EDITOR Mond Sapuan Salit

© Universiti Putra Malaysia Press 2014

First Print 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

UPM Press is a member of the Malaysian Book Publishers Association (MABOPA) Membership No.: 9802

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

ENGINEERING COMPOSITES PROPERTIES & APPLICATIONS / editor
Mohd Sapuan Salit
Includes index
ISBN 978-967-344-396-3
1. Composite materials 2. Engineering. I. Mohd Sapuan Salit.
620.118

Cover Design: Md. Fairus Ahmad Typesetting: Sarwani Padzil Type face: Times New Roman PS Type size: 11/14.5 pt

Direct orders to Universiti Putra Malaysia Press 43400 UPM, Serdang Selangor Darul Ehsan

Printed by Univision Press Sdn. Bhd. Lot 47 & 48, 49, 50 Jalan SR 1/9 Jalan Serdang Raya Taman Serdang Raya 43300 Seri Kembangan Selangor

Preface		ix
Chapter 1	Introduction to Engineering Composites M.E. Hoque, M.K. Bhuyan and S.M. Sapuan	1
Chapter 2	A Glass Fibre Reinforced Polymer Composite Delamination Ratio Study Subjected to Axial Compression Loading K.D. Mohd Aris, M. Minhat, F. Mustapha, D.L. Majid and S.M. Sapuan	19
Chapter 3	Kenaf Fibre Reinforced Polymer Composites Research: An Overview Yousuf El-Shekeil, S.M. Sapuan, A. Khalina and E.S. Zainudin	37
Chapter 4	Physical Properties of Natural Fibres Reinforced Polymer Composites (NFRPC) J. Sahari, S.M. Sapuan and Z.N. Ismarrubie	51
Chapter 5	Effect of Repeated Water and Domestic Bleach Immersion on Liquid Content of Kenaf Fibre Reinforced Polypropylene Composites W.H. Haniffah, S.M. Sapuan, A. Khalina and E.S. Zainudin	63
Chapter 6	Behaviour of Moisture Content and Microwave Dielectric Properties of Kenaf Core, Bast and Stem for Biocomposite Application <i>R. Nazren, A. Khalina, I. Alyani and J. Rimfiel</i>	81

		00
Chapter 7	Mechanical Properties of Oil Palm Frond Reinforced Poly Lactic Acid (PLA)	92
	Biocomposites A.S. Harmaen, A. Khalina and J.L. Rachel	
Chapter 8	Interfacial Adhesion Enhancement Methods for Natural Fibre Reinforced Polymer Composites Z. Leman and S.M. Sapuan	107
Chapter 9	Role of Fibre/Matrix Modification on Mechanical Properties and Water Sorption Characteristics of Hybridized Kenaf/PALF Reinforced HDPE	122
	Composite I.S. Aji, E. S. Zainudin, S.M. Sapuan, A. Khalina	
	and Z.D. Khairul	
Chapter 10	Properties of Lightweight Palm Oil Clinker (POC) Reinforced Concrete Composites W.S. Wan Hamidon, K.S. Baharudin and	147
	M.R. Ishak	
		168
Chapter 11	Advances in Biofibres, Biopolymers and	100
	Biocomposites S.M. Sapuan, J. Sahari, M. Haron, L. Yusriah and	
	M.E. Hoque	
Chapter 12	Materials Selection: Digital Logic and Knowledge	191
	Based System Approach	
	M.A. Maleque, A. Atiqah, M. Faizul and	
	S.M. Sapuan	
Chapter 1	3 A Review of the Use of Concurrent Engineering Technique in Engineering Composite Product	211
	Development	
	Fei-ling, Pua and S.M. Sapuan	

vi

La

Course of

Castron

C. Martin

-

Constanting of the

Taxa a

Chapter 1	4 Total Design of a Small Boat Using Woven Glass – Sugar Palm Fibre Reinforced Unsaturated Polyester Composites S. Misri, Z. Leman and S.M. Sapuan	224
Chapter 1	5 Materials Selection for Lightweight Automotive Composite Hand Operated Parking Brake Lever Design with a Weighted Property Index Method <i>M.R. Mansor and S.M. Sapuan</i>	248
Chapter 16	Challenges in the Moulding of Natural Fibre Composites by Injection Moulding Process M.D. Azaman dan S.M. Sapuan	265
Chapter 17	A Small Boat from Woven Glass-Sugar Palm Fibre Reinforced Unsaturated Polyester Composites S. Misri, Z. Leman and S.M. Sapuan	297
Chapter 18	Biocomposite Radome Development Mohd Yusoff, D.L. Majid and F. Mustapha	313
Chapter 19	Composite Materials for Automotive Energy Absorbers Reza Mehryari Lima and Z.N. Ismarrubie	331
Chapter 20	Application of Concurrent Engineering and Analytical Network Process – Case Study: Conceptual Design Selection of Metal Matrix Composite Brake Disc Rotor <i>N.Fatchurrohman, S. Sulaiman, M.K.A. Ariffin,</i> <i>B.T.H.T. Baharudin and S.M. Sapuan</i>	351
	Hybrid Carbon Nanotubes (CNT) – Carbon Fibre Nanocomposites Siti Norazian Ismail and Suraya Abdul Rashid	370

vii

Chapter 22	Kenaf: From Fibre to Nanocomposites Samaneh Karimi, Ali Karimi, Paridah Md Tahir and E.S. Zainudin	407
Chapter 23	Nanotechnology in Papermaking and Biocomposite Industries S.D. Mohieldin and E. S Zainudin	426
Chapter 24	Polymer Composite Machining Pang Jing Shen, M.N.M. Ansari and S.M. Sapuan	444
Chapter 25	Degradable Polyurethane Material from Polyethylene Terephthalate (PET) Waste for Potential Coating Material: Is It a Suitable Matrix for Composites? <i>A. Salmiaton and F. Danafar</i>	460
List of Contri	butors	483
Index		403

Chapter 15

Materials Selection for Lightweight Automotive Composite Hand Operated Parking Brake Lever Design with a Weighted Property Index Method

M.R. Mansor and S.M. Sapuan

INTRODUCTION

In a typical modern vehicle where the components may rise up to 15,000 parts, the task to select the appropriate material to best suit a required function or application is not an easy task. It is more complicated when the designers is faced by the challenged of having overwhelming information on various materials available at the market to choose from to match the required component function. Thus, the need for a systematic and quantitative material selection process is very important to aid the task in choosing the optimum material which gives the maximum benefits to the component such as in function, cost and reliability. One of the solutions is through a systematic material selection process called the weighted property index method. In this exercise, the weighted property index method is applied in the design of an automotive component. The aim is to identify a new material for the construction of a lightweight automotive hand operated parking brake lever based on the performance requirements set for the component.

Findik and Turan (2012) recently made a case study on the selection of the best candidate material for a lighter train wagon design using weighted property index method (WPIM). In their study, the current train load wagon wall was selected to be optimized in term of reducing the component's weight, increasing the stiffness of the component, reducing the cost of the component as well as maintaining good reliability and