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Abstract— This manuscript is a piece of report on the 

identification of Didactic Liquid Level Systems. The term 
didactic is used as to enlighten the purpose of proto-typing 
liquid level system for educational use. A liquid level 
system with unknown mathematical characteristic is 
identified using ARX (Auto-Regressive with Exogenous 
Input) model. The determination of such system, on the 
basis of experimental data is conducted to obtain the discrete 
transfer function as well as state space representation of it. 
The identification process which exploits the advantage of 
linear parametric ARX gives beneficial information such as 
correlation, best fit and poles-zeros location. The Linear 
Quadratic Regulator (LQR) is tested for such liquid level 
system before the estimator is designed. Literal analysis of 
the estimator performance is conducted as a preliminary 
insight to the next investigation on the self tuning 
Proportional – Integral – derivative (PID) algorithm. 
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I. INTRODUCTION 

 
T is quite often when the actual systems are about to be 
designed, the mathematical model of such systems are 

unknown. As the mathematical model is a description of the 
behavior of a system using mathematics, the knowledge of it 
is vital when good controller design is to be considered [1, 
2]. In the identification process, a mathematical relationship 
or the governing dynamics between the input and the output 
of the system should be known. The underlying principle 
and knowledge of the system should be investigated to 
comprehend the occurrence of nonlinearity in the system 
dynamics. Apart from nonlinearities, there may be a 
consequence of unknown parameters which hinders the 
objective to obtain a complete detail model of a process 
available for control purpose. There are factors that 
abstained researchers to use conventional control theory; 
where many systems are nonlinear and contain unknown 
parameters. Those parameters may not be estimated 
accurately if reliable experimental data is absent. 
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II. IDENTIFICATION PROCESS  

 
In this manuscript, a mathematical model of Liquid Level 

System shown in figure 1 is obtained by performing system 
identification process. The general model identification 
process is shown in figure 2. The terms u(k)  and y(k) are 
the input and output signals respectively measured at 
discrete-time k. Through system identification process, all 
important information such as best fit, residual analysis, 
correlation, and pole-zero location are obtained [3]. As such, 
the mathematical model and estimated model of Liquid 
Level System is acquired. As the system suffer from chaotic 
behavior and bifurcation phenomena which come from the 
dynamics of the motor pump, solenoid valve and sensors, 
the use of identification tool in MATLAB is beneficial.  

 
 
 
 
 
 
 
 
 

Figure 1: Liquid Level System. 
 

  
Figure 2: Liquid Level system identification process. 

 

A few structures of parametric model such as ARX 
model, ARMAX (Auto-Regressive Moving Average with 
Exogenous Input) model, OE (output-error) model and BJ 
(Box-Jenkins) model can be used as liquid level model 
structure. ARX model serves the basic structure as this 
structure ignores the moving average or the error dynamics 
of the system. As such, ARX model is used and the general 
model with appearance of error dynamics e(k) is represented 
by the difference equation (1). Lowercase ‘d’ is time delay 
which represent the difference between u(k)  and y(k). The 
general ARX model is shown in figure 3. 
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Figure 3: ARX Model Structure. 

III.  GENERATING INPUT SIGNAL  

 
Liquid level systems are rich with non-linearities and 

disturbances. As such, building the dynamic model of such 
system is tedious without any known parameters presented. 
The used of system identification methods are worthwhile 
for the parameter estimation of such systems. The process 
begins with investigating the input-output relation of the 
system. Generating input signal is important and crucial for 
the good identification process. Good parameters 
identification requires the usage of input signal that are rich 
in frequencies. As such, many researchers proposed the 
sinusoidal signals which shown in the equation (2) 

(2)kstiωCos
p
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In equation (2), ai is amplitude; ωi is frequency and ts for 
sampling time. Note that P is determined by the number of 
system parameter, n that needs to be identified. The 
generated input signal u(k) with three different frequencies 
is shown in Figure 4. The input signal u(k) is finite power 
signal as it does not decay but it having infinite energy.  

 

 
Figure 4: Generated input signal of three different frequencies. 

 

Pseudo-Random Binary Sequences (PRBS) that 
generating the sequence of square pulses that modulated by 
different width can also be used. Paper [4] provides idea by 
exploiting the use of PRBS while studying the scheme to 
fault detection and isolation using adaptive ARX model.  
However, this method has drawback as it is bit difficult to 
be implemented as compared to the sinusoidal input. 

