as fatigue, imbalance, misalignment, loosened
assemblies, and turbulence, which can occur in rotational or reciprocating parts such as
bearings, gearboxes, shafts, pumps, motors, and engines. Identifying the top ten problematic
machines is in alignment with the 80-20 rule.

The rule states that 80% of the problems arise from the same 20% of the root causes. In
another word, once 20% of the root cause had been fixed, then 80% of the problem is resolved.
The application of the model can have a breakthrough performance, as it fulfils the purpose
of the model to map machines into a certain grid in a matrix and suggests the appropriate
maintenance strategies to comply with.

4. Preliminary Analysis

In this research work, we conducted formal interviews with multinational bearing manu-
facturers in Malaysia. We asked about the customers’ complaint about their production parts
performance after the sales. They gave feedback on the reason why the warranty period of
certain parts is one year, but there are still cases of the failure of parts within eight months
of the product’s deployment. Based on the manufacturer’s records, 14% of the parts’ failure
before expiry of the warranty is due to contamination in the equipment usage area. Another
34% is due to a fatigue where equipment is utilized for too long and 16% of these defects
are due to poor fitting during installation. The highest remaining portion is 36%, due to
routine maintenance. The technical team highlighted that the highest proportion of routine
maintenance is due to these factors:

(i) low quality of the lubrication oil;

(ii) lubrication quantity is too little or over the given specification limit;

(iii) preventive maintenance frequency is too frequent or very rare;

(iv) incorrect tools are used for repair and preventive maintenance;

(v) poor technician skills.
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Figure 1: Machine useful life cycle.

Companies have to strictly follow manufacturer specification or study their best-
known practice to improve these factors. However, this will definitely increase the mainte-
nance cost. When the machines deploy in SMI, they follow an important process in their flow
of the useful life cycle, which is shown in Figure 1. We also discovered that the maintenance
team can learn from the defect during the diagnostic and repair phases, to continuously re-
structure some improvement strategies in other phases. Further study on failure modes and
effect analysis can detect how bad the defect characteristics are. Then, recommendations can
be given to improve the equipment’s reliability during its life span.

In this study, further analysis on FBM or the diagnose and repair box in Figure 1
is investigated by formal interviews in small and medium food processing industries. The
purpose of the interviews is to reveal some underlying risk factors that delay FBM time.
The factors are identified with the Fishbone analysis using Ishikawa diagram, as shown in
Figure 2. Then, some strategies can be executed to reduce FBM time, such as

(i) improve preventive maintenance strategies;

(ii) use good quality replacement parts;

(iii) use good tools for repair and collaboration;

(iv) restructure man-hours on repairing the equipment.

However, most of the time, implementing these strategies will increase the mainte-
nance cost. Reference [20] proposed some structures for maintenance policy decision strat-
egies, that is, when to practice UBM, CBM, or FBM at any phase of the machine’s life cycle.
Reference [21] suggested more measurement of service processes studies using mathematical
models. Reference [22] used systematic mathematical measurements on covariates, illus-
trated by the use of the semiparametric, multistate hazards model for transition, and reverse
transition among more than one transient state, which emerged from follow-up studies.

Reference [23] used the proportional-hazards model to analyse transitions in human
contraceptive recovery over time and to illustrate the score test on testing the equality of
parameters for models on transitions and repeated transitions. Then, [24] employed the com-
peting risk model proposed by [23], to estimate the risk factors that delay the equipment’s
downtime. Reference [24] estimated the relationship between repair time and various risk



Advances in Decision Sciences 7

Poor preventive maintenance Poor quality of the raw materials
Parts replacement cost Partnership compatibility

Age of the machine High repair cost

Slow response Poor team work
Work instruction Poorly trained technicians

Tools availability Lack of relevant experience
Budget constraints Availability of content expert

Machine
Material

Method or
procedure

Man or
personnel

Delay in FBM

Figure 2: Ishikawa diagram.

factors of interest, including underlying characteristics of the technicians, that is, their age,
experience, and qualifications.

