A Brief Review of Cuckoo Search Algorithm (CSA) Research Progression from 2010 to 2013

E. F. Shair, S. Y. Khor, A. R. Abdullah, H. I. Jaafar, N. Mohd Ali, A. F. Zainal Abidin

Abstract – Cuckoo Search Algorithm is a new swarm intelligence algorithm which based on breeding behavior of the Cuckoo bird. This paper gives a brief insight of the advancement of the Cuckoo Search Algorithm from 2010 to 2013.

The first half of this paper presents the publication trend of Cuckoo Search Algorithm. The remaining of this paper briefly explains the contribution of the individual publication related to Cuckoo Search Algorithm. It is believed that this paper will greatly benefit the reader who needs a bird-eyes view of the Cuckoo Search Algorithm's publications trend. Copyright © 2014 Praise Worthy Prize S.r.l. - All rights reserved.

Keywords: Cuckoo Search Algorithm, Publication Trend, Swarm Intelligence

I. Introduction

Nowadays, Swarm Intelligence (SI) algorithms have become famous due to its simplicity. In fact, there are numerous SI algorithms that have become visible and often being applied in real world problems. Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Differential Evolution (DE) are few examples of the well-established SI algorithms [1].

On the other hand, Cuckoo Search Algorithm (CSA) is considered to be one of the latest SI algorithms [1]. It is based on breeding and Levy-flight based foraging behavior of the Cuckoo birds. Based on the finding of the original author, CSA is considered a superior algorithm which surpasses PSO and GA [2].

The publication papers include journals and conference proceedings are accumulated from wellestablished online databases like IEEE Explore, Scopus, ScienceDirect, Elsevier and Scientific.Net. The keyword "Cuckoo Search Algorithm" is used to search the papers. After collecting papers from the online databases, the process of elimination is done to get rid of unwanted and unrelated papers. Lastly, it only left with 71 papers related to CSA.

In these 71 papers, there are 27 papers brief about the modifications or hybridizations of CSA and the rest are application of original CSA. The papers are collected from 2010 to 2013.

Note that the analysis of the publications of CSA is based on the framework in [3].

Only information that tells the development of CSA that also includes the number of publications, year of publications, journal and countries' institutions are acquired through collecting and analyzing 71 papers related to CSA.

II. Format of Manuscript

II.1. Publication by Year

Fig. 1 indicates the number of publication of CSA on yearly basis from year 2010 to 2013. It is clearly seen that the number of publication increases in exponential order throughout the 4 years duration.

Fig. 1. Number of publications by year

II.2. Publication by Type of Publication

From the 71 papers, there are 43 journals and 28 conference proceedings. Table I shows the contribution of journals towards CSA publications. These are the few scientific journals that contributed the most; International Journal of Bio-Inspired Computation (3 papers), Journal of Applied Mathematics (3 papers), and Advances in Intelligent Systems and Computing (4 papers).

II.3. Publication by Country

Besides analysis of publications by year and type of publications, countries of publications are also recorded and the most notable publications comes from India

Copyright © 2014 Praise Worthy Prize S.r.l. - All rights reserved

which contributed 22% from the total publications of CSA. This follows by China (22.5%), Malaysia (11.2%) and United Kingdom (8.4%). Countries that contribute around 1% of the total publications are from United States, Sweden, Romania, Germany, Algeria, Mexico and Jordan. Table II shows number of publications and the percentage of publications of each country which involved.

TABLE I	
JOURNALS/ PROCEED	INGS

No	No Journals/ Proceedings	
140		
1	Electrical Engineering/Electronics, Computer,	1
	Telecommunications and Information	
	Technology	
2	Communications and Information Technologies:	1
3	Advances in Intelligent Systems and Computing	4
4	AIP Conference Proceedings	1
5	Applied Mathematics and Information Sciences	2
6	Journal of Beijing Jiaotong University	1
7	American Journal of Applied Sciences	1
8	Computers and Industrial Engineering	1
9	Engineering with Computers	1
10	Computers and Operations Research	1
11	Energy Education Science and Technology	1
12	Expert Systems with Applications	1
13	IET Microwaves, Antennas and Propagation	1
14	Power Engineering, Energy and Electrical Drives	1
15	Indian Journal of Science and Technology	1
16	International Journal of Advanced Manufacturing	2
	Technology	
17	International Journal of Bio-Inspired	3
	Computation	
18	International Review on Computers and Software	1
19	Journal of Applied Mathematics	3
20	Journal of Experimental and Theoretical	1
	Artificial Intelligence	
21	Journal of Theoretical and Applied Information	1
	Technology	
22	Journal of Theoretical and Applied Information	2
	Technology	
23	Mechanism and Machine Theory	1
24	IEEE International Advance Computing	1
	Conference	
25	International Conference on Advances	1
26	Research Journal of Applied Sciences,	1
	Engineering and Technology	
27	Swarm and Evolutionary Computation	1
28	Structural Design of Tall and Special Buildings	2