IV.  PLANT MODEL 

 
The set of input-output data produced by the sinusoidal 

waveform of equation (2) is used and been evaluated and 
estimated by the identification tool of SIMULINK / 
MATLAB. The relationship of a measured and simulated 
input-output data is shown in figure 5. The model output 
yields 86.93 best fit. Figure 6 shows the plot of frequency 
response for the identified liquid level system. By looking at 
the plot, it is acceptable that the system is the best model of 
the identification process, plus the system is stable in nature. 
However, the plot shows that the stability need to be 
improved as the phase plot has not meet the required -180° 
when the magnitude plot intersect 0dB line. Step response in 
figure 7 confirms that the system suffers around 50% steady 
state error due to the step change. Whereas figure 8 depicts 
how the liquid level system may response to the sinusoidal 
input voltage. The previous figure 3 depicts the structure of 
ARX model in which the identification process of liquid 

level system took place. The identification tool in MATLAB 
generates discrete time polynomial shown in equation (3). 
As ARX model ignore error dynamic of the plant, equation 
(4) can be simplified further. Equation (4) provides 
information on the mathematical model of the liquid level 
system in discrete time domain. Whereas equation (5) shows 
the transfer function of a liquid level system in continuous 
frequency domain. Equation (5) provides information on the 
dynamics of the system. The system is known as a minimum 
phase second order system. 
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Figure 5: Measured and simulated model output yields best fit of 86.93 

 

 
Figure 6: Frequency response  

 

 
Figure 7: Response to a step change. 

 

 
Figure 8: Response to a sinusoidal input 

V. STATE FEEDBACK CONTROL 

 
State space is a technique of using the states to describe 

the system and hence represent the state into a space. For 
instance, it is difficult to study theoretically (using 
geometric and / or analytic methods) the nth order system 
which represented by ���� = ���, �
, �

, … . . ������. As 
such, computer aided programs are normally been used as 
they are better with 1st order ordinary differential equation. 
For example, equation (6) represents any particular system. 
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The derived equation (7) which is in matrix form results 
from the manipulation of equation (6). Note that the liquid 
level system uses sensors; as such, equation (8) may result. 
In general, the linear time invariant system of the plant can 
be described as in equation (9) and (10). Note that X is an n 
x 1 state vector, U is an q x 1 input vector, Y is an p x 1 
output vector, A is an n x n state matrix, B is an n x q input 
matrix, C is an p x n output matrix and D is an p x m feed 
forward matrix. 

 �� = � − �� − �� ⋯ ⋯ �6� �ℎ��� �� = � �� = ��  � ��� = �� = ����� = �� = 1� �� − ��� − ����! → #������$ = % 0 1− �� − ��' (����) + % 0��' 
#������$ = % 0 1− �� − ��' (����) + % 01�' �  

 �� = +� + �, ⋯ ⋯ �7� . = � → /1   00 (����)   →    1 = 2� + 3,   ⋯ ⋯ �8� 

, = 5,�,�⋮,7
8 ,        1 = 51�1�⋮19

8 

  ��:�� = +��:� + �,�:�   ⋯ ⋯ �9� 1�:� = 2��:� + 3,�:�  ⋯ ⋯ �10� 

The state vector describes the state of the system, which is 
a complete summary of the system at a particular point of 
time. If the current state of the system and the future input 
signals are known then it is possible to define the future 
states and outputs of the system. The uses of MATLAB 
command produce the matrix A, B, C and D of the liquid 
level system as in equation (11). The state space model of 
such system is shown in figure 9. 

 ∴ + =  (−3518  −2.698e + 0061 0 ) ∴ � = (10) ∴ 2 = /104.8    4.032e + 006 0 ∴ 3 = 0 
 

From matrix B of the liquid level system, it is apparent 
that only one state can be controlled. However, from the 
knowledge of matrix C, it is obvious that both states can be 
observed. However, test must be developed to find the 
controllability matrix (MC) and observability matrix (MO) of 
the system. 

Observability matrix,  MC =
DEE
EEE
F CCACA�

⋮
CAI�JKK

KKK
L
  , if the rank of this 

matrix is less than n then the system is unobservable. 
Controllability matrix is defined as, MM = /B    AB    A�B   ⋯   AI�B  0 , 
If the rank of this matrix is less than n, then the system is 
uncontrollable. With the use of MATLAB command, the 
rank of controllability matrix and observability matrix are 
obtained as ‘2’. The liquid level system are both controllable 
and observable and therefore a minimal realization system. 
By denoted the systems dynamics as G(S), the state 
feedback control of the liquid level system can is introduced 
in figure 10. The derivation of closed loop eigenvalues ACL 
= (A-BK) in equation (12) is then provided. By applying 

pole placement method, the speed and stability is then 
depending on the value of gain K.  
 

 
Figure 9: General state space model of liquid level system. 

 
 
 
 

Figure 10: State feedback control. 

The input signal,   ,�:� =  O�P�:� − O��:� 
 �� �:� = +��:� + �,�:� �� �:� = +��:� + ��O�P�:� − O��:�� �� �:� = �+ − �O���:� + �O�P�:� 1�:� = 2��:� + 3,�:� = �2 − 3O���:� + 3O�P�:� ��� �:� = +QR��:� + �QRP�:�  1�:� = 2QR��:� + 3QR,�:�  S ⋯ ⋯  (12) 

VI.  ESTIMATOR DESIGN 
 

Prior to the estimator design, the Linear Quadratic 
Regulator (LQR) is tested to the system beforehand. In 
practice, higher gain may be required to place poles of the 
liquid level system at the desired location. This may force 
the system to be a lot faster. However, the required control 
signal is increased by more than 100% which is impossible 
to be achieved by the control input of the liquid level pump. 
As such, a compromise between speed and energy must be 
taking into account while placing poles of the system. For 
the input U=-KX, LQR will minimize energy as stated in 
equation (13). Q and R are positive definite matrices where 
Q determines the important of the error and R determines 
the importance of the energy. The derivation of the Reduced 
Riccati Equation in equation (14) is then introduced. The 
design procedure for LQR controller begins by finding the 
optimum P and optimum K.  

T = U ��VW� + ,VP,�X
Y Z: ⋯ ⋯ �13� 

T = U��VW� + �−O��VP�−O���X
Y Z:  

T = U �V�W + OVPO��X
Y Z: 

≫ �V�W + OVPO�� = − ZZ: ��V\O� ≫ �� = �+ − �O��  ]^Z �� V = �V�+ − �O�V 
  W + OVPO = �+ − �O�V\ + \�+ − �O�  → �_� � = 1 �_� + − �O `:]ab�, O = P��V\, 
 ∴ +V\ + \+ − \�P��V\ + W = 0 ⋯ ⋯ �14� 
 

 LQR function in matlab m-file can be used to determine 
the value of vector K which determines the feedback control 
law. This is done by choosing two parameter values, namely 
input R=1 and matrix Q = C' x C. The controller can be 
tuned by changing the nonzero x and y elements in Q matrix 
which is done in m-file code. By computing in MATLAB, 
the values of matrix K are obtained as [1.0e-003*0.1421    
1.0e-003*0.0002]. In order to reduce the steady state error 
of the system output, a constant gain should be added after 

(11) 

K1 G(S) 
R1 R 

U Y 

K 
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the reference. With a full-state feedback controller all the 
states are feedback. The steady-state value of the states 
should be computed, and multiplied by the chosen gain K, 
and use a new value as the reference for computing the 
input. This constant gain can be found using the user-
defined function which can be used in m-file code. The 
value of constant gain is -70.7107. The use of state feedback 
control and LQR is governed by assumption that all the 
states, X are measurable. Nevertheless, the actual plant only 
reveals the output Y and not X. As the perfect model of the 
liquid level system is available, the states and output of the 
system can be estimated, and denoted as �c and 1c 
respectively. As such, the estimator can be designed to 
estimate and observe the states. The basic estimator block 
diagram is shown in figure 11. Whereas figure 12 shows the 
estimating technique of a liquid level system. The error 
between the estimated and real state hence can be derived. 
The state space model of the estimator is shown in equation 
(16). The error dynamics hence is rewrite as in equation 
(17). The value of G can be obtained by placing the poles of 
the error dynamics at least 10 times greater than the poles of 
the feedback system. The value of G is recorded as [43.0229    
0.0067]. d�:� = ��:� − �c�:�  →  d� �:� = �� �:� − �c� �:� +��:� +  �,�:� −  +�c�:� − �,�:� →  d� �:� =  +d�:� ⋯ ⋯ ⋯ �15� �c� �:� = ��c�:� + GY�t� + BU�t� ⋯ ⋯ �16� d� �:� = �+ − i2�X�t� − �A − GC��c�:� = �A − GC�E�t�  ⋯ ⋯ �17�  

 

 
 
 
 
 
 
 
 
 

Figure 11: Basic estimator block diagram. 

 
Figure 12: Estimating technique of liquid level system. 

VII.  RESULT – ESTIMATOR AND PID 

 
Figure 13 shows both the output of estimator and actual 

plant. There is a slight difference in the output of estimator 
and actual plant. This is due to the different initial condition. 
The estimator is considered good as it converge to zero very 
fast at particular point of initial condition. This is proved by 
the dynamics of error shown in figure 14. The liquid level 
system is then tested with the PID control. PID is the best-
known controller in industries. This scheme offers simple 
structure as well as robust performance. In the design 
process, further increase of Kp will result in the closed loop 
system becoming unstable. Therefore, additional integral is 
to improve steady state accuracy without introducing 

instability. Integrator gives the system one pole at origin, 
hence reducing steady state error as a steady-state error of a 
system depends upon the number of poles at the origin of 
the closed loop characteristic function [5]. The tuning of 
PID parameters called Kp, Ki and Kd are based on Open 
Loop Zigler-Nichols tuning algorithm. The dynamics of PID 
is tabulated in Table 1. The compensator is represented in 
equation (16). Figure 15 shows that the system has good 
transient and less steady state error due to the step change. 
 

 
Figure 13: Estimator vs plant output. 

 
Figure 14: Error dynamics of the estimator. 

 

Table 1: Dynamics of PID 
Type Location Damping Frequency 

Real Zero -14809 1 14809 
Real Zero -547 1 547 
Integrator 0 -1 0 

 C�S� =  4200.8 x �1 + 6.8x10n S��1 + 0.0018S�S  ⋯ �16� 

 

 
Figure 15: Step response of the improved system with PID controller. 
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