Reference [25] analysed downtime of the machines by exploring the general renewal
process for repairable systems. They used the Kijima Model II to model complex repairable
systems. A general likelihood function formulation for single and multiple systems with
the time-truncated data and failure-truncated data is applied to estimate parameters, using
Weibull software. However, [25] used only one parameter, that is, failure time in their anal-
ysis, which is insufficient in the proposed study.

Reference [26] defined DMG as a control chart in itself in two-dimensional matrix
forms. The columns of the matrix show the three criteria of the downtime, while the rows of
the matrix show another three criteria of the frequencies of the failures. A better maintenance
model for quality management can be formed, by handling both the rows and columns of the
matrix, respectively. The matrix offers an opportunity to decide what maintenance strategies
are needed for decision making, such as to practice OTF, FTM, SLU, CBM, or DOM. The
matrix can also be used to decide what maintenance concepts are useful for each defined cell
of the matrix, such as the TPM or RCM approaches. References [26, 27] have described an
application of AHP for selecting the best maintenance strategies. Later, [7] mentioned that
the DMG analysis is a very important measure prior to the AHP analysis.

We have discovered from the interviews and survey that the optimization strategies in
SMI should not be based solely on the machines’ downtime and frequency of failures. Yet,
another important factor, the cost of maintenance, should be considered seriously for FBM
jobs in SMI. Once the most problematic machines with higher maintenance costs have been
identified, then further decision analysis is conducted to improve their time-based main-
tenance by

(i) identifying candidates (machines) for the DMG model using cost analysis,

(ii) extending the DMGmodel suggested by [7, 10] by incorporating it with the costing
analysis,

(iii) giving appropriate suggestions on maintenance strategies.

The combination of the results is important as a membership function, to derive fuzzy
logic rules for maintenance policy and decision making, as suggested by [7].
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Table 2: Decision Making Grid [26].

Frequency Downtime
Low Medium High

Low OTF FTM1 CBM
Medium FTM2 FTM3 FTM4
High SLU FTM5 DOM

5. DMG and Costing Evaluation

References [7, 10] have demonstrated DMG as a powerful model in CMMS to analyse raw
data for strategic decision making. Reference [26] considered the top ten worst production
machines based on two criterions: downtime and frequency of failures. Then, they mapped
those machines into DMG and recommended appropriate maintenance strategies depending
on the location of the machines in the grid.

The top tenmachines thatmeet both criterions are then associated in the grid, as shown
in Table 2, with respect to the multiple criteria, as follows [26]:

(i) OTF: machine is very seldom failed. Once failed, the downtime is short;

(ii) FTM1, FTM2, FTM3, FTM4, FTM5: failure frequency and downtime are almost at
moderate cases;

(iii) SLU: machine is always failed, but it can be fixed quickly;

(iv) CBM: machine is very seldom failed. But once failed, it takes a long time to bring it
back to normal operation;

(v) DOM: machine is always failed. Once failed, it takes a longer time to bring it back
to normal operation.

Reference [28] listed the importance of CMMS, but it appears to be used less often as
a tool for analysis and maintenance coordination. It happens to only be a data store in which
to keep equipment information and its maintenance activities. Thus, [26] makes a very good
improvement of CMMS by using a formalized decision analysis approach based on multiple
criteria and DMG, to find the worst production machines. The policy emphasizes the fact that
the best policy is the one that maximizes profit. Reference [29] designed a computer-aided
integration of maintenance in their model.

Later, [10] embedded [26] DMG approach as a visual tool in their CMMS to obtain a
good decision support system. They have implemented the CMMS with DMG in one of the
brake pad manufacturing companies in England. Reference [30] identifies the importance of
the study by measuring the relationship between maintenance strategies and performance.
Reference [30] discovered a strong positive relationship between maintenance strategies and
performance. By having impact studies, manufacturing managers may be more comfortable
in making investments in maintenance.