TABLE II

No.	Country	Number of Publications	Percentage
1	India	22	30.9
2	China	16	22.5
3	Malaysia	8	11.2
4	U.K	6	8.4
5	Iran	4	5.6
6	Thailand	4	5.6
7	Serbia	2	2.8
8	Turkey	2	2.8
9	USA	1	1.4
10	Sweden	1	1.4
11	Romania	1	1.4
12	Germany	1	1.4
13	Algeria	1	1.4
14	Mexico	1	1.4
15	Jordan	1	1.4

Fig. 2. Country of Publications

II.4. Publication by Type of Contribution

Most of the CSA publications can be divided into three main area of contributions: CSA modification, hybridization of CSA, and the application of the CSA.

Based on our findings, there are 14 papers related to CSA modification which majority shows improvement from the original CSA, 13 papers related to the hybridization of CSA with other optimization algorithms, and 66 papers including those of the CSA modification papers and CSA hybridization papers are related to the applications of CSA.

Modifications of CSA

The improvement of CSA has been growing from 2010. There are various enhancement done on CSA performance and Table III states the modification of CSA.

Hybridizations of CSA

There are many combinations or hybridization of CSA with other algorithms are also been introduced. These combinations have bought great advancement in term of performance: better fitness value or faster convergence rate, which outperforms CSA itself, PSO, GA, ACO and etc. The following Table IV shows the result of the combination of CSA.

Applications of CSA

The interests in exploiting CSA capabilities lead to the increase of application of CSA in various areas. The main areas are Computer Science, Mathematics, Energy, Engineering, etc. Table V shows the areas and applications of CSA.

III. Conclusion

In this paper, the development of CSA has been reviewed from 2010 to 2013. CSA is still considered as a new algorithm, but its growth is remarkable during these four year.

TABLE III				
Author	Technique	Modification/Problem	Result	Ref.
Zhou, Y., Zheng, H., Luo, Q., Wu, J.	Improved CSA (ICSA)	Modification: Three strategies are introduced: walking one strategies, swap and inversion strategies and greedy strategies	ICS is more efficient and accurate than modified PSO towards graph coloring	[2]
Zheng, H., Luo, Q., Zhou, Y.	Cuckoo Search Algorithm and Simplex Method (SMCS)	Problem: Solving planar graph coloring problem Modification: Combination of excellence global finding capability of CS and excellence local finding capability and fast convergence of SM Problem: Improving converged speed and solution precision of cuckoo search algorithm	problem Calculation accuracy and convergence speed and performance of SMCS is better than CS	[4]
Zhang, Y., Wang, L., Wu, Q.	Modified Adaptive Cuckoo Search	Modification: MACS includes grouping, incentive, adaptive and information-sharing characteristic. Problem: Improving the strategies of formal descriptions	MACS outperforms basic CS algorithm in test problem	[5]
Zheng, H., Zhou, Y., He, S., Ouyang, X.	Discrete Cuckoo Search Algorithm	Modification: Discrete Binary Cuckoo Search (DBCS) is designed to meet the need of qualitative distinction between variables. Problem: Solving knassack problem	DBCS perform better due to it has a better convergence speed and accuracy	[6]
Zhao, P., Li, H.	Opposition-Based Cuckoo Search Algorithm (OCS)	Modification: Combine the opposition-based learning into CS algorithm and the OCS algorithm for the benefit of best solution. Problem: Improving the searching of solution space in solving optimization problems	OCS shows its superiority in exploitation	[7]
Ouyang, X., Zhou, Y., Luo, Q., Chen, H.	Novel Discrete Cuckoo Search Algorithm	Modification: Discrete Cuckoo Search Algorithm generate a city number of every call. Problem: Solving spherical Traveling Salesman Problem which includes all points locate on the surface of the sphere		[8]
Yang, XS., Deb, S.	Multi- objective Cuckoo Search Algorithm (MOCS)	Modification: Cuckoo Search combines with mutation, crossover, Levy flight and selective elitism Problem: Solving multi objective optimization problems	Performance of the overall search moves of MOCS is more subtle compare to PSO	[9]
Abdul Rani, K.N., Hoon, W.F., Abd Malek, M.F., Mohd Affendi, N.A., Mohamed, L., Saudin, N., Ali, A., Neoh, S.C.	Modified Cuckoo search (MCS) algorithm	Modification: The MCS algorithm uses fitness to lead the Lévy flights in the process of finding the feasible nest (solution) in the N-dimensional space. Problem: Solving the synthesis of symmetric linear array geometry with minimum side lobe level (SLL) and nulls control	Performance of MCS algorithm excel Evolutionary Algorithm and originally Cuckoo Search Algorithm	[10]
Chaowanawatee, K., Heednacram, A.	Improved Cuckoo Search (ICS) algorithm	Modification: Gaussian distribution involves in producing a cuckoo egg Problem: Solving training network problem in the classical method	CSA via Gaussian distribution perform better in time taken and prediction error.	[11]
Saelim, A., Rasmequan, S., Kulkasem, P., Chinnasarn, K., Rodtook, A.	Modified Cuckoo search (MCS) algorithm	Modification: Cuckoo Search is altered in two ways; in finding new nest, random replacement replace Lévy fight algorithm and a context sensitive parameter replace a constant parameter Problem: Improving searching path for migration planning	MCS perform better than ACO and originally CSA	[12]
Tuba, M., Subotic, M., Stanarevic, N.	Modified Cuckoo search (MCS) algorithm	Modification: From the sorted section determines the step size, instead of permuted fitness matrix Problem: Solving unconstrained optimization problems	Performance of MCS is better compare to originally CSA	[13]
Layeb, A.	Novel Quantum Cuckoo Search	Modification: Cuckoo search Algorithm corporate with some of quantum computing principles Problem: Solving Knapsack problems	Ability of the novel quantum cuckoo search shows a good quality in obtaining solutions	[14]
Wang, L., Yang, S., Zhao, W.	Improved Cuckoo Search (ICS) Algorithm	Modification: CSA is improved by focusing on dynamic detection probability, step length and levy flight method Problem: Solving structure damage characteristics of bridge erecting machines	Improvement in convergence speed and global optimization capability and the accuracy in prediction	[15]
Walton, S., Hassan, O., Morgan, K.,Brown, M.R.	Modified Cuckoo Search (MCS) Algorithm	Modification: Modify best solution by adding addition information exchange between the top eggs Problem: Modify cuckoo search to improve its robustness	Performance of MCS is better compare CSA	[16]

Autor Technique Rendrig Pendiem Rendr Rendrig Raju, Raju, Raju, ACO and CSA Combination of ACO and CSA Combination of ACO and CSA problem imm in job schedule problem imm in job schedule problem imm in job schedule problem [18] Namadar Combination of CSA and GA problem Outperform PSO and ABC in searching the faasible [17] Nawahar Combination of CSA and GA problem Solving the chandrakey Better performance of PSO and CSA in extending problem [19] Karthikeyan & PSO incorporated CSA chastratic perform PSO and ABC in searching the faasible increase the problem Description of the perform PSO and ABC in searching the faasibility and perform ISO and CSA in extending problem [19] Karthikeyan & PSO incorporated CSA Chandrackyan problem Solving multi: problem The feasibility and performance of PSO and CSA in extending problem The feasibility and performance of SA and CSA in extending problem [20] Chandrackyan and the mechanism the problem in the schemating in producing optimal test cases [21] Karmidevan, Litybridization: the problem in the schemating in producing optimal test cases [21] Karmidevan, Litybridization: the producing of themating in the schemating in problem <		TABLE IV CSA Hyrdidizations				
Jackkathk, Technique Solving job perform better in minimizing the implementation [18] Davachekvan Hyhridization: problem mining bio Steckfulle mining bio Steckfulle Davachekvan Combination of CSA and CA sphembalm Outperform PSO and ABC in searching the feasible [17] Jawahaw Combination of CSA and GA problem Durachekung Solving the Enter performance of PSO and CSA in extending [19] Venkatlakkum PSO and CSA Combination of CSA and GA problem Solving the Enter performance of PSO and CSA in extending [19] Venkatlakkum PSO and CSA Combination of CSA [20] Interpret perform PSO and CSA [20] Venkatlakkum PSO and CSA Solving approximation The feasibility and performance of PSO and CSA [20] Strikestava Tachnique Solving approximation The feasibility and performance of GA [21] Strikestava Tachnique Solving approximation The feasibility and performance of GA [22] Strikestava Tachnique Solving approximation Compareto GA [23]	Author	Technique/ Hybridization	Problem	Result	Ref.	
Raju, Davachbar Buravachbar Mangarani, Isabarachbar Buravachbar Mangarani, Isabarachbar Buravachbar Mangarani, Isabarachbar Buravachbar Mangarani, Isabarachbar Buravachbar Mangarani, Isabarachbar Buravachbar Mangarani, Isabarachbar Mangarani Mangarani, Isabarachbar Mangarani, Isabarachbar Manga	Babukarthik,	Technique:	Solving job	perform better in minimizing the implementation	[18]	
Disvacher in combination of ACO and CSA control of CSA and CAC and CSA and CSA and CSA in extending the feasible of the function of CSA and CAC and CSA in extending the feasible of the function of CSA and CAC and CSA in extending in the function of CSA and CAC and CSA in extending in the function of CSA and CAC and CSA in extending in the function of CSA and CAC and CSA in extending in the function of CSA and CAC and CSA in extending in the function of CSA and CAC and CSA in extending in the function of CSA and CAC and CSA in extending in the function of CSA and CAC and CSA in extending in the function of CSA and CAC and CSA in extending in the function of CSA and CSA in extending in the function of CSA and CSA in extending in the function of the starting to the function of the starting in the function of the starting to the function of the starting function in the starting function of the starting function in the starting function of t	Raju,	ACO and CSA	schedule	time in job schedule		
Kanagarai, Technique: Combunitor of ACD and CSA Kanagarai, Technique: Combunitor of CSA and GA Kathikeyan & Technique: CSA and GA Problem Problem For an advanced nodes and also minimize the Hybridization: CSA and GA Combunitor of CSA and GA Combunitor of CSA and GA Problem Problem Problem For an advanced nodes and also minimize the Hybridization: CSA Hybridization: CSA Problem Pro	Dhavachelvan	Hybridization:	problem			
 Johannamilan, CSA and GA Johannamilan, CSA a	Kanagarai	Combination of ACO and CSA Technique:	Reliability and	Outperform PSO and ABC in searching the feasible	[17]	
Javahar I (ykridization: combaniano of CSA and GA problem Karthikeyan & Technique: Solving the Better performance of PSO and CSA in extending [19] better performance of PSO and CSA in extending I (P) the statistication of CSA and GA constrained CSA constrained of the statistication of CSA and GA constrained CSA constrained of the statistication of CSA and CSA in extending constrained of the statistication of CSA and CSA constrained constrained of the statistication of CSA and CSA in extending constrained of the statistication of CSA and CSA in extending constrained of the statistication of CSA and CSA in extending constrained of the statistication of CSA and CSA in extending constrained of the statistication of CSA and CSA in extending constrained cons	Ponnambalam.	CSA and GA	redundancy	solution	[1/]	
Combination of CSA and GAproblemVenkatikahiPSO and CSAeclustering toVenkatikahiPSO and CSAeclustering toVenkatikahiPSO and CSAeclustering toVenkatikahiPSO incorporated CSAWireless SamoerKenteringPSO incorporated CSAWireless SamoerVenkatikahiTechnique:SamoerKenteringPolePoleNew NameTechnique:SamoerKenteringPolePoleNew NamePolePoleSituationCSA data with economic dispateproblemproblemPolePolePoleParticipSamoerPoleKhandebvalCSA and and Tabu mechanismSamoerPerform Heter in producing optimal test casesKhandebvalCSA and and Tabu mechanismSamoerPerform meter of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mechanismPerformance of GSA and CSA is sportor in and hen mech	Jawahar	Hybridization:	allocation			
Karthkayan & Verkalakakam PSO and CSA Solving the physication: Better performance of PSO and CSA in extending increase the advanced nodes and also minimize the advanced nodes and also minimize problem (DP) assisted by fizzy which generates boundary variables. Description advanced nodes and advanced nodes and advