

Faculty of Mechanical Engineering

SYNTHESIS AND CHARACTERIZATION OF MICROPOROUS CARBON ADSORBENTS FROM OIL PALM SHELL

Imanurezeki Mohamad

MSc. in Mechanical Engineering

SYNTHESIS AND CHARACTERIZATION OF MICROPOROUS CARBON ADSORBENTS FROM OIL PALM SHELL

IMANUREZEKI MOHAMAD

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL, MALAYSIA MELAKA

ABSTRACT

Carbon adsorbents are microporous in structure that can be produced from any raw materials that contain high carbon contents such as wood and coal. The increasing research in carbon adsorbents because of its high adsorption capacities. This research is conducted to study the performance of carbon adsorbents produced from oil palm shell. The preparation of carbon adsorbents consists of carbonization and activation process. This study revealed that the parameters of carbonization and activation process such as temperature affect the carbon adsorbents properties such as pore size, pore volume and surface area. Previous research has proved that the initial properties of carbon adsorbents produced will affect the effectiveness of adsorption and desorption analysis. The results also revealed that the optimum carbonization and activation temperature of 500°C in the preparation of carbon adsorbents significantly enlargement of pores size and efficient for adsorption-desorption applications. This study showed that oil palm shell carbon adsorbents produced from activation temperature of 700°C possesses the largest surface area and micropore volume among the adsorbents tested. Adsorption and desorption of gaseous was observed by the percentage adsorption and desorption of nitrogen and LPG in experimental rig and two types of test bed model. Study shown that gas adsorption and desorption analysis is appropriate to determine the surface area and pore size distribution of carbon adsorbents. In addition, the oil palm shell carbon adsorbents are compared with carbon adsorbents produced from coconut shell and commercial activated carbon and the used of LDPE plastic bags as additive to existing carbon adsorbents in terms of nitrogen and LPG adsorption-desorption analysis. It was examined that the LDPE plastic bag might block or shrink the pore structure of the char. Other parameters and adsorptiondesorption capability of each carbon adsorbents samples have been defined and discussed. Lastly, the impact of carbon adsorbents in the application of LPG and methane storage tank was studied. The application of oil palm shell carbon adsorbents increased the amount of LPG and methane in storage tank.

ABSTRAK

Karbon penjerap adalah dalam struktur berliang mikro yang boleh dihasilkan dari sebarang bahan mentah yang mengandungi kandungan karbon yang tinggi seperti kayu dan arang batu. Peningkatan penyelidikan dalam karbon penjerap kerana kapasiti penjerapannya yang tinggi. Penyelidikan ini dijalankan untuk mengkaji keupayaan karbon penjerap yang dihasilkan dari tempurung kelapa sawit. Penyediaan karbon penjerap terdiri dari proses karbonisasi dan pengaktifan. Kajian ini menunjukkan bahawa parameter bagi proses karbonisasi dan pengaktifan seperti suhu mempengaruhi ciri-ciri karbon penjerap seperti saiz liang, isipadu liang dan luas permukaan. Penyelidikan terdahulu telah membuktikan bahawa ciri-ciri awal penghasilan karbon penjerap akan mempengaruhi keberkesanan proses penjerapan dan pembebasan. Keputusan kajian juga menunjukkan suhu optimum untuk proses karbonisasi dan pengaktifan 500°C dalam penyediaan karbon penjerap sangat berkesan membesarkan saiz liang dan sesuai untuk aplikasi penjerapan-pembebasan. Kajian ini menunjukkan karbon penjerap tempurung kelapa sawit yang dihasilkan pada suhu pengaktifan 700°C mempunyai keluasan permukaan dan isipadu liang mikro yang paling tinggi dikalangan penjerap yang dikaji. Penjerapan dan pembebasan gas dikenalpasti melalui peratus penjerapan dan pembebasan nitrogen dan LPG di dalam kelengkapan eksperimen dan dua jenis model kajian. Kajian menunjukkan bahawa analisis penjerapan dan pembebasan gas diperlukan untuk mengenalpasti keluasan permukaan dan taburan saiz liang bagi karbon penjerap. Sebagai tambahan, karbon penjerap tempurung kelapa sawit dibandingkan dengan karbon penjerap yang dihasilkan dari tempurung kelapa dan karbon penjerap komersil dan penggunaan plastik beg LDPE sebagai bahan tambah kepada karbon penjerap sedia ada dari segi analisis penjerapanpembebasan nitrogen dan LPG. Kajian mendapati plastik beg LDPE mungkin akan menghalang atau membesarkan struktur liang arang. Lain-lain parameter dan keupayaan penjerapan-pembebasan bagi setiap sampel karbon penjerap telah dikenalpasti dan dibincangkan. Akhir sekali, kesan karbon penjerap dalam aplikasi tangki penyimpanan LPG dan metana telah dikaji. Aplikasi karbon penjerap tempurung kelapa sawit telah meningkatkan kandungan LPG dan metana dalam tangki penyimpanan.

