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Abstract 
 

Rehabilitation device is used as an exoskeleton for people who had failure of 
their limb. Arm rehabilitation device may help the rehab program whom 
suffered with arm disability. The device used to facilitate the tasks of the 
program should improve the electrical activity in the motor unit and minimize 
the mental effort of the user. Electromyography (EMG) is the techniques to 
analyze the presence of electrical activity in musculoskeletal systems. The 
electrical activity in muscles of disable person is failed to contract the muscle 
for movements. In order to minimize the used of mental forced for disable 
patients, the rehabilitation device can be utilize by analyzing the surface EMG 
signal of normal people that can be implemented to the device. The objective 
of this work is to compare the performance of the joint torque estimation 
model from the muscle EMG signal to torque for a motor control of the arm 
rehabilitation device using Artificial Neural Network (ANN) technique. The 
EMG signal is collected from Biceps Brachii muscles to estimate the elbow 
joint torque. A two layer feed-forward network is trained using Back 
Propagation Neural Network (BPNN) to model the EMG signal to torque 
value. The comparison between two ANN models is made to observe the 
performance difference between these models. The experimental results show 
that ANN model with double input nodes has a better performance result in 
term of Mean Squared Error (MSE) and Regression (R) which is crucially 
important to represent EMG-torque relationship for arm rehabilitation device 
control. 
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1. Introduction  
Human support system is endoskeleton. Endoskeleton plays a role as a framework of 
the body which is bone. Our daily movements are fully depends on the functionality 
of our complex systems in the body. The disability one or more of the systems in our 
body will reduce our physical movements. The assistive device is a need for rehab as 
an exoskeleton. The functionality of the rehabilitation device has to smooth as the 
physical movement of normal human.  
 The rehabilitation programs provide the suitable program for conducting the nerve 
and stimulate the muscles. People who have temporary physical disability have the 
chances to recover. Nowadays, rehabilitation program are using exoskeleton device in 
their tasks. The functionality of exoskeleton depends on muscle contraction. 
Electromyogram studies help to facilitate the effectiveness of the rehabilitation device 
by analysing the signal transmitted from the muscle. 
 The technique of measuring electrical activity that produced from the muscles 
during rest or contractions known as electromyography (EMG). The electric signal 
generates from the brain and sends to the muscles via motor neuron. The EMG may 
detect the dysfunctional of the muscles or failure in signal transmission from nerve to 
muscle. The failure of sending the electrical signal from the brain requires electrical 
stimulation from the external source to muscles. Electrodes are used for signal 
detection of electrical activity in muscles. The study of this electrical activity is 
important for combination of electromyogram and rehabilitation device. 
 The rehabilitation device is a tool that used to help the movements for daily life 
activities of the patients who suffer from the failure of muscle contractions, due to the 
failure of the muscles contractions the movements is limited. The ability of the 
patients to do the tasks in the rehabilitation programs need to be measured. The 
rehabilitation programs have to assure whether the tasks will cause effective or bring 
harm to the patients [1]. 
 Historically, the rehabilitation tasks have been avoided due to a belief that it 
would increase spasticity [2]. In this research, the analysis of the data will be focusing 
on upper limb muscles contraction consisting of biceps muscles only. The experiment 
is limited to the certain of upper limb movements that use in training. EMG is a 
division of bio signal; the bio signal analysis is the most complex analysis. Thus, the 
signal analysis is a complicated process that has to be through many phases of 
analysis [3].  
 EMG is used as a control signal for the arm rehabilitation device. A system needs 
a model to estimate relationship between EMG and torque [4]. EMG signal based 
control could increase the social acceptance of the disabled and aged people by 
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improving their quality of life [5]. The joint torque is estimated from EMG signals 
using Artificial Neural Network [6]. The BPNN is used to find a solution for EMG-
joint torque mapping. The EMG signal of the biceps brachii muscle act as the input of 
the ANN model whiles the desired torque act as the ideal output of the model. Hence 
the EMG signals considered the ‘intent’ of the system while the joint torque is the 
‘controlled’ variable for the arm rehabilitation device [7]. There are several work that 
has applied BPNN for modeling the muscle activity of ankle to joint torque 
relationship. It is done by approximating the force from the EMG signal under static 
conditions [7]. The network is evaluated based on the best linear regression between 
the actual joint torque and the estimated joint torque [4]. 
 
 
2. Methods 
Figure 1 shows a block diagram of our research that consists of two major phases. 
First phase is EMG data processing and desired torque determination. Second phase is 
the ANN construction and testing. The data collection from the first phase is used to 
validate and teach the ANN algorithm in second phase. 

 

 
 

Figure 1. Research methods 
 
 
2.1 Experimental Setup 
Implementation of arm rehabilitation device based on movement is recorded from the 
EMG signal of healthy subjects. From the human anatomy studies, different angle 
movements of upper limb with elbow as the reference is depends on relation of 
agonist and antagonist. In this study is focusing on the behaviour of biceps muscle as 
agonist and the triceps as the antagonist respectively. Muscle that involved in this 
movement is biceps and triceps, however in this study to understand the electrical 
activity during muscle contraction, the biceps is the only muscle that taking into 
account. The movements’ ranges in between position of arm flexion until arm fully 
extend.  
 The environment is in a room with low lighting especially the fluorescent light, 
any electromagnetic devices is away from the experiment equipment and the 
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motor unit. This ensured the detecting surface intersects most of the same muscle on 
subject as in Figure 3(a) at the biceps brachii, and as a result, an improved 
superimposed signal is observed. Reference electrode has to be at the bone as the 
ground, for this experiment it placed at elbow joint as shown in Figure 3(b). These 
electrodes are connected to the combination of hardware Olimex EKG-EMG-PA and 
Arduino Mega for data collection. 

 

a b 
Figure 3. The biceps brachii muscles for electrode positions (a), The electrode 
placements on subject skin (b) 
 
 
2.2 EMG data processing 
Figure 4 shows the EMG data processing block diagram. After obtained satisfactory 
EMG signal as shown in Figure 5(a), Fast Fourier Transform (FFT) is performed to 
the signal to analyses the frequency content of the signal. The EMG signal is break 
into its frequency component and it is presented as function of probability of their 
occurrence. In order to observe the variation of signal in different frequency 
components, the FFT signal is represented by Power Spectral Density (PSD). From 
the PSD we can describes how the signal energy or power is distributed across 
frequency. Figure 5(b) shows that most of the power is in the range of below 10Hz, 
therefore the EMG signal should be filtered in the range of above 10Hz as a cut off 
frequency for low pass filtered. After decide the cut off frequency for filtering, the DC 
offset of the EMG signal is removed and is rectified to obtain its absolute value as 
shown in Figure 5(c). Finally, the signal was smoothed and normalized passing it 
through a 5th order Butterworth type low-pass filter with cut off frequency 10Hz and 
the smooth signal is illustrate in Figure 5(d) [8][9]. 
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Figure 4. EMG data processing 
 

a b 

c d 
 
Figure 5. Raw EMG signal (a), Power Spectral Density (b), Rectified signal (c), 
Smooth signal (d) 
 
 
2.3 Desired Torque 
Desired torque of the elbow joint is used as target data for our ANN techniques as 
well as act as output signal for muscle. The data is collected throughout the angle 
from 00 to 1200 angle with increment of 0.06190 each step to align with the sample 
number of EMG signal. Figure 6(a) shows the arm rehabilitation device position for 
torque calculation. The desired torque for elbow joint is determined by applying 
standard torque equation: - 
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 The input signal is propagated forward through network layer using back 
propagation algorithm. An array of predetermined input is compared with the desired 
output response to compute the value of error function. This error is propagated back 
through the network in opposite direction of synaptic connections. This will adjust the 
synaptic weight so that the actual response value of the network moved closer to the 
desired response [11]. BPNN has two-layer feed-forward network with hidden 
neurons and linear output neurons. The function used in the hidden layer of network is 
sigmoid function that generates values in range of -1 to 1 [8]. There are layers of 
hidden processing units in between the input and output neurons. For each epoch of 
data presented to the neural network, the weights (connections between the neurons) 
and biases are updated in the connections to the output, and the learned error between 
the predicted and expected output, the deltas, is propagated back through the network 
[12]. 
 A Lavenberg-Marquardt training back propagation algorithm is implemented for 
this work to model the EMG to torque signal. Two ANN models is considered to 
compare the performance of each model. ANN model 1 consist of input layer with 
single node which is denoted as b that represent EMG signal from biceps while ANN 
model 2 has additional node at the input layer which denoted as t that represent the 
movement time which act as a training data. The output layer has only one node 
which is denoted as τ that represents the desired torque act as a target data. Table I 
describe the difference between the models and the network structure of each model is 
shown in Figure 7[4]. The network was trained using 1839 sets of EMG data for arm 
flexion motion from 00 angles to 1200 angle. It also has output data which is torque of 
correspondent arm motion. The training process was iteratively adjusted to minimize 
the error and increased the rate of network performance [10]. MATLAB software is 
used to construct the BPNN network. The network requires data for learning and 
testing in order to determine the weights each node uses. The training has been done 
by dividing the input data of 70% for training, 15% for validation and 15% for testing 
[9]. The network will be trained until the following condition fulfilled before it stop 
[10]: -  

• reach maximum number of epochs 
• gradient performance became less than the minimum gradient  
• validation performance increased more than the maximum fail times since the 

last decreased one  
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Table 1. ANN model description 
 

ANN model Model 1 Model 2 
No. of input node 1 2 

Node 1 EMG data, b EMG data, b 
Node 2 Movement time, t - 

Hidden neurons 
Output node 

10 
Desired torque, τ 

10 
Desired torque, τ 

 
 
 The performance evaluation of the network is based on the Mean Squared Error 
(MSE) of the training data and Regression (R) between the target outputs and the 
network outputs as well as the characteristics of the training, validation, and testing 
errors. The network is considered has the best performance if it has lowest MSE and 
highest R while exhibit similar error characteristics among the training, validation and 
testing. However even if the MSE shows very good result but the validation and 
testing vary greatly during the training process, the network structure is still 
considered unsatisfactory because the network is not generalized. Therefore further 
tuning and training need to be conducted in order to improve the network 
performance [10].  
 

a b 
 

Figure 7. (a) Model 1, (b) Model 2 
 
 
3. Experimental Results & Discussion 
In order to optimize the network performance, different number of hidden neurons is 
simulated for several times until achieved the satisfactory results [10].The network is 
trained using Lavemberg-Marquardt algorithm and the performance of the network is 
measured using MSE and R. The best validation performance of Model 1 is 0.17928 
at epoch 70 as shown in Figure 8(a) while 2.6521e-10 at epoch 1000 for Model 2 in 
Figure 8(b). Thus it is clear that Model 2 provide better result in term of MSE 
compare to Model 1. However the stop epoch of Model 2 is higher than Model 1. 



1298  M. H. Jali et al 
 

 

Both results show that the MSE has decreased rapidly along the epochs during 
training. The regression for Model 1 is 0.989 while 1.000 for Model 2. Figure 9(b) 
shows that Model 2 produces better curve fitness for training, test and validation data 
around compare to Model 1 as shown in Figure 9(a) [9][13]. 
 

a b 
 
Figure 8. (a) Best validation performance Model 1, (b) Best validation performance 
Model 2 
 
 
 Error sizes are well distributed if most error approaching zero values that make 
the trained model performs better. Figure 10(a) shows that Model 1 has maximum 
instance around 450 of MSE distributed around the zero line of the error histogram 
while Figure 10(b) shows that Model 2 has maximum instance around 700 of MSE 
distributed around zero line [13].  
 This histogram could be interpreted with error fluctuation diagram along the zero 
values as shown in Figure 11(a). It described that Model 1 exhibit a large value of 
fluctuation from the zero values compared to Model 2. Fig. 11(b) shows a comparison 
between prediction output from the trained network and target torque for Model 1 and 
Model 2. The prediction output for Model 2 has absolutely spectacular agreement 
with the target output compare to Model 1that has only fairly good agreement with the 
characteristics with the target data [4]. Table 2 summarize the performance result of 
both model. 
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a b 
 
Figure 9. (a) Regression of the trained Model 1, (b) Regression of the trained Model 
2 
 

a b 
 
Figure 10. (a) Error histogram of the trained Model 1, (b) Error histogram of the 
trained Model  
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a b 
 

Figure.11 (a) Error fluctuation along zero line, (b) Target vs trained network output 
 

Table 2. Summary of the result 
 

BPNN Structure Model 1 Model 2 
Stop Epochs 70 1000 
Regression 0.9891 1 
MSE 0.17928 2.6521e-10
Time Elapsed (Seconds) 0.04 1.00 

 
 
Conclusions 
Based on the result, it can be concluded that the ANN Model 2 has better performance 
in term of MSE and R compare to ANN Model 1. Model 2 has a super low MSE 
value as well as perfect result for R. However the stop epochs and time elapsed for 
Model 2 is worse than Model 1. The computational time for Model 2 consume a 
longer time which is 1.00 seconds compare to Model 1 that required only 0.04 
seconds. Therefore there is tradeoff between these models. In order to improve the 
Model 2 stop epochs and time elapsed, evolution neural network training algorithm 
such as genetic algorithm and particle swarm optimization can be implemented to 
produce a good mean squared error and regression performance result while reducing 
the computational time. Model 2 is considering a good performance as it shows that 
this ANN model can well represent the relationship between EMG signals and elbow 
joint torque. Hence this model can be used for motor torque control of the arm 
rehabilitation devices.  
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