Reference [31] applied [10, 26] approaches by implementing DMG in one of the food
processing companies in Malaysia. They discovered that the DMG analysis creates more
opportunities in CMMS to be transparent to the entire production workforces, instead of only
the maintenance team. The increased usage of data mining and DMG analysis in CMMS by
personnel outside maintenance function may have a good potential to improve maintenance
strategies and equipment utilization.
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Another important criterion, that is, cost of the failure analysis prior to DMG associ-
ation, is considered in this research work. For instance, if we look at SMI operation in
Malaysia, they tend to outsource most of the corrective maintenance work to contractors.
From the SMI management view, the machine is not considered as the worst machine if the
cost impact to the factory is minimal. However, if the cost impact is high, then the machines
are considered to be the worst, even if their frequencies of failures are lower. Moreover, cost
is always a crucial factor for production during this recent economic depression.

References [7, 31] recommended upgrading operators’ technical skills in repairing the
machines in the FTM1, FTM2, and SLU regions, as shown in Table 2. This will reduce the
cost of maintenance in the long term, because operators are able to fix the problem without
any escalation to the technicians. Hence, waiting time for technicians is eliminated. When the
DMG analysis is conducted again in the next cycle, those machines in the FTM1, FTM2 and
SLU regions in the previous cycle will most likely appeare again in the DMG model, as the
frequency of failures is still high [31]. This could be misleading because analyses are executed
regardless of costing evaluation.

In fact, the machines are supposed to be excluded from the DMG model in the next
cycle. This is due to a reduction in the maintenance cost, even though their frequencies of
failures are still high. The cost is reduced as the operators managed to fix the problem, with
no maintenance escalation to technicians or contractors. Otherwise, the blocks of the grid are
occupied and other machines with a higher cost of failure cannot be fitted into the DMG for
the next cycle.

6. Machine Prioritization for the DMG

Some of the major expenses incurred in manufacturing industries are related to repairs and
the replacement of failure parts. When the failure occurs, the affected production time is
counted as a part of the losses. Corrective maintenance activities are performed to restore the
system to a reasonable operating state. Transportation, tools, and machines used for repair
and calibration are considered as expenses too. Next, preventive maintenance takes place at
regular intervals to reset the system to a good working condition.

Reference [4] defined the random variables, u and v, to be the lifetimes after PM
and CM, respectively. Their known parameters are fu(u) and fv(v), respectively, with the
distributions as follows [4]:

Gamma: f(t) = e−t/btα−1/βαΓ(α), t > 0;

Weibull: f(t) = e−t
α/βαtα−1/β, t > 0;

Log-normal: f(t) = e−(1/2β)(log t−α)
2
/t
√
2πβ, t > 0.

Reference [4] used the hazards function, λ(t) = λ0(t)eδ
′y where t measures the time

since the most recent event with the baseline hazards function. Note that the exponential
distribution is a limiting case of the Gamma and Weibull as α → 1. Suppose that the
downtimes corresponding to PM andCMare r and s, respectively, with associated costs being
c and d, respectively. These costs include the cost of parts, labour, and downtime. Then, we
can estimate cost of PM in the interval length of t. First, allow r units of downtime for PM
and generate observation u from new function fu(u), to represent a typical lifetime following
PM. From the observation, [4] commented that the interval is complete and the total cost
incurred is c if (r + u) ≥ t. Otherwise, if (r + u) < t, then we should add a CM downtime s. If
(r + u + s) ≥ t, then the interval is complete with a cost of (c + d).
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Table 3: The conjunction truth table [32].