ACKNOWLEDGEMENTS

This research would not exist without substantial help, support, and advice from many people. I would like to express my deepest appreciations to my adviser, En. Safarudin for his thoughtful guidance and ultimate support throughout this study. His remarks on my research at numerous discussions are my constant source of inspiration. Without his expertise as well as his encouragement and guidance, this thesis might not have been possible.

I would like to thank my colleagues and friends for giving me the company during long days and for being supportive and understanding. Additional thanks to the faculty, graduate students and staff in the Department of Thermodynamic for their support and camaraderie.

I am especially thankful to my mom, who always encouraged and supported my dreams. May Allah reward her with the highest degrees in Jannah. I also express my gratitude to my family for their endless support and love.

To my wife and daughter who has provided unconditional love, and displayed unwavering faith in my abilities, provided the inspiration for all my past, present, and future achievements and for their consistent support and encouragement.

Financial support from various resources; Ministry of Science and Technology and Ministry of Higher Education is gratefully acknowledged.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PUSAT PENGAJIAN SISWAZAH

Dekan Pusat Pengajian Siswazah, Universiti Teknikal Malaysia Melaka, Karung Berkunci 1200, Ayer Keroh, 75450 MELAKA.

PENGISYTIHARAN CALON / DECLARATION

Saya isytiharkan bahawa kandungan yang dibentangkan di dalam thesis ini adalah hasil kerja saya sendiri dan telah dijalankan di Universiti Teknikal Malaysia Melaka kecuali dimaklumkan sebaliknya.

I declare that the contents presented in this thesis are my own work which was done for the Universiti Teknikal Malaysia Melaka unless stated otherwise. The thesis has not been submitted for any other degree.

			,	JAA AAA	1	ь								
nd	ata	ngai	n ca	lon	(Si	gna	ature	of C	Car	ndidate	e)			
ma	a Ca	alon	(Na	ame	of	Ca	ndid	ates)					
		II.	MAN	IUR	ΕZ	EK	I BII	N MC	ЭН	AMA)			
				alar			Pas	spot						
	9	0	7	0		8		1	3	3 -	5	1	8	9
rikh (Date): 27 March 2009														
										1	1 41	. 1		D.

Untuk kegunaan Pusat Pengajian Siswazah

ngesahan	Penerimaan	PPS .
	· onominadii	1 0 .

DECLARATION

I declare that this thesis entitle "Synthesis and Characterization of Microporous Carbon Adsorbents from Oil Palm Shell" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Imanurezeki Mohamad

Date : 27 March 2009

TABLE OF CONTENT

СНАРТЬ	ER	TITLE	PAGE
ABSTRA	CT		ii
ABSTRA	K		iii
DEDICA	TION		iv
AKNOW	LEDGEN	MENTS	v
DECLAF	RATION		vi
TABLE (OF CONT	TENTS	vii
LIST OF	TABLES	S	xi
LIST OF	FIGURE	ES	xiii
LIST OF	SYMBO	LS	xvi
LIST OF	ABBRE	VATIONS	xvii
LIST OF	APPENI	DIX	XX
1	INT	RODUCTION	
	1.1	Overview	1
	1.2	Research Background	2
	1.3	Research Objectives	2
	1.4	Limitation of Study	3
	1.5	The Importance of Study	3
	1.6	Thesis Organization	4

