
 978-1-4244-8581-9/11/$26.00 ©2011 IEEE 393

2011 First IRAST International Conference on Data Engineering and Internet Technology (DEIT)

Virtual Machine based Autonomous Web Server

Mohd Zaki Mas’ud.1, Faizal M. A.2, Asrul Hadi Y.3, Ahmad, N.M.4, Erman H.5

125Faculty of Information and Communication Technology
Univeristi Teknikal Malaysia,

Karung Berkunci 1200,
75450 Ayer Keroh, Melaka.

34Faculty of Information and Science Technology

Multimedia University
Jalan Ayer Keroh Lama

75450 Ayer Keroh, Melaka

{1 zaki.masud, 2faizalabdollah, 5erman}@utem.edu.my, {3asrulhadi.yaacob,4nazrul.muhaimin}@mmu.edu.my

Enterprises are turning to Internet technology to
circulate information, interact with potential customers
and establish an e-commerce business presence. These
activities are depending highly on Web server and
maintaining good server security has been a
requirement for avoiding any malicious attacks
especially web defacements and malware. Web server
administrators should be alert and attentive to the
status of the server at all time. They need to be
persistent in monitoring the server in order to detect
any attempted attacks. This is an advantage for a web
server that is maintained by a big company that has a
big budget to hire a knowledgeable web server
administrator, for a new established small company it
will only burden their expenses. To overcome this
problem, this paper proposes a low cost system called
Autonomous Web Server Administrator (AWSA) that is
fully developed using open source software. AWSA
combines several computing concepts such as Virtual
Machine, Intrusion Detection System and Checksum.
AWSA offers a Virtual Machine based Web server that
has the ability to automatically detect intrusions and
reconstruct corrupted data or the file system without
any human intervention.

Keywords-Intrusion detection system, Virtual machine,
checksum, web server

I. INTRODUCTION

Today, the current explosion in Internet trading may have
eventually contributed to cast doubt on the trustworthiness
of the services. Trust is at the heart of each and every
transaction of online businesses. To establish the trust, the
company not only needs to persistently declare the
infrastructure is secure but also needs to have the tools to
let the customers establish trust by themselves.

As online business sites become attractive targets for the
customers, Phishing scams, identity fraud and website
spoofing have become some of the most lucrative business
models of today’s cyber-criminals. According to Malaysian

Computer Emergency Response Team (MyCERT) the total
number of DDOS and intrusion incidents report are
increasing from 60 reports in September 2000 to 1661
reports in September 2010 [1]. Nowadays, anyone can
attack Internet sites using readily available intrusion tools
and exploit scripts that capitalise on widely known
vulnerabilities.

Despite stiff challenges from attackers, the influenced of
World Wide Web to broaden market potential across
geographical boundaries has led major companies or even
Small Medium Enterprises (SMEs) to seriously expand
their operations and marketing strategies over the Internet.
However, a major concern of these companies is to put
aside a huge investment on the security system in order to
build trustworthiness among customers and to protect its
image.

For that reason this paper presents a novel framework of
Autonoumous Web Server Administrator (AWSA), a
Virtual Machine (VM) based WWW Server, to enhance the
trustworthiness of online businesses. It proposes the
combination of an Intrusion Detection System (IDS) and
file system integrity to detect and prevent attacks against
services running on a VM and maintaining the services
after the attacks. In summary, AWSA offers the following
advantages: (1) the ultimate solution for SMEs to get
involved in online business. All AWSA components utilize
open source applications which are relatively low cost,
scriptable and modifiable, (2) to maintain the services
running on a VM from outside (host system), thus keeping
the IDS safe, out of reach from intruders, (3) to detect any
malicious data modification that the intruders have made
through file system integrity checking, and (4) maximizing
the state of the VM which can be saved, cloned, encrypted,
moved or restored. It allows AWSA to re-construct the
corrupted disks or files on the VM by transferring
duplicated data from the host system.

The rest of the paper is structured as follows. Section 2

describes the Virtual Machine (VM) concept. Section 3

 394

presents the architecture of a self-protected AWSA. Section
4 explains the details of our implementation of AWSA and
discusses the prototype performance. Section 5 concludes
the paper with a brief summary.

II. VIRTUAL MACHINE

A. Virtual machine environment

A Virtual machine (VM) is defined as an efficient and
isolated duplicate of a real machine [2]. This environment is
created by using a Virtual Machine Monitor (VMM) which
provides a second layer on a machine for another operating
system to run on. VMM reproduces everything from the
CPU instructions to the I/O devices in software of the
operating system it runs on. Virtualization in a VM involves
mapping of virtual resources, for example, the registers and
memory, to real hardware resources. It also uses the host
machines instructions to carry out the actions specified by
the VMM. This is done by emulating the host Instruction
Set Architecture (ISA).