M N m ∧ n

1 1 1
1 0 0
0 1 0
0 0 0

Alternatively, if (r + u + s) < t, then an observation v1 is generated from fv(v), to
represent a typical lifetime following CM. Let this process continue, generating CM lifetimes
v1, v2, v3, . . . until this interval is complete, and calculate the total cost, v1, for the interval in
the same manner [4]. Having completely simulated a PM interval of length t, we repeat this
procedurem times and determine the total cost for these simulated intervals for k1, k2, . . . , km.
Then, the average total cost is [4]

k =
1
m

m∑
i=1

ki, (6.1)

for the selected maintenance interval length.
Let k and l be vectors. Let us include machinei with higher cost, where SMI manager

is unhappy with the charges to vector k, whereasmachinei with a specified range and where
the manager can tolerate the charges assigned to vector l. Thus, more investigation should be
conducted on all machines rolled under vector k.

Let xi be the actual unit price of the replacement part, and then xc is the unit price of
the replacement part stated in the catalogue. Likewise, let yi be the actual labour or service
charge for the repair work, and let yc be the labour or service charge stated in the service
agreement. Then, rules of inference can be used to tie the equivalence together. When any
failure of the machinei occurs, proposition of the maintenance cost is assigned to vectors p
and q as follows:

If (xi + yi) > (xc + yc), then

add machinei to p,

else add machinei to q.
(6.2)

Note that machines with unexpected or higher costs are rolled under p. Let m and n
be propositions, denoted by m ∧ n. Let m be the hypothesis, where m is equal to 1 if adding
machinei to k, means FBM cost is expensive, whereas n is the hypothesis, where n is equal to
1 if (xi + yi) > (xc + yc), where addmachinei to p. The conjunction ofm∧ n is true when both
m and n are true and is false otherwise. We can prove this conjunction using the truth table
given by [32] as shown in Table 3.

At this point, both propositions have to be considered and fulfilled. The rationale
behind this m is the maintenance department decision either charge is expensive or
exceptional, whereas n is the comparison of price between actual and expected from the
price catalogue listed by supplier or manufacturer. In brief, both m and n conditions have
to be fulfilled. Then, those machines appeared in vector k and p are candidates in the DMG
model. In brief, we improve DMG model by this algorithm:
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Table 4: Machine failures.

ID Freq Downtime MDT Std dev MTBF
A 1 2.00 2.00 — 6238.00
B 3 89.15 29.72 19.03 2050.28
C 8 193.20 24.15 1.02 755.85
D 2 13.10 6.55 6.57 3113.45
E 5 33.00 6.60 11.05 1241.40
F 16 249.53 15.60 10.29 374.40
G 5 129.26 25.85 1.40 1222.15
H 30 737.19 24.57 1.11 183.43
J 5 73.35 14.67 13.01 1233.33
K 3 54.14 18.05 14.57 2061.95
L 1 8.41 8.41 — 6231.59
M 19 188.40 9.92 13.02 318.51
N 9 63.48 7.05 9.36 686.28
P 2 33.08 16.54 20.53 3103.46

(i) evaluate maintenance cost for machinei,

(ii) assign the machinei to vector p, q, and k,

(iii) build criteria analysis matrices for machines in vector p and k,

(iv) conduct decision mapping analysis,

(v) suggest decision support strategies formachinei.

We wrote visual basic code to execute these formulae in our decision support system
to estimate the maintenance cost.

7. Empirical Results

As a case study, the present study observed the maintenance operation in a food processing
company in Malaysia, with the main characteristics being as follows:

(i) reliability: they must work for ten hours a day, six days a week, and based on de-
mand;

(ii) every machine may have a different frequency of failures. Once failed, it has a dif-
ferent downtime, including waiting and repairing time;

(iii) machines operate in serial lines to manufacture seven types of products in different
volumes.

The machines’ operation and failures are observed, and real dataset is collected. The
machine name (ID), frequency of failure (Freq), downtime, mean downtime (MDT), standard
deviation (Std dev), and mean time between failure (MTBF) of the machines are given in
Table 4.

In this research work, the DMG model is proposed to visualize machine maintenance
in its production lines. The DMG model introduced by [26] is used, where two major factors
of machine failure, that is, frequency of failure and downtime, are considered. The factors are
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Table 5: DMG analysis.

Frequency Downtime
Low Medium High

Low J, K G, B
Medium N C
High M H, F

Table 6: DMG before costing analysis.

Frequency Downtime
Low Medium High

Low B, H, N G
Medium J A E
High M

separated into three different criterions, that is, high, medium, and low. Let h be the highest
value and let l be the lowest value in the list:

High boundary = h,

Medium/high boundary = h − 1
3
h,

Low/medium boundary = h − 2
3
h,

Low boundary = 1.

(7.1)

A query instruction is developed in CMMS to select the top ten machines that have the
highest frequency of failures. Likewise, the top ten machines having the highest downtime
are selected from the CMMS. Subsequently, the machines are categorized using formulae in
(7.1). Reference [26] listed three steps in DMG development:

(i) criteria analysis: establish a Pareto analysis of the two factors: frequency of failure
and machine downtime,

(ii) decision mapping: Those machines that meet both criteria in step (i) are then
mapped into the two-dimensional matrix as shown in Table 5,

(iii) once mapping has been finalized, the decision is developed by comparing the two-
dimensional matrix with DMG shown in Table 2.

Note that Machine B, Machine C, Machine F, Machine G, Machine H, Machine J,
Machine K, Machine M, and Machine N are mapped into the DMG in Table 5.

After giving the recommendation and restructure maintenance strategies, we collected
the longitudinal data again and the DMG model is shown in Table 6. Note that Machine
A, Machine B, Machine E, Machine G, Machine H, Machine J, Machine M, and Machine
N are mapped into the DMG table. The analysis was obtained before introducing the cost
parameter.

Queries on raw data from CMMS are retrieved from time to time to discover
knowledge for good decisionmaking.We obtained all machines in vector k. Subsequently, we
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Table 7: Machine priority for DMG analysis.

Vector Machine
P A, C, D, E, F, G, H, I, J, M
Q B, K, L, N, O, P, Q, R, S, T

Table 8: DMG based on 2006 after costing analysis.

Frequency Downtime
Low Medium High

Low D, I C, H
Medium J A G
High F E M

calculated the FBM cost for individual machinei in vector k using Boolean algebra formulae
in (6.2). Visual basic script is run to categorize the machine. As a result, machine with higher
cost rolled under vector p as shown in Table 7. Machines in vector p are candidates for DMG,
whereas machines in vector q should be excluded from the DMG model.

In the case study, machines in vector p are given priority to be fitted into the DMG
model as shown in Table 7. Note that Machine C, Machine D, Machine F, and Machine I are
excluded from DMG in Table 6, even though their maintenance cost is higher than Machine
B and Machine N. Based on Table 7, Machine C, Machine D, Machine F, and Machine I have
a higher priority to be mapped in the DMG for maintenance strategy and decision-making
consideration. In contrast, Machine B and Machine N should be excluded from DMG, as
the operators are able to fix the problem and their maintenance cost is therefore reduced.
Machine E and Machine G have changed position in Table 8 because it is compared with
other machines, that is, Machine C, Machine D, Machine F, and Machine I, which do not exist
in Table 6. This is the evidence which shows that the DMG analysis in Table 8 provides a more
promising result compared to that shown in Table 6.

The above costing analysis is more practical, where Machine C, Machine D, Machine
F and Machine I must be in the model even though their frequency of failures and downtime
are less than Machine B and Machine N. This is because they have a higher maintenance cost
compared to Machine B and Machine N, as shown in Table 7. To be more transparent, it is
worth displaying the DMG matrix in Table 8, complete with the machine images or using
colour codes on the production floor. The visualization will help to get more attention from
the production team of themachines’ performance. Perhaps this will alert them to any failures
of the worst performing machines in their production plant.

8. Conclusion

This paper demonstrated how the costing analysis prioritize machine for DMG. The Ishikawa
diagram is used to select the problematic machines by looking at their maintenance cost.
The rules are used to categorize the machines into lower and higher maintenance cost. The
results presented show that cost model can be used in failure-based maintenance systems, as
it provides a powerful tool for taking into account the interaction between the frequency of
failures and downtime. Using this repositioning into DMGmodel, managers are able to select
maintenance policies more economically. Beyond improving the quality of decisions, the
DMG can better support the maintenance team to decide on several maintenance strategies.
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Further research is needed to adequately quantify the parameters in the above rules for dif-
ferent machines.

Acknowledgments

The authors would like to thank the Faculty of Computing and Information Technology,
Rabigh, King Abdul Aziz University Rabigh for financial support and facilities. Also thanks
are given to the Faculty of Information and Communication Technology, Universiti Teknikal
Malaysia Melaka for granting the main author for the attachment program in King Abdulaziz
University.

References

[1] L. Cui, W. Kuo, H. T. Loh, and M. Xie, “Optimal allocation of minimal and perfect repairs under
resource constraints,” IEEE Transactions on Reliability, vol. 53, no. 2, pp. 193–199, 2004.

[2] D. Gupta, G. Yavuz, and M. M. Srinivasan, “The relationship between preventive maintenance and
manufacturing system performance,” The European Journal of Operational Research, vol. 132, no. 1, pp.
146–162, 2001.

[3] T. A. Thorstensen and M. Rasmussen, “A cost model for condition based overhaul or replacement,”
Journal of Quality in Maintenance Engineering, vol. 5, no. 2, pp. 102–113, 1999.

[4] K. Frank, “A replacement policy based on limiting the cumulative maintenance cost,” International
Journal of Quality and Reliability Management, vol. 18, no. 1, pp. 76–83, 2000.

[5] F. P. David and K. A. H. Kobbacy, “Determining economical maintenance intervals,” International
Journal of Production Economics, vol. 67, no. 1, pp. 87–94, 2000.

[6] H. A. Gabbar, H. Yamashita, K. Suzuki, and Y. Shimada, “Computer-aided RCM-based plant main-
tenance management system,” Robotics and Computer Integrated Manufacturing, vol. 19, no. 5, pp. 449–
458, 2003.

[7] A. W. Labib, “A decision analysis model for maintenance policy selection using a CMMS,” Journal of
Quality in Maintenance Engineering, vol. 10, no. 3, pp. 191–202, 2004.

[8] K. Genova, V. Vassil, F. Andonov, V. Mariyana, and K. Silvia, “A multicriteria analysis decision
support system,” in Proceedings of the 5th International Conference on Computer Systems and Technologies,
vol. 3, pp. 101–106, 2004.

[9] A. W. Labib, “A logistics approach to managing the millennium information systems problem,”
Logistic Information Management, vol. 11, no. 5, pp. 285–294, 1998.

[10] O. Fernandez, R. Walmsley, D. J. Petty, and A. W. Labib, “A decision support maintenance man-
agement system development and implementation,” International Journal of Quality and Reliability
Management, vol. 20, no. 8, pp. 965–979, 2003.

[11] E. E. Karsak, “FuzzyMCDMprocedure for evaluating flexible manufacturing system alternatives,” in
Proceedings of the IEEE Annual Reliability and Maintainability Symposium, no. 0-7803-6442-2, pp. 93–98,
2000.

[12] B. Al-Najjar and A. Imad, “Selecting the most efficient maintenance approach using fuzzy multiple
criteria decision making,” International Journal of Production Economics, vol. 84, no. 1, pp. 85–100, 2003.

[13] A. Kaklauskas, E. K. Zavadskas, and S. Raslanas, “Multivariant design and multiple criteria analysis
of building refurbishments,” Energy and Buildings, vol. 37, no. 4, pp. 361–372, 2005.

[14] S. Ana, C. Sofia, M. Sebastian, and F. V. Jose, “Addressing imperfect maintenance modelling
uncertainty in unavailability and cost based optimization,” Reliability Engineering and System Safety,
vol. 10, pp. 1–11, 2007.

[15] S. Anish, K. Dinesh, and K. Pradeep, “Planning and optimizing the maintenance of paper production
systems in a paper plant,” Computers and Industrial Engineering, vol. 10, pp. 1–13, 2008.

[16] J. F. Villanueva, A. I. Sanchez, S. Carlos, and S. Martorell, “Genetic algorithm-based optimization of
testing andmaintenance under uncertain unavailability and cost estimation: a survey of strategies for
harmonizing evolution and accuracy,” Reliability Engineering and System Safety, vol. 10, pp. 1–12, 2008.
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[18] E. K. Zavadskas and T. Vilutienė, “Multicriteria evaluation of apartment blocks maintenance con-
tractors: lithuanian case study,” International Journal of Strategic Property Management, vol. 13, no. 4,
pp. 319–338, 2009.

[19] R. Pascual, V. Meruane, and P. A. Rey, “On the effect of downtime costs and budget constraint on
preventive and replacement policies,” Reliability Engineering and System Safety, vol. 93, pp. 144–151,
2008.

[20] H. V. Water, “A maintenance model for quality management,” International Journal of Quality and
Reliability Management, vol. 17, no. 7, pp. 756–770, 2000.

[21] G. Mustafa, “Reliability of service systems and an application in student office,” International Journal
of Quality and Reliability Management, vol. 1, pp. 58–66, 2002.

[22] D. R. Cox and D. Oakes, Analysis of Survival Data, Chapman and Hall, New York, NY, USA, 1984.
[23] M. A. Islam, “Multistate survival models for transitions and reverse transitions: an application to

contraceptive use data,” Journal of the Royal Statistical Society A, vol. 157, part 3, pp. 441–455, 1994.
[24] M. A. Burhanuddin, “Reliability analysis of delay in repair time using hazards model,” in Proceedings

of the Integrating Technology in the Mathematical Sciences Conference, pp. 113–122, Universiti Sains
Malaysia, part A, 2003.

[25] M. Adamantios and W. Zhao, “Modeling and analysis of repairable systems with general repair,” in
Proceedings of the IEEE Annual Reliability and Maintainability Symposium, no. 0-7803-8824-0, pp. 1–8,
2005.

[26] A. W. Labib, “World-class maintenance using a computerised maintenance management system,”
Journal of Quality in Maintenance Engineering, vol. 4, no. 1, pp. 66–75, 1998.

[27] M. Bevilacqua and M. Braglia, “The analytic hierarchy process applied to maintenance strategy
selection,” Reliability Engineering and System Safety, vol. 70, no. 1, pp. 71–83, 2000.

[28] L. Swanson, “Computerized maintenance management systems: a study of system design and use,”
Production and Inventory Management Journal, vol. 1, pp. 99–107, 1997.

[29] J. B. Leger and G. Morel, “Integration of maintenance in the enterprise: towards an enterprise
modelling-based framework compliant with proactive maintenance strategy,” Journal of Production
Planning Control, vol. 1, part 2, pp. 341–352, 2001.

[30] L. Swanson, “Linking maintenance strategies to performance,” International Journal of Production
Economics, vol. 70, no. 3, pp. 237–244, 2001.

[31] M. A. Burhanuddin, A. R. Ahmad, and M. I. Desa, “Maintenance decision making using multiple
criteria analysis for small and medium industries,” Journal of Information Technology, vol. 19, no. 2, pp.
35–46, 2007.

[32] E. E. Douglas and J. C. Winston, Discrete Mathematics: Mathematical Reasoning and Proof with Puzzles,
Patterns and Games, John Wiley & Sons, New York, NY, USA, 2006.