2	LITE	ERATURE REVIEW	
	2.1	Introduction	5
	2.2	Characteristics and Structures of Carbon Adsorbents	6
		2.2.1 Molecular Structure	7
		2.2.2 Physical Structure	8
		2.2.3 Chemical Structure	11
	2.3	Carbon Adsorbents from Different Sources	12
	2.4	Carbon Adsorbents Preparation and Processing	16
	2.5	Carbon Adsorbents for Gas Adsorption and Desorption	18
		2.5.1 Gas Adsorption and Desorption Theory	20
		2.5.2 Physical and Chemical Adsorption	22
	2.6	Applications of Carbon Adsorbents	23
	2.7	Natural Gas Production	26
		2.7.1 Carbon Adsorbents for Natural Gas	
		Adsorption and Desorption	27
	2.8	Carbon Adsorbents for Methane Storage	33
		2.8.1 Methane Storage Characteristics	36
	2.9	Carbon Adsorbents for Liquefied Petroleum	
		Gas (LPG) Storage	39
	2.10	Summary of Literature Review	41
3	MET	HODOLOGY	
	3.1	Introduction	44
	3.2	Processing of Carbon Adsorbents	45
		3.2.1 Raw Materials	45
		3.2.2 Carbonization	47
		3.2.3 Activation	47
	3.3	Experimental Setup	49
	3.4	Carbon Adsorbent Test Bed	51
	3.5	Adsorption and Desorption Analysis	53
	3.6	Characterization	57
		3.6.1 Characteristics of Carbonaceous Materials	57

		3.0.2	Physical and Chemical Gas Adsorption	
			Characteristics	59
	3.7	Gravi	metric Tank Storage Model for LPG	
		and M	lethane Adsorption and Desorption Process	62
		3.7.1	Synthesis and Methods	63
		3.7.2	Analysis on the Storage System	
			Characteristics and Efficiency	65
4	RESU	JLTS A	ND DISCUSSIONS	
	4.1		Introduction	69
	4.2		Parametric Study	69
	4.2.1		Properties of Commercial Activated Carbon	69
			4.2.2 Properties of Carbon Adsorbents	70
	4.3	Nitrog	gen Adsorption and Desorption Analysis	
		of Car	bon Adsorbents	74
		4.3.1	Nitrogen Adsorption Analysis of	
			Carbon Adsorbents	74
		4.3.2	Nitrogen Desorption Analysis of	
			Carbon Adsorbents	76
	4.4	Adsor	ption and Desorption Analysis in LPG	
		Storag	ge Tank Model	78
		4.4.1	Preliminary Analysis	78
		4.4.2	Adsorption of LPG using Char Samples	79
		4.4.3	Adsorption and Desorption Analysis	
			of LPG using Test Bed 1 Model	82
			4.4.3.1 Adsorption Analysis for Carbon	
			Adsorbent Samples using Test Bed	
			1 Model	82
			4.4.3.2 Effect of Holding Time in	
			Adsorption Analysis for Carbon	
			Adsorbent Samples using Test Bed	
			1 Model	83

		4.4.4	Adsorption and Desorption Analysis of LPG	
			using Test Bed 2 Model	87
			4.4.4.1 Adsorption and Desorption Analysis	
			of LPG for Char Samples using Test	
			Bed 2 Model	87
			4.4.4.2 Adsorption and Desorption Analysis	
			of LPG for Char Samples Mixed with	
			LDPE Plastic Bags using Test Bed 2	
			Model	89
			4.4.4.3 Adsorption and Desorption Analysis	
			of LPG for Carbon Adsorbent	
			Samples using Test Bed 2 Model	92
			4.4.4.4 Adsorption and Desorption Analysis	
			of LPG for Carbon Adsorbent	
			Samples Mixed with LDPE Plastic	
			Bags using Test Bed 2 Model	94
	4.5	Effect	of Sample Weight in Adsorption and	
		Desor	ption of LPG for Carbon Adsorbent Samples	96
	4.6	Applic	cation of Carbon Adsorbents for LPG Storage	97
	4.7	Applic	cation of Carbon Adsorbents for Methane	
		Storag	ge	99
	4.8	Summ	nary	100
5	CON	CLUSIC	ONS AND RECOMENDATIONS	
	5.1	Conclu	usions	103
	5.2	Recon	nmendations	106
			,	
DEFEDEN	ana		g - 54	105
REFEREN	CES		ξ'	107
APPENDIC	ES		4	120
- Lindic	20			120

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Characteristics of various conventional raw materials used	
2.1	for making activated carbon (Manocha, 2003).	13
2.2	Basic composition of oil palm shell (Zailani, 1995).	14
2.3	Types of raw material for producing carbon adsorbents.	14
2.4	Physical characteristics of commonly used adsorbents	
	(Spang, 1997).	19
2.5	Adsorptive properties of commonly used adsorbents	
	(Spang, 1997).	19
2.6	Conditions and properties of the different ways for methane	
	storage (Lozano-Castello et al.,2002b).	27
2.7	Properties of natural gas adsorbents.	29
2.8	Methane stored with different adsorbents	
	(Elliott and Topaloglu, 1986).	37
4.1	Properties of the commercial activated carbon	70
4.2	Weight change characteristics for carbon adsorbent samples	
	due to the different carbonization temperatures	71
4.3	Weight change characteristics for carbon adsorbent samples	
	due to the different activation temperatures	71
4.4	Properties of carbon adsorbents produced from carbonization	
	process by nitrogen adsorption	72
4.5	Properties of carbon adsorbents produced from activation	
	process by nitrogen adsorption	72
4.6	Characteristics of coconut shell. char	79

4.7	Gravimetric tank storage model for LPG storage without	
	carbon adsorbents added in room temperature (27 °C).	98
4.8	Gravimetric tank storage model for LPG storage added with	
	A700 carbon adsorbent in room temperature (27 °C).	99
4.9	Gravimetric tank storage model for methane storage without	
	carbon adsorbents.	100
4.10	Gravimetric tank storage model for methane storage added	
	with A700 carbon adsorbents	100

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Molecular structure of (a) crystalline and (b) amorphous solids	
	(Webster, 1999).	7
2.2	Schematic representation of the different types of pores	
	in a particle of carbon adsorbents (Juntgen, 1977).	8
2.2	Pore size distribution of molecular sieve carbons and activated	
	carbons for gas and liquid adsorbates (Manocha, 2003).	9
2.4	Pore structure of carbon adsorbents (Brown, 1995).	10
2.5	Adsorption processes in carbon adsorbents: Transfer of	
	adsorbate molecules to adsorbent (Manocha, 2003).	20
2.6	Classification of adsorption isotherms (Sing et al 1985).	22
2.7	Percentage of volumetric energy density respect to the	
	gasoline for the different ways of storing natural gas	
	(Lozano-Castello et al., 2002b).	28
2.8	Adsorbed Natural Gas (ANG) characteristics	
	(Lozano-Castello et al., 2002a).	30
2.9	Comparison between CNG and ANG storage	
	(Cook and Horne, 1997).	30
2.10	Methane adsorption storage versus compression storage	
	(Cook and Horne, 1997).	35
2.11	Different methods of methane desorption	
	(Cook and Horne, 1997).	35

3.1	General flow chart of producing carbon adsorbent samples.	46
3.2	The experimental rig for producing samples.	49
3.3	Schematic of experimental equipment.	50
3.4	Schematic of carbon adsorbent test bed.	51
3.5	Carbon adsorbent Test Bed 1 model.	52
3.6	Carbon adsorbent Test Bed 2 model.	52
3.7	Experimental procedure for char mixed with LDPE plastic bag.	54
3.8	Gravimetric tank storage model.	63
4.1	Nitrogen adsorptions (77 K) isotherm of commercial	
	activated carbon and carbon adsorbents prepared by	
	different carbonization and activation temperature with	
	1 hour hold time.	75
4.2	Nitrogen adsorptions - desorption isotherm of	
	commercial activated carbon (CAC).	77
4.3	Nitrogen adsorptions - desorption isotherm of A700 oil palm	
	shell carbon adsorbent sample.	78
4.4	Comparison of time gas detector reading reach 0.3 percent	
	of LPG (Co) released from chars of oil palm shell and coconut	
	shell at varies peak temperature.	80
4.5	Time gas detector readings time reach 0.3 percent LPG (Co)	
	released from oil palm shell and coconut shell char and	
	both chars mixed with plastic bag.	82
4.6	Adsorption capacity for carbon adsorbent samples using Test	
	Bed 1model	83
4.7	Percentage of gas detector adsorption for char samples without	
	holding time using Test Bed 1 model	84
4.8	Percentage of 20 ml/min flow rate of LPG for gas detector	
	adsorption for activated carbon samples with 60 minutes holding	
	time using Test Bed 1 model	86
4.9	Percentage of gas detector adsorption for char samples without	
	holding time using Test Bed 2 model.	88
4.10	Percentage of LPG adsorption for char mixed with LDPE plastic	
	bag samples using Test Bed 2 model	90

4.11	Percentage og LPG adsorption-desorption for char mixed with	
	LDPE plastic bag samples using Test Bed 2 model.	91
4.12	Percentage of LPG adsorption for carbon adsorbent samples	
	using Test Bed 2 model	92
4.13	Percentage of LPG adsorption-desorption for carbon adsorbent	
	samples using Test Bed 2 model.	94
4.14	Percentage of LPG adsorption for carbon adsorbent mixed with	
	LDPE plastic bag samples using Test Bed 2 model	95
4.15	Percentage of LPG adsorption-desorption for carbon adsorbent	
	Samples mixed with LDPE plastic bag samples using Test Bed 2	
	model.	96
4.16	Samples weight on conditions before and after adsorption and	
	desorption process.	97

LIST OF SYMBOLS

A	Adsorption potential
Å	Angstrom
С	BET constant that can be obtained from a plot of straight line, or regression
	line through the points on plotted graph.
°C	Degree Celsius
E_o	Characteristics energy of adsorption for the reference vapor
ΔG	change in the Gibbs free energy
K	Kelvin
$N_{\scriptscriptstyle A}$	Avogadro constant
Θ	Degrees of burn-off
P	absolute pressure of bulk gas above sample
P_o	saturation pressure of the adsorptive
P/P_o	Relative pressure
R	universal gas constant
T	Temperature
V_a	Volume of gas adsorbed by sample
V_{m}	Volume of gas adsorbed when the entire surface is covered with a
	monomolecular layer
W_o	Initial mass
W_{ι}	Mass after pyrolysis
b	empirical constant
d	Average pore diameter
σ	area of surface
β	Affinity coefficient
%	Percentage

LIST OF ABBREVATIONS

A700 Activated Carbon 700

AC Activated carbon

AlCl₃, aluminium chloride

ANG Adsorbed natural gas

ASAP Accelerated Surface Area and Porosimetry Analyzer

ASCMs adsorption-selective carbon membranes

BET Brunauer-Emmett-Teller equations

C carbon

C400-10-60 Char 400 mixed Plastic Bag LDPE

C700 Char 700

C700 (D) Char 700 Direct

C400-CO2-60 Activated Carbon 400

C700-CO2-10-60 Activated Carbon 700 mixed Plastic Bag LDPE

CA Carbon adsorbents

CAC Commercial activated carbon

CFCMS carbon fiber composite molecular sieves

CH₄ methane

CMSs Carbon Molecular Sieves

CNG compressed natural gas

CO₂ carbon dioxide

CVCC constant volume combustion chamber

DA Dubinin-Astakhov equations

DFT density functional theory

DME dimethyl ether

DR Dubinin- Radushkecich equations

FT methanol or Fischer–Tropsch

GHG greenhouse gas

H hydrogen

H₃PO₄ sulfuric acid

IUPAC International Union of Pore and Applied Chemistry

KOH potassium hydroxide

LDPE light disposal plastic ethylene

LNG liquefied natural gas

LPG liquefied petroleum

MPa megapascal N nitrogen

Na₂CO₃ natrium chloride

NaOH natrium hydroxide

NG natural gas

NGV natural gas vehicle

NLDFT Non-Local Density Functional Theory

NO₂ nitrogen dioxide

NO_x monoxide O oxygen

PAC pitch-based activation carbons

PSA Pressure swing adsorption

PSD's Pore-size distributions

S_{BET} total surface area

SnO₂ stanum oxide

Sox sulfate

TCA 1,1,1-trichloroethane

TCE trichloroethylene

TSM Tank Storage Model

TVFM theory of volume filling of micropores

VOC Volatile organic compounds cm³/min centimeter cube per minute

h hour

kg/L kilogram per liter

kg/m³ kilogram per meter cube

 m^2/g meter square per gram

min minutes

millimeter mm

nanometer nm

second S

percentage of weight wt %

LIST OF APPENDIXS

APPENDIX	TITLE	PAGE
	Consola Description of Classical State 1	
A	Sample Reports of Characterization by	
	Physisorption using Micrometric ASAP 2010	120
В	Publication Papers, Project Exhibition,	
	and Awards	159

CHAPTER 1

INTRODUCTION

1.1 Overview

Carbon adsorbents in terms of activated carbon or carbon molecular sieves have been used as medium in adsorption and desorption process to reduce or eliminate objectionable gaseous components. Carbon adsorbents can be prepared from any raw materials that contain high carbon contents, relative cheap, availability, high stability, high adsorptive capacity, and have a regenerative characteristic due to the finer pore structure. Therefore, raw materials such as coconut shell (Noah, 1991), oil palm shell (Herawan, 2000; Soon, 2001) and guava seeds (Rahman & Saad, 2003) have been analyzed on their physical and chemical properties and excelled in areas of practical applications such as purification, separation and adsorption.

Previous research also interested to investigate the characteristics of carbon adsorbents with different textures such as pore volume and pore size distribution (Chiang et. al., 2002; Tang & Huang, 2005). In addition, plastic bags as solid wastes materials mixed with existing carbon adsorbents have been found as a promising tool to increase the adsorption and desorption capacity of gas (Pierella et. al., 2005). For that reason, the main assessment of this study is to examine the used of carbon adsorbent prepared from oil palm shells, coconut shell and low-density polyethylene (LDPE) plastic bags.

1.2 Research Background

The oil palm shells are selected as the main raw carbon material for present study. The carbon adsorbents produced from an oil palm shell is then compared with potential carbon adsorbents from coconut shells. The synthesis methods, carbonization and activation are used in the preparation of those materials. Careful investigations have been made from the handling and preparation step, to carbonization and activation process, especially in terms of temperature, pressure and time controlled. These carbon materials are used because of its prominent characteristics, such as high surface area, relatively uniform pore size, ordered pore structure and mechanical stabilities. The production of these materials is then defined based physical characteristic such as surface area and pore size distribution. Then, the carbon adsorbents are used to evaluate their potential in gas adsorption and desorption of nitrogen, LPG and methane.

1.3 Research Objectives

The objectives of this study are;

- i. To produce carbon adsorbents from oil palm shells;
- To investigate the effect of temperature, pressure and time controlled on the carbon adsorbents characteristics such as surface area, pore size and pore volume;
- To design and develop tank storage models in laboratory scale for hydrocarbon gas storage;
- To evaluate the applicability of carbon adsorbents for hydrocarbon gas such as
 LPG and methane for adsorption and desorption applications;
- v. To assess the performance of the carbon adsorbents for the applications in hydrocarbon gas storage tank models.

1.4 Limitation of Study

Some limitations due to time factor and experimental equipments constraints should be considered such as;

- i. Small amounts (about 5 grams) of raw oil palm shell or carbon samples have been used for all the laboratory carbon processing, characterization and application analysis. Therefore, the results were based on the laboratory scale and not tested for pilot or industrial scale. The form of particles applied was in granular or powder form and not in the pellitized or extrudated particles;
- ii. In the preparation of microporous carbon adsorbents, operating parameters such as temperature, process hold time, flow rate gases, whereas the heating rate, particle size, etc. have been fixed for different processes;
- iii. To obtain surface area, mesopore and micropore volume and pore size distribution information of the carbons using Micrometric ASAP 2010 surface analysis. Various essential physical surface characteristics of the products were analyzed by physical gas adsorption method without involving the analysis of the surface chemistry although it may affect the adsorption behaviors.

1.5 The Importance of Study

Carbon adsorbents hold a strong market position due to their unique properties and low cost for adsorption and desorption applications. In addition, the results of this study provide deeper understanding of the mechanisms of adsorption and desorption through porous materials. This research is currently important for hydrocarbon gas adsorption and desorption systems especially for LPG and methane gas as alternative fuel in vehicles.