
584

An Empirical Framework Design to Examine the Improvement in

Software Requirements through Negotiation

Sabrina Ahmad, Noor Azilah Muda

Faculty of Information and Communication Technology,

Universiti Teknikal Malaysia Melaka

{sabrinaahmad, azilah}@utem.edu.my

ABSTRACT

Negotiation is one promising effort

during requirements elicitation process

to improve the quality of software

requirements. When negotiation is

claimed beneficial theoretically, it is

important that the deployment of

negotiation is examined and the

effectiveness of negotiation is evaluated

through empirical study. This paper aims

at providing an empirical framework

design to examine the improvement in

software requirements through

negotiation. Besides, it elaborates the

relevance of negotiation in requirements

elicitation process and its effectiveness.

An empirical study method is imposed to

design the framework. The design is

carefully established based the selection

of population and participants, the

experimental protocol, threats to validity

and justification of measures.

KEYWORDS

Empirical framework, design, software

requirements, requirements elicitation,

negotiation.

1 INTRODUCTION

Many efforts have been done to improve

the quality of software requirements.

Negotiation is one of the promising

efforts during requirements elicitation

process especially when it involved

various stakeholders. In a process of

identifying the right requirements to

develop, conflicts are common since

stakeholders frequently pursue

mismatching goals. Reaching

agreements among stakeholders who

have different concerns, responsibilities,

and priorities is quite challenging.

Therefore, negotiation is useful to handle

the conflicts and to resolve disagreement

between the stakeholders. A part of

achieving agreement, the requirements

are believed to be improved in quality.

Software requirements quality is usually

assessed through verification and

validation of intermediate or final

product. The requirements are checked

against requirements specification,

prototypes or the end product. This is

known as an analytical approach. It

describes an effort to detect the defects

within the software development

products and fix them.

Meanwhile, a constructive approach is

applied while developing the

requirements. This approach suggests

prevention to ensure that mistakes are

minimized during the creation of

requirements. In this research, a

constructive approach was adopted by

enforcing negotiation in the

requirements elicitation process.

Negotiation is seen as a preventive

585

action whereby defects are not

introduced into the requirements

statement. Therefore, the requirements

elicitation process which incorporates

negotiation is expected to list better

quality requirements.

The rationale of adopting the

constructive approach and measuring the

quality at a very early stage is obvious.

History tells us that the greatest number

of errors and the errors that are most

costly to fix are generated at the

beginning stage of software development

process. Errors in requirements are the

most numerous in the software lifecycle

and also the most expensive and time-

consuming to correct [1]. The context in

which requirements are elicited is

usually a human activity, and the

problem owners are people. It is seldom

technical problems which inhibit

productivity and quality [2, 3]. Instead

the vast majority of requirements

problems are related to human

interactions, process and

communications. One of the main

problems during requirements elicitation

is communication and understanding

among the stakeholders. This involves

conflicts, scope boundary and erroneous

interpretation. The argument is

supported by Zowghi [3] who believed

that requirements elicitation is inherently

imprecise as a result of multiple variable

factors, a vast array of options and

decisions, and communication.

Due to the urgency of quality

requirements for quality software, this

paper outlines an empirical framework

design to allow empirical investigation

in order to implement negotiation in

requirements engineering and to assess

its effectiveness. The design also

explains the mechanism of negotiation

activities which contribute to the

improvement in requirements quality.

2 NEGOTIATIONS IN

REQUIREMENTS ENGINEERING

According to Grunbacher [4],

negotiation leads to benefits such as

understanding project constraints,

adapting to change, fostering team

learning, revealing tacit knowledge,

managing complexity, dealing with

uncertainty and finding better solutions.

Furthermore, the benefits of negotiation

are obvious and many researchers have

pointed out its usefulness for

requirements engineering [5-11]. None

of these studies measured the

improvement in requirements after

negotiation.

Based on literature, advantages for

deploying negotiation are best classified

in four categories. They are conflict

handling, shared vision, cooperation, and

knowledge. Negotiation contributes to

conflict handling because it facilitates

conflict detection and resolution [12].

Before an actual conduct of negotiation,

requirements statements are examined to

identify conflicts by analysing

stakeholders’ goals and preferences. The

EasyWinWin negotiation approach

identifies conflicts manually and relies

on the knowledge and expertise of the

involved stakeholders and the

capabilities of the facilitator [13]. Other

researchers have tried to automate or

partially automate the task of

understanding requirements conflict. For

example, Egyed and Grunbacher[14]

presented an approach for identifying

conflict and cooperation among

requirements based on software

attributes and automated traceability.

Another example is from Kaiya[15] who

586

introduced a systematic approach to

identify conflict through preference

metrics in AGORA (attributed goal-

oriented analysis). Sequentially, the

identified conflicts are then negotiated to

seek mutually beneficial solutions that

are acceptable by the stakeholders. The

negotiation contribution towards conflict

handling is also proven empirically by

several researchers through experiments

[6, 9, 16]. Suppressing or overlooking

conflicts is risky and might have serious

negative effects on the software

development process. Understanding

requirements conflicts is thus an

important strategy to mitigate software

development risks. This is supported by

much literature emphasizing the

importance identifying and analysing

conflicts for the success of system

development [17-21].

Negotiation also promotes shared vision

among multiple stakeholders. The

negotiation process addresses the

stakeholders’ concerns and thus

establishes shared vision to achieve

mutual understanding. This is supported

by other researchers as they also claimed

that one of the negotiation benefits is to

establish shared vision [9, 22, 23].

Throughout a negotiation process,

stakeholders share their interests of the

requirements they need and thus provide

understanding to other stakeholders.

This process allows various stakeholders

to acknowledge others’ concerns for the

benefits of the system to be developed.

Usually, stakeholders contribute

incomplete, vague, and often

inconsistent statements and ideas about

their objectives, assumptions, and

expectations. As they work together to

negotiate their requirements, they give

the project shape, and their merged

visions emerge into a system that other

stakeholders can accept. If, on the other

hand, the stakeholders do not negotiate

together, there is little chance the

resulting system will accommodate their

needs and the project will often fail.

Negotiation is, therefore, essential to

achieve mutually satisfactory

agreements.

The shared vision and the satisfactory

agreement increase the level of

cooperation and trust among the

stakeholders. As negotiation processes

explore the stakeholders concerns, needs

and visions and their ideas towards

developing a reliable and workable

system are acknowledged. The

acknowledgement leads to cooperation

as the agreement is a group decision

which recognize the various stakeholders

viewpoints [24]. This is also proven by

empirical study and reported experience

in literature [6, 16, 25]. The cooperation

among the stakeholders is important to

support the development process along

the way and to ensure the success of the

system being developed. At the end of

the day the developed system provides

functions the stakeholders need to assist

their business process.

Further, the negotiation process

improves the shared knowledge gained

by the stakeholders. Usually,

stakeholders state their needs towards

the intended system with an implicit

knowledge of their own work. A

statement can be easily misinterpreted or

misunderstand by the others. Through

the negotiation process, stakeholders

need to explain and elaborate their

requirements in order to provide

understanding to others. In addition

negotiation invokes the exploration of

solutions before reaching agreement.

Also, through negotiation, stakeholders

587

are forced to justify the need of the

requirements they request and the

rationale of having the said requirement.

The negotiation process therefore

narrows the knowledge gap and reveals

the tacit knowledge of the multiple

stakeholders [5, 9, 26, 27].

3 THE MECHANISM OF

NEGOTIATION PROCESS

This section explains the mechanism of

negotiation process implemented in this

research. Explains here are the

negotiation activities, concepts and

terms used throughout the research and

related works which motivates the

framework design.

3.1 Negotiation Activities

Explained here is an overview of the

interactions that happen to produce

agreed requirements through negotiation.

Details of the components of negotiation

are as follows:

• Define and share the glossary – This

process allows the stakeholders to

define and to share the meaning of

important keywords. A clear and

explicit definition yields the same

interpretation used in the

requirements statements. The same

interpretation is useful to assist

multiple stakeholders to understand

definitions without ambiguity. There

are at least two literature which

support the fact that sharing the

glossary is important to prevent

inconsistency in interpretation [13,

15]. EasyWinWin methodology

comprises activities of gathering,

elaborating, prioritizing and

negotiating requirements.

Additionally, in order to avoid the

occurrence of misinterpretation,

EasyWinWin includes the ‘capture a

glossary of term’ sub-activity

wherein stakeholders can define and

share the meaning of important terms

and words appearing in the

requirements statements. AGORA

adopts a scoring technique that

initially focuses on vertical conflicts

in preference matrices in order to

systematically find discordances in

interpretations.

• Identify conflicts – Negotiation

process focuses on conflicts

identification to gather the attention

of the stakeholders on problematic

requirements. This effort motivates

them to work together in order to

find a resolution. Conflicts do not

necessarily contain defects but may

contain possible defects which are

worth unfolding, justifying and

assessing thoroughly. There are at

least three literature which agree and

prove that conflict identification is

useful to identify possible defects,

which in turn leads to resolution.

Boehm [23] who introduced

EasyWinWin as a tool based on

negotiation methodology

incorporates an activity called

‘Identify Issues, Options, and

Agreements’ to register conflicts as a

foundation from which to propose

resolution options and therefore

provides the foundation to negotiate

agreements. Kaiya[28], who

introduced AGORA provides

systematic conflict identification

through preference matrices value,

also proved that conflict

identification is useful to identify

which requirement should be

improved and refined. Robinson et

al [29] introduced conflict-oriented

approach to identify and to remove

588

conflicts in order to have a better

structure requirements.

• Share perspectives, views, and

expectations of the requirements –

This process allows the stakeholders

to clarify and to further elaborate the

requirements statements. The

clarification and further elaboration

of the requirements revealed the

stakeholders perspectives, views and

expectations towards the

requirements statements. Grunbacher

[9] stated that people know more

than they can tell. Also, implicit

stakeholders’ goals, hidden

assumptions, unshared expectations

often result in severe problems in the

later stages of software development.

There was at least one literature on

negotiation method which supported

the fact that sharing perspectives,

views, and expectations of the

requirements was important to reveal

tacit knowledge. EasyWinWin

includes the ‘Brainstorm stakeholder

interests’ to allow the stakeholders to

share their goals, perspectives,

views, and expectations by gathering

statements about their win

conditions. This activity had proven

beneficial during implementation

using real-world negotiation as

reported in [9].

• Assess the system feasibility – This

process allows the stakeholders to

assess the system feasibility from the

perspective of resource feasibility

and dependency feasibility. Resource

feasibility means that the

requirements are assessed if the

subset of requirements can be built

within time and cost constraints.

While dependency feasibility means

that all requirements in the subset are

assessed if all the dependencies are

included in the subset. This effort

assists the stakeholders to make

informed decision on the practicality

of the agreed set of requirements.

There were at least two literatures

on project management which

supported the fact that assessing

system feasibility was important to

ensure the success of the software

project [30, 31]. The literature

discussed the scenario of the

possibility of an infeasible system if

the project resources were not

considered during requirements

engineering process.

• Justify the requirements needs – This

process allows the stakeholders to

justify the needs and the importance

of the requested requirements. The

stakeholders need to think through

the requirements and consider why

one requirement is more important

than the other in order to justify them

to other stakeholders. There was at

least one empirical evidence which

supported the fact that requirements

justification forced the stakeholders

to think thoroughly on the

requirements need and importance.

In a small team, negotiation is

exercised and based on observation;

it is reported [32] that the negotiation

process forced the participants to

justify the need on every request

demanded in order to gain other

participants’ understanding.

• Prioritize the requirements – This

process allows the stakeholders to

prioritize the requirements

statements, to define and narrow

down the scope of work and to gain

focus. Prioritization makes it

possible to gauge the importance a

client feels regarding each

requirement in respect of a software

solution being able to fulfil their

needs. There was at least one

589

literature on negotiation method

which supported the fact that

requirements prioritization managed

to narrow down the focus which

assisted in group agreement [13].

Through prioritization [33], if it is

not feasible to complete all of

projects requirements, it is still

possible to see which requirements

are most important to the customer

and implement those before the less

important ones. This means that a

project which has not had all its

requirements fulfilled can still be of

high value to a customer when it has

fulfilled the customers’ most

important requirements. In an

example, Karlsson et al [34] showed

that 94% of the project value can be

delivered for about 78% of the

possible maximum cost.

3.2 The Underlying Concept

Mohammed [35] stated that having

agreement between parties is paramount.

Negotiation is deployed in this research

to achieve agreement between the

system’s stakeholders in order to

identify a set of requirements to be

developed. Negotiation is usually

understood to be a bargaining process

between two or more parties to identify

or to resolve people’s needs of a system.

A common bargaining process is

between customer and developer to

agree on the requirements to be

developed and the project cost and time.

The objective is to achieve an agreement

on a business deal and then to proceed

with the agreed software development.

Four key concepts need to be

emphasized here as these are the

concepts applied in the research:

Consensus-based negotiation is applied

in this research in which the system’s

stakeholders, working together, reach

group objectives rather than compete

against each other. The group objective

is mainly the development of a system

which benefits the organization and at

the same time represents the key

stakeholders’ perspectives and

perceptions [27]. The main concern with

regards consensus is not to reach

unanimity but rather that all the

stakeholders are committed to accept the

consensual decision and feel that their

perspectives and ideas are acknowledged

in a cooperative manner. The consensus

decision making is adopted because it is

based on the belief that each stakeholder

has some part of the truth while no one

person contributes all. It is also based on

a respect that all persons involved in the

decision making be considered.

Consensus enables a group to take

advantage of all group members’ ideas.

It is a reasonable expectation that a

decision based on a combination of

thoughts would be of a higher quality

than any individual decision. Choudhury

et al [36] stated that working in a group

provides a wide range of advantages by

sharing information, generating ideas,

making decisions and reviewing the

effects of the decisions. Ideally, the

group will reach a better decision than

an individual because collective

knowledge and expertise of the group is

greater than that of any individual.

Further, people are more likely to

implement and accept decisions they

have accepted by consensus [36, 37].

Consensus-based negotiation may be

summarized as:

• Agreement on the decisions by

all the key stakeholders;

• Acceptance of consensual

decision and acknowledgement

590

of the stakeholders’ perspectives

and ideas;

• Respect for all persons involved

in the decision making process;

• Use of the collective knowledge

and skills of the group and

• Creation of collaborative

environment among the

stakeholders.

The stakeholder is a term that refers to

any person or group who will be affected

by the system directly or indirectly.

Stakeholders include end users who

interact with the system and everyone

else in an organization that may be

affected by its installation. Other system

stakeholders may be engineers who are

developing or maintaining related

systems, business managers, domain

experts and trade union representatives

[38]. However, it is inappropriate and

impossible to have all of the system

stakeholders in the requirements

elicitation process. It is impractical to

involve a huge number of people in a

face-to-face negotiation process.

Negotiations practice [6] usually

involves the key stakeholders (also

known as success-critical stakeholders)

to determine success. These stakeholders

are the key people to represents their

group interests and may include the end

users, the system owner and managers

who collaborate and are actively

involved in decision making to achieve

mutually satisfactory agreements.

Therefore during the empirical study,

only the key stakeholders involve to

represent the key people.

The ‘silent objective’ is enforced to the

empirical study. It means the

researcher’s purpose for the experiments

will be not revealed to the participants

performing the negotiation. The ‘silent

objective’ is not revealed in the

experiments’ instruction to the

participants. This ‘silent objective’ is

employed to allow the participants to

merely exercise negotiation without

knowing the underlying objective of the

researcher. If the objective is revealed,

the participants will tend to prioritise

wrongly by striving to achieve the

objective without having negotiation.

This is to ensure that this research is

purely assessing the negotiation process

and the results obtained from that

process.

A defect is defined by the researcher as

summarized here. The literature is rife

with inconsistent usage of this term. For

example, McConnell [39] makes no

distinction between errors and defects in

the examples he cites in his book. On the

other hand, Humphrey [40] elaborately

states a bug is a defect but not all defects

are bugs, and all defects result from

errors but not all errors produce defects.

Even the software measurements

collected by authoritative organizations

reflect a lack of consensus; Christensen

et al [41] stated that NASA and DoD

used the term "defects" while the

Software Engineering Laboratory refers

to "errors" and the Army refers to

"faults" and "anomalies". Pressman [42]

define defect as a deviation between the

specification and the implementation,

detected after release to the customer (or

the next activity in the software process).

This is supported by a definition in IEEE

[43] and SWEBOK [44] in which the

standard define defect as product

anomaly and a quality problem

discovered after the software has been

released to end-users respectively. These

definitions fit the big picture of software

development in which the specification

can be checked against the end product

591

to recognize the existence of defect or

not.

This research is using the term defect to

represent requirements defect which may

occur during requirements elicitation

process. However, defect in this research

refers to the nonconformance of

requirements at a very high level of

requirements elicitation phase. As this

research has a limitation within RE

phase only, the general definition of

defect as stated above is not appropriate.

The requirement defect at this stage is

checked within the written requirements

statement and against the conformance

of the stakeholders needs. Aligned with

that, at this stage, only a number of

defect attributes which associate with

several quality attributes is relevant.

Lauesen et al [45] looked into the effort

to prevent defects early in the process

life-cycle, defined requirement defect as

“although the product works as intended

by the developers, the users and

customers are not satisfied with it. They

may find it too difficult to use or unable

to support certain user tasks. Unstated

user expectations (tacit requirements)

and misunderstood requirements are

typical examples”. Similar research [46-

48] which looks into requirements

defects in this early stage line up more or

less the same defect attributes in their

research. Therefore, by definition, a

defect is a nonconformance of

requirements in requirements statements

and customers’ needs based on the

requirements comprehensibility,

completeness, consistency, feasibility

and correctness. Customers’ needs are

represented by the high level

requirements statements listed as agreed

requirements following negotiation.

3.3 Related Works

This sub-section elaborates the

motivation which influenced the

negotiation process introduced in this

research. The process was designed to

provide negotiation facility during the

requirements elicitation process among

multiple stakeholders. The basic features

were conflict detection and resolution,

requirements exploration and

requirements prioritization to assist in

achieving group decision. Discussed

below are current methods and

techniques which motivate the

negotiation process introduced in this

research.

In terms of conflicts and

misinterpretation detection,

EasyWinWin [23] is identified as a

useful negotiation methodology with

collaborative tools which provides

electronic brainstorming, categorizing

and polling. It includes the “capture a

glossary of terms” sub-activity wherein

stakeholders can define and share the

meaning of important terms and words

appearing in the requirements

statements. This effort requires the

stakeholders to create a record of the

glossary. Once the glossary is recorded,

it can be viewed by all the stakeholders

involved in the negotiation. Also,

EasyWinWin has a tool called quality

attribute risk and conflict consultant

(QARCC) which systematically provides

suggestions to the stakeholders regarding

the possibilities of potential conflicts by

using a knowledge base. In the

knowledge base, pairs of conflicting

quality attributes are stored. However,

the success of this approach largely

depends on the quality of the knowledge

base and in general it is a huge effort to

build such a knowledge base. The

592

development of the knowledge base

needs project backgrounds,

documentations and histories of previous

projects to allow archiving and mapping

on the potential conflicts. This effort is

useful if only the organization has the

history of previous projects. What if a

knowledge base is not available? The

approach introduced to detect conflicts

in this research does not require such a

knowledge base in advance. This

research adopts a scoring technique to

systematically detect the conflicts. In

this activity, individual stakeholder need

to assign a score value for every

requirement based on individual

preference. Whenever the scores differ,

there are conflicts. Even though the

approach used in this research does not

require knowledge base as in

EasyWinWin, the benefit of knowledge

sharing among the stakeholders

emphasized in EasyWinWin is noted.

Attributed Goal-oriented Analysis

(AGORA)[15] introduced a scoring

technique that focused on vertical

conflicts and diagonal conflicts in

preference matrices. Vertical (off

diagonal) conflicts systematically find

conflicts in interpretations and diagonal

(the main diagonal of the matrices)

conflicts systematically find conflicts in

stakeholders’ interest. However,

AGORA requires a well trained

facilitator to facilitate the requirements

elicitation process who understands how

AGORA works and who is capable of

handling the entire process. Also, during

the process with AGORA, the

stakeholders need to guess what other

stakeholders think of every requirement

and assign a score to it. If the variance of

the score is high, it is believed that there

might be conflicts in interpretation with

the requirement and further elaboration

is required. On the other hand, the

approach in this research does not

require a trained facilitator to assist the

elicitation process because neither tools

nor complicated graphs nor matrices are

used.

This research adapts and simplifies the

scoring technique in AGORA [28] to

detect the conflicts in preference among

multiple stakeholders. The vertical

conflicts which identify interpretation

issues are not included as

misinterpretation and inconsistent

conflicts are managed in the face-to-face

negotiation process which reveal tacit

information and shared common

understanding.

The scale of scoring technique used in

this research is adapted from the

MoSCoW technique [49]. MoSCoW is a

prioritisation technique used in business

analysis and software development to

reach a common understanding with

stakeholders on the importance they

place on the delivery of each

requirement. The capital letters in

MoSCoW stand for:

M - MUST have this.

S - SHOULD have this if at all possible.

C - COULD have this if it does not

affect anything else.

W - WON'T have at this time but

WOULD like in the future.

Table 1: The Scale for Requirements

Prioritization

Scale Meaning

4 Must have this

3 Should have this if at all possible

2
Could have this if it does not

affect anything else

1
Will not have this time but would

like in the future

0 Must never have this

593

In this research, this method was

converted into a numbered scale from 0

to 4 in which an item was added to scale

0 meaning ‘Must never have this.’ This

item was introduced to provide an option

if the stakeholders do not want the

particular requirement to be included.

This is possible in a circumstance of

requirements which are requested by a

stakeholder but is not wanted by the

other. For example, lecturers would like

to have their students’ photos to be

tagged along the electronic report card

for prompt recognition but on the other

hand the students are not comfortable to

have their photos online. In this

example, the lecturers’ representative

suggests a requirement to have the

students’ photos online but the students’

representative choose to exclude the

requirements. Hence, the ‘Must never

have this’ is the best option to represent

the students’ preference. Table 1 state

the scale used in this research.

A cycle of explanation and elaboration

in the negotiation phase in this research

is designed to promote understanding, to

allow the stakeholders to make informed

decisions and therefore achieve

consensus. This approach is influenced

by Delphi technique which is usually

used to survey and to collect the

opinions of experts. The Delphi

technique is widely used and accepted

method for gathering data from

respondents within their domain of

expertise. The technique is designed as a

group communication process which

aims to achieve a convergence of

opinion on a specific real-world issue

[50, 51]. The strength of Delphi, in

contrast to other data gathering and

analysis techniques, employs multiple

iterations designed to develop a

consensus of opinion concerning a

specific topic via questionnaires. It is

noted that Delphi usually keeps the

stakeholders isolated. However, this

research adapted the iterative process of

Delphi to converge the stakeholders’

opinions in face-to-face iteration format.

This activity allows information sharing

emphasizing the justification of the

“need” or “not need” of the software

requirements.

4 THE EMPIRICAL FRAMEWORK

DESIGN

This section describes the framework

design deployed in the research based on

guidelines by Kitchenham et al [52]. It

provides guideline and control on the

population being studied, the rationale

for sampling from that population, the

process for allocating and administering

the empirical study, and threats to

validity to the study. Throughout this

section, empirical study is mentioned

several times but is not reported in this

paper as it focuses on the framework

design and the theory behind it.

4.1 The Subjects

This sub-section defines the population

from which the participants for the study

were drawn, the process by which the

participants were selected and the

process by which the participants were

assigned to the study

The study was done in a series of tutorial

sessions at The University of Western

Australia. Two course units with at least

20 people each were involved in two

semesters to allow several trial runs and

the actual study to take place. The units

were Software Requirements and Project

Management (CITS3220) and Software

594

Engineering Industry Project Leadership

(CITS4222). The units shaped the

students to become effective team

members, undertake problem

identification, formulation and solution

and apply their knowledge of basic

science and engineering skills

These two units were identified as the

most suitable units to provide the right

group of students with the right level of

knowledge to deploy the study for this

research. These were students with a

software engineering knowledge

background. Particularly they were

equipped with the theory and concept of

negotiation through formal lecture

before the study. Some had working

experience in software development.

In order to avoid the presence of bias,

the participants’ assignment to the

groups and to the role they were playing

was random. The participants who had

special ability, such as people with

working experience or a high achiever,

were identified by the unit coordinator

and divided evenly among groups. This

was done to avoid the possibility of

having a distinguish group which consist

of brilliant participants who would

produce very good negotiation results.

Good results may not represent the

effectiveness of negotiation but simply

the participants’ intelligent guesses.

Hence, in this research, on top of

random group assignment, extra effort to

avoid the presence of bias is necessary.

In addition, a role play empirical study

always comes with the dilemma of

whether the participants are really

playing a role or simply incorporating

their personal judgment. Expecting that

each participant would be more

committed to a specific priority when

given a clear role and in order to

minimize that possibility, the

participants were given instruction and

guideline on how to play the role of the

system’s stakeholder. In addition, to

assist the participants to feel the

responsibility of being the system’s

stakeholders, the description scenario

and the candidate requirements were

given to them in advance. These reading

materials helped because the description

scenario described the need of the

system and the concern of different

stakeholders and the candidate

requirements were carefully tailored to

the specific stakeholder’s needs. In

addition, observation done by the

researcher, her supervisor and unit

coordinator throughout the experiment

discovered that most of the participants

were playing the role given to them; this

is due to the peer assessment for the unit

of the tutorial session where the study

was done.

4.2 Empirical Study Procedures

This sub-section defines the empirical

study unit, describes the study design

and explains the procedures.

Each unit was a group of four or five

participants exercising negotiation. The

number of groups available for each

study was treated as a replication of the

treatment. Every study involved four to

six groups exercising negotiation.

Hence, negotiation was essential and

exercised by all the groups. The results

from the study produced a list of

software requirements which had been

negotiated among the participants within

a group and measured respectively.

Initially in the empirical study

procedures, all handouts such as the

595

instruction sheet, the description

scenario, the candidate requirements and

the decision forms, were given to the

participants. Next, a briefing on the

background knowledge of the

experiment took place. This was

followed by instructions which were

supported by a sample overview of step-

by-step activities. The participants’

assignment to the groups with the role to

play during the experiment was then

given and followed. Ample time was

given to the participants to understand

the roles and the candidate requirements

prepared for them. The participants were

then asked to make an individual

decision based on resource constraints

on which requirements should be

implemented. This activity acted as a

control situation in which decisions were

made individually and obviously no

negotiation was involved. It also

provides a basis for systematic conflicts

detection. This was then followed by a

negotiation to achieve a group decision.

When the consensus was achieved or the

time limit ended, the decision forms

were collected and the post mortem was

deployed. In the post mortem session,

feedback from the participants was

gathered to learn if the study was

successful and to note weaknesses, if

any, for future references.

4.3 Threats to Validity

First the ‘silent objective’ was defined as

in Section 3.2. The participants should

not have been aware of the aims and

measurement being employed. The

purpose was to hide the desired outcome

of the experiments which might have

influence the participants’ decisions.

This is usually known as “blind

experiments” to prevent participants’

expectations from influencing the results

[52]. On top of this, the variables which

were identified to be measured in the

study such as the agreement level and

the quality values were unknown to the

participants. The silent objective was

enforced to let the participants focus

only on exercising negotiation in order

to achieve group decision without

considering the variables to be measured

from the output.

Second was the double measurement for

the requirements quality. In a series of

studies to measure the quality of

requirements, the requirements produced

by the negotiation effort were discussed,

tested, analysed and proven twice. Two

types of methods and measurements

were deployed separately with different

groups of participants; and yet produced

similar result that is improvement in

quality. The double measurement was

seen to give a redundant check and to

support one method with another.

Third was the blind marking.

Kitchenham et al [52] stated that a

researcher’s enthusiasm for their own

work may bias the trial. Therefore, a

third party was involved to assist the

researcher to collect and to mark the

results purely based on the data

collected. It was then analysed and

measured by Cohen’s kappa. Cohen’s

Kappa [53] is an index of inter-rater

reliability that is commonly used to

measure the level of agreement between

two sets of dichotomous ratings or

scores. The measurement involved an

independent statistician, who ensured

that the results were represented and

reported correctly.

596

5 CONCLUSION

It is crucial to ensure that the process of

empirical study is carefully designed.

This is to guarantee that the data being

collected is reliable to support the

underlying theory. Therefore, the

framework elements which, consist of

the identification of population and

participants, the flow of empirical study

procedures and threats to validity are

crucial items to ensure the reliability of

the study output. Besides that, since

negotiation effort is seldom applied

during the requirements elicitation

process, the relevance and the

advantages of negotiation are explained

and argued. In conclusion, this paper

provides a dynamic fundamental

framework on how to go about

deploying empirical study in

requirements elicitation with negotiation.

6 REFERENCES

1. Ahmad, S., M. Reynolds, and T.

Woodings. Understanding

Requirements Engineering. in

International Conference on

Engineering and ICT. 2007.

Melaka, Malaysia.

2. Damian, D.E.H. and D. Zowghi.

The impact of stakeholders’

geographical distribution on

managing requirements in a multi-

site organization. in IEEE Joint

International Conference on

Requirements Engineering. 2002.

Germany: IEEE Computer Society.

3. Zowghi, D. and C. Coulin,

Requirements Elicitation: A Survey

of Techniques, Approaches and

Tools, in Engineering and

Managing Software Requirements,

A. Aurum and C. Wohlin, Editors.

2005, Spriner-Verlag: Berlin. p. 19-

41.

4. Grunbacher, P. and N. Syeff,

Requirements Negotiation, in

Engineering and Managing

Software Requirements, A. Aurum

and C. Wohlin, Editors. 2005,

Springer-Verlag: Berlin. p. 143-158.

5. Al-Karaghouli, W., S. AlShawi, and

G. Fitzgerald, Negotiating and

Understanding Information Systems

Requirements: The Use of Set

Diagrams. Requirements

Engineering, 2000. 5(2): p. 93-102.

6. Boehm, B. and A. Egyed. Software

Requirements Negotiation: Some

Lessons Learned. in 20th

International Conference on

Software Engineering. 1998. Kyoto,

Japan: IEEE Computer Society.

7. Damian, D.E.H. and D. Zowghi. An

insight into the interplay between

culture, conflict and distance in

globally distributed requirements

negotiations. in 36th Annual Hawaii

on International Conference. 2003.

Big Island, Hawaii.

8. Davis, A.M., Just Enough

Requirements Management. 2005,

New York: Dorset House.

9. Grunbacher, P. and R.O. Briggs.

Surfacing Tacit Knowledge in

Requirements Negotiation:

Experiences using EasyWinWin. in

34th Hawaii International

Conference on System Science.

2001. Hawaii: IEEE Computer

Society.

10. Mohan, K. and B. Ramesh,

Traceability-based knowledge

integration in group decision and

negotiation activities. Decision

Support Systems, 2007. 43(3): p.

968-989.

597

11. Nuseibeh, B. and S. Easterbrook,

Requirements engineering: A

Roadmap, in Conference on The

Future of Software Engineering

2000, ACM Press: Limerick, Ireland

p. 35 - 46

12. Damian, D.E.H., Challenges in

Requirements Engineering, in

Computer Science Technical Report.

2000, The University of Calgary:

Calgary.

13. Grunbacher, P. and B. Boehm.

EasyWinWin: A Groupware-

Supported Methodology for

Requirements Negotiation. in 8th

European Software Engineering

Conference held jointly with 9th

ACM SIGSOFT International

Symposium on Foundations of

Software Engineering. 2001.

Toronto, Canada.

14. Egyed, A. and P. Grunbacher,

Identifying Requirements Conflicts

and Cooperation: How Quality

Attributes and Automated

Traceability Can Help. IEEE

Softw., 2004. 21(6): p. 50-58.

15. Kaiya, H., et al., Improving the

detection of requirements

discordances among stakeholders.

Requirements Engineering, 2005.

10: p. 289-303.

16. Boehm, B. and I. Hoh, Conflict

Analysis and Negotiation Aids for

Cost-Quality Requirements.

Software Quality Profesional, 1999.

1(2): p. 38-50.

17. Boehm, B. and I. Hoh, Identifying

Quality-Requirement Conflicts.

IEEE Softw., 1996. 13(2): p. 25-35.

18. Hans, W.N., et al., Managing

Multiple Requirements Perspectives

with Metamodels. IEEE Softw.,

1996. 13(2): p. 37-48.

19. Nuseibeh, B., Conflicting

Requirements: When the customer is

not always right. . Requirements

Engineering, 1996. 1(1): p. 70–71.

20. Curtis, B., H. Krasner, and N. Iscoe,

A field study of the software design

process for large systems.

Communications of the ACM, 1988.

31: p. 1268-1287.

21. Nuseibeh, B., J. Kramer, and A.

Finkelstein. ViewPoints: meaningful

relationships are difficult! in

Software Engineering, 2003.

Proceedings. 25th International

Conference on. 2003.

22. Lee, M. and B. Boehm, The WinWin

Requirements Negotiation System: A

Model-Driven Approach. 1996,

CiteSeer.

23. Boehm, B., et al. Software

requirements as negotiated win

conditions. in Requirements

Engineering, 1994., Proceedings of

the First International Conference

on. 1994.

24. Darke, P. and G. Shanks,

Stakeholder viewpoints in

requirements definition: A

framework for understanding

viewpoint development approaches.

Requirements Engineering, 1996.

1(2): p. 88-105.

25. Hoh, P.I. and D. Olson,

Requirements Negotiation Using

Multi-Criteria Preference Analysis.

Universal Computer Science, 2004.

10(4): p. 306-325.

26. Robinson, W.N. and V. Volkov,

Supporting the Negotiation Life

Cycle. Communication of ACM,

1998. 41(5): p. 95-102.

27. Price, J. and J. Cybulski, L. The

Importance of IS Stakeholder

Perspectives and Perceptions to

Requirements Negotiation. in

Australian Workshop on

Requirements Engineering. 2006.

Adelaide.

598

28. Kaiya, H., H. Horai, and M. Saeki.

AGORA: Attributed Goal-Oriented

Requiremnts Analysis Method. in

IEEE Joint International

Conference on Requirements

Engineering. 2002. Essen,

Germany.

29. Robinson, W.N. and V. Volkov,

Conflict-Oriented Requirements

Restructuring, in GSU CIS working

paper. 1996: Georgia State

University, Atlanta.

30. Atkinson, R., Project management:

cost, time and quality, two best

guesses and a phenomenon, its time

to accept other success criteria.

International Journal of Project

Management, 1999. 17(6): p. 337-

342.

31. Boehm, B., Software Engineering

Economics. 1981, New Jersey:

Prentice Hall.

32. Smith, M. (2005) A Small

Experiment in International

Negotiations: Chuo Law School,

Japan and Chulalongkorn Law

Faculty, Thailand. 19, 216-220.

33. Hatton, S. Software Requirements

Prioritisation: The Client's

Perspectives. in Fifteenth University

of Western Australia, School of

Computer Science & Software

Engineering Research Conference.

2006. Yanchep, Western Australia:

CSSE, University of Western

Australia.

34. Karlsson, J. and K. Ryan,

Supporting the Selection of Software

Requirements, in Proceedings of the

8th International Workshop on

Software Specification and Design.

1996, IEEE Computer Society.

35. Mohammed, S. and E. Ringseis,

Cognitive Diversity and Consensus

in Group Decision Making: The

Role of Inputs, Processes, and

Outcomes. Organizational Behavior

and Human Decision Processes,

2001. 85(2): p. 310-335.

36. Choudhury, A.K., R. Shankar, and

M.K. Tiwari, Consensus-based

intelligent group decision-making

model for the selection of advanced

technology. Decision Support

Systems, 2006. 42(3): p. 1776-1799.

37. Price, J. and J. Cybulski, Consensus

Making in Requirements

Negotiation:The Communication

Perspective. Australasian Journal of

Information Systems, 2005. 13(1):

p. 209-224.

38. Sommerville, I., Software

Engineering 7th Edition. 2004, U.S:

Addison-Wesley.

39. McConnell, S., Rapid Development:

Taming Wild Software Schedules,

ed. W. Redmond. 1996: Microsoft

Press.

40. Humphrey, W.S., Managing the

software process. 1989: Addison-

Wesley Longman Publishing Co.,

Inc. 494.

41. Christensen, M.J. and R.H. Thayer,

The Project Manager’s Guide to

Software Engineering’s Best

Practices. 2002, Los Alamitos, CA.:

IEEE Computer Society Press.

42. Pressman, R.S., Software

Engineering A Practitioner's

Approach 6th Edition. 2005, New

York: McGraw Hill.

43. IEEE Standard Glossary for

Software Engineering Terminology.

IEEE Standard 610.12-1990. . 1990,

IEEE Computer Society.

44. Software Engineering—Guide to the

Software Engineering Body of

Knowledge (SWEBOK). 2007,

Standards Australia.

45. Lauesen, S. and O. Vinter.

Preventing Requirement Defects. in

Sixth International Workshop on

599

Requirements (REFSQ'2000). 2000.

Stockholm.

46. Biffl, S., B. Freimut, and O.

Laitenberger, Investigating the cost-

effectiveness of reinspections in

software development, in

Proceedings of the 23rd

International Conference on

Software Engineering. 2001, IEEE

Computer Society: Toronto,

Ontario, Canada.

47. Biffl, S. and M. Halling,

Investigating the defect detection

effectiveness and cost benefit of

nominal inspection teams. Software

Engineering, IEEE Transactions on,

2003. 29(5): p. 385-397.

48. Halling, M., S. Biffl, and P.

Grünbacher, An economic approach

for improving requirements

negotiation models with inspection

Requirements Engineering, 2003.

8(Number 4): p. 236-247.

49. MoSCoW Prioritisation, in

Reducing Your Acceptance Testing

Risk. 2007, Coley Consulting.

50. Linstone, H.A. and M. Turoff, The

Delphi Method: Techniques and

Applications 1975: Addison-Wesley

Pub. Co., Advanced Book Program

51. Hsu, C.C. and B.A. Sandford, The

Delphi Technique: Making Sense Of

Consensus. Practical Assessment,

Research & Evaluation, 2007.

12(10).

52. Kitchenham, B., et al., Preliminary

guidelines for empirical research in

software engineering. IEEE Trans.

Softw. Eng., 2002. 28(8): p. 721-

734.

53. Cohen, J., A coefficient of

agreement for nominal scales.

Educational and Psychological

Measurement, 1960. 20(1): p. 37-46.