The underlying operating system is called the host
operating system [3]. VMM runs on top of the host
operating system. Hence it can hold a second or more
operating system on it. The operating system which runs on
VMM is called the guest operating system. Fig. 1 illustrates
the virtualization concept of VM. The host operating
system and the guest operating system can be either the
same or different type of operating system. For instance,
Windows can run as the host operating system and Linux as
the guest operating system.

VM and virtualization research have been going on for
nearly thirty years; IBM VM/370 was among the first
VMM applications introduced. VMWare[4], Virtualbox[5],
and Xen[6] are some examples of more recent VMMs that
have been developed. Another close environment which
also provides virtualization is called an emulator. The
difference is that the emulator only let one guest operating
system to run on the host system. An example of an
emulator is Qemu [7], which is used in AWSA
development.

Fig. 1: Virtual machine environment.

B. Advantages of virtual machine

VM technology is widely used to run operating systems
or software developed specifically for one platform on
another platform. For AWSA, this can be manipulated to

increase a server security, others are exploited as below:
Compatibility: VMM can run any operating system on

top of it without any modification being.
Isolation: VMM provides a complete layer of virtual

hardware to the guest operating system, the guest operating
system communicates directly with the hardware without
going through the host operating system, thus providing a
strong isolation between the host and guest operating
system. This indeed will protect the host operating system
and any host application from being manipulated by an
intrusion on guest operating system.

Security: VMM is written in a few lines [7], which make
it a simple program. Due to its small code size, VMM
provides a better trusted computing base than the guest
operating system itself. This narrow interface restricts
intruder actions from invading the host operating system.

Inspection: VMM can have access to any operations in
the virtual machine; CPU instructions, all memory actions,
I/O device and I/O controllers operations. This feature will
let the host operating system to view any operations taking
place in the guest operating system via VMM and provide a
mechanism for monitoring intruder activities.

C. Related Work

The main objective of this paper is to propose a system that
can sustain intruder invasion on a server and fix any
corrupted data in the server without any intervention from
an administrator. Similar work has been done in ReVirt[8]
and Terra[9]. These two researches manipulate VM as a
monitoring mechanism for any intrusion that might occur
on the system this is done by modifying some of the code in
VM. Hence make it different to the work done in this paper.
AWSA only take the advantage of Isolation features in VM
without making any changes to the code.
 AWSA have a similar concept to Livewire [10], where
IDS is used to monitor VM from it host operating system.
Using this method IDS is place outside the VM which will
protect the IDS itself by making it out of reach from
intruders attack. The difference that AWSA has over these
two is the next actions that take place after the intrusion
occur. In their work, IDS is use to only monitor and
reporting the incident in a log file or database and the next
action will have to depend on the administrator’s
responsibility for the server, in contrast attack analysis and
necessary recovery action take is done automatically in
AWSA.
 VM provides isolation between the host operating
system and guest operating system. Due to its small and
narrow code of VMM and also the power of VMM to
monitor the process of guest operating system, VM gives an
advantage for AWSA and it component (IDS and
checksum) to be invisible from the intruder attack. On the
other hand, the monitoring and report generated by IDS will
alert AWSA to take further action on the intrusion made to
the server where cheksum will act as the integrity checker if
any of the data is corrupted.

 395

 In general AWSA have the ability of isolating potential
target with it defense system, monitoring of intruder as well
as reporting their activities, data integrity checker and
finally reconstruction of compromised data. By considering
all this as the features of AWSA, we can compare the
difference and similarities of AWSA with the other related
work. The comparison of AWSA with ReVirt, Terra and
Livewire is summarized in table I.

Table I

The Difference and Similarities of AWSA with Other Related
Works

System
Features A

W
SA

R
eV

ir
t

T
er

ra

L
iv

ew
ir

e
Monitoring and

reporting
Isolation

Data integrity
Checker

Data
Reconstruction

In conclusion, AWSA is developed by improving the

works that have been done by researchers and developers of
the system mentioned in this chapter. In general AWSA is
only putting the bit and pieces provided by each element
mentioned above into a complete puzzle that reinforces the
security of a server.

III. AWSA ARCHITECTURE

A. AWSA framework

As online business becomes an attractive target to cyber-
criminals, self-protection against attacks is becoming an
indispensable attribute of web servers. To achieve self-
protection, a web server has to monitor itself, analyze the
information obtained, plan a defense against detected
attacks, and execute the plan. Therefore, in this work, we
adapt these characteristics to design the AWSA. It is a
combination of 6 main components: (a)Isolation,
(b)Network Monitoring, (c)Logger (d)Analyzer (e)Integrity
Checker and (f)Data reconstruction, as shown in Fig 2.

The purpose of isolation in AWSA is to keep the rest of
the protection mechanism away from the web server,
making them invisible to the attacker’s eyes. Thus, it
protects the other functions from being manipulated by the
attackers. To facilitate this component, a VM is used to
encapsulate the web server away from the host operating
system. Meanwhile, network monitoring is used to view the
incoming data packets that go into the web server. It also
acts as a triggering mechanism to warn the other
components to start taking action if it detects suspicious
data packet going through the network traffic. Intrusion
Detection System (IDS) [10] [11] is chosen to equip AWSA
as network monitoring tool.

 Fig. 2: The system architecture

Logger is the next process executed in AWSA to respond

to the alert issued by the previous function. Logger is a
database that keeps important information such as date and
time of the attack, IP address of the attacker, alert priority
generated by the activities, and classification of attack that
are captured from the suspicious data packets. The gathered
information is used by the analyzer to determine if the data
packet is used for intrusion or not, if it is found to be a data
packet from an attacker then it will be blocked.

The analyzer also has the ability to compare the original
value of the checksum with the generated value from data
the integrity function. The integrity checker is able to
perform checksum once an intrusion is detected by the
analyzer. AWSA’s next function is to perform a data
reconstruction if the comparison of data integrity by the
analyzer found that the data stored is compromised.

B. AWSA daemon

Our main focus in this work is to develop the analyzer or

simply called AWSA daemon. It is considered as the heart
of AWSA and controls the flow of the system. The
processes done by AWSA daemon is depicted in Fig 3.

Upon receiving a triggering signal from IDS, AWSA
daemon updates the alert into the database. The alert
generated by IDS is based on the risk level caused by an
attack. Each risk has it own priority. Table I shows the risk.

Once the database updated, AWSA daemon analyzes the
data to look for a potential attack, this is done by counting
the attack that is originated from similar attackers and
similar risk level. The result obtained is then compared with
a predetermined threshold value. The threshold is used as
an indicator to catch any suspicious attacker with
reasonable doubt and at the same time, minimizing the false
alarms, which can burden any security system, especially
the log file.

 396

Table I
Prioritization of the IDS alert

Priority Attack Risk Level

Priority 1 High

Priority 2 Medium

Priority 3 Low

Once the comparison value is over the threshold, the

suspicious attacker alert is erased from the attacker’s log
and the attacker’s IP address is temporarily blocked from
accessing the services offered by the web server. This will
prevent a continuous attack from the same potential
intruder. It also prevents the attacker log file from getting
bigger as well as to reduce the log processing time.

The next process is the execution of the data integrity
checker by checksum. Checksumming in the server helps to
detect whether important files have been tampered with.
Any changes made by any malicious programs installed
illegally or unauthorized modification to the file without the
knowledge of file system is checked by checksum soon
after the detection of suspicious attack by the AWSA
daemon. The checksum process is executed only on the
files system of the guest operating system as well as the
important data files used by the Web server and not on all
the files.

Fig. 3: Flowchart for AWSA daemon

The checksum result is then compared with the original

checksum value stored in the AWSA daemon log. If
differences are detected, it shows that the files have been

tampered with and the next process is activated. When there
is a difference between the compared values, AWSA starts
implementing its reconstruction mechanism. This is the
advantage of utilizing AWSA; it provides automatic
recovery of the corrupted files. Therefore, the file system
on the VM can operate without any interruption to the web
services and intervention from the web server administrator.

Finally, after certain duration of time, the blocked IP
address is removed from the list, and the user can access the
web services again. However, if they attempt to attack the
web server again, AWSA is ready to repeat all these
processes.

IV. IMPLEMENTATION AND RESULT

A prototype was implemented on a Linux platform, using

QEMU for virtualization. Linux Fedora core 3 and
Slackware Linux were deployed as host and guest operating
system respectively. The entire server was being monitored
by SNORT 2.0.2 [12], a public-domain IDS tool. Swatch
[13], the active log file monitoring tool was used to alert the
AWSA. The verification of the data integrity was done by
utilizing MD5 checksum. The hardware used in the
experiments was a standard PC system (AMD Athlon XP
1600 CPU, 256 MBytes RAM).

Fig. 4: Integrity checking time

The performance of AWSA is measured by two aspect;
the durability in facing continuous web attacks and the
response times taken to (a) detect and block attacker’s IP
address, (b) verify the integrity of data, and (c) reconstruct
the compromised data. The durability tests were done by
exposing the server to several web attack tools, namely
Adore [14][15], Brutus AET2[16], Nmap, Smurf2k and
Angry IP scanner. Each of the attacks is successfully
detected by AWSA and the attackers IP address was
blocked.

0

10

20

30

10 50 100 500 1000

Files size (MB)

C
he

ck
su

m
 T

im
e

(s
ec

)

 397

Fig. 5: File recovery time

On average, it took 86 sec for AWSA to impose the
access restriction. This Average Blocking Time is taken
starting from the time AWSA daemon detects the numbers
of attacker’s attempts exceed the predetermined threshold
until the AWSA daemon alienates the attacker. Fig. 4
illustrates that AWSA daemon took less than 30 seconds to
perform the integrity test on 1 Gigabyte of data and the file
system of the server. The obtained result shows the time
taken by AWSA to perform a checksum on several files
with various sizes. It is a good indicator for estimating the
period of performing a checksum on the particular files
sizes. The final evaluation of AWSA is the file recovery
time which indicates the time taken by AWSA to
reconstruct the compromised data to its original state. Fig.
5, clearly depicts that files with larger sizes would consume
more time in transferring the contents to the guest operating
system.

V. CONCLUSION

This paper proposes the idea of Autonomous Web Server
Administrator (AWSA), a VM-based Web Server that
provides an autonomous attack detection and data recovery
system. AWSA is a script-controlled daemon and mainly
consists of Intrusion Detection System (IDS) and file
integrity checking. The IDS is used to detect any malicious
attacks from the intruders. IDS is kept isolated from the
Web Server, therefore, it is inaccessible to VM processes
and cannot be subverted by intruders; offers high attack
resistance to IDS itself; and provides great visibility to the
monitored system. File system integrity checking is
deployed by AWSA to detect any attacker’s signatures left
in any files if they successfully break-in into the system.
Once the corrupted data is identified, the AWSA
automatically recovers any damaged files by transferring
the original contents stored in the host system.

In the near future this work will be extended in finding a
better IDS architecture available to be incorporated with
AWSA and to extend a research on providing the integrity
checker for the virtual machine itself. This research work is
also towards finding a process of providing a forensic
mechanism in order to investigate how an attack is occurs
so that countermeasures can be taken for future attack.

ACKNOWLEDGMENT

This research has been supported by University Technical
Malaysia Melaka under the short grant project.

REFERENCES
[1] CyberSecurity Malaysia. (September, 2010). MyCERT Incident

Statistics. [On-line]. Available at
http://www.mycert.org.my/en/services/statistic/mycert/2010/main/det
ail/725/index.html

[2] Popek, G. & Goldberg, R “Formal Requirements for Virtualizable
Third Generation Architectures”, Communications of the ACM,
1974, 17(7):pp. 412-421.

[3] Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A. & Chen, P. M..

“ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay,” Proceeding of 2002 Symposium on Operating
System Design and Implementation, 2002.

[4] VMware Inc. 2009. (2009, April 05). VMware Workstation.

[Online]. Available : http://www.vmware.com/

[5] Sun Microsystem., 2009. (2009, April 05). Virtualbox. [Online].

Available: http://www.virtualbox.org/

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” Proceedings of the nineteenth ACM symposium on
Operating systems principles. pp. 164–177, 2003.

[7] Bellard, F. 2009. (2009, January 1). QEMU CPU Emulator. [On-

line]. Available: http://fabrice.bellard.free.fr/qemu/

[8] Garfinkel, T., Paff, B., Chow, J., Rosemblum, M. & Boneh, D. 2003.

“TERRA: A virtual Machine-Based Platform Trusted Computing,”
SOSP 2003, 2003, pp. 193-205.

[9] Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A. & Chen, P. M..

“ReVirt: Enabling Intrusion Analysis Through Virtual-Machine
Logging and Replay”, Proceeding of 2002 Symposium on Operating
System Design and Implementation, 2002.

[10] Garfinkel, T. & Rosenblum, M. A, “Virtual Machine Introspection
Based Architecture for Intrusion Detection”, Proc. Network and
Distributed System Security Symposium. 2003

[11] Laureano, M., Maziero, C. & Jamhour, E., “Intrusion Detection in

Virtual Machine Environments,” Proc. EUROMICRO Conference,
30, 2000.

[12] Sourcefire Inc. (2009, October 1). Snort – The Open Source Network

Intrusion Detection System. [On-line]. Available:
http://www.snort.org.

[13] Sourceforge. (2009, October 1). Swatch. [On-line]. Available:

http://swatch.sourceforge.net.

[14] Wichman, R. (2009, November 21). Linux Kernel Rootkits. [On-

line]. Available: http://la-samhna.de/library/rootkits/index.html

[15] (2009, November 21). Packet Storm. Retrieved. [On-line]. Available:

http://packetstormsecurity.org.pk/UNIX/penetration/rootkits/index.ht
ml

[16] Hoobie Inc. (2009, October 10). Brutus - The remote password

cracker. [On-line]. Available: from: http://www.hoobie.net/brutus/

0

100

200

300

400

500

10 50 100 500 1000

Files Size (MB)

Fi
le

 T
ra

ns
fe

r T
im

e
(s

ec
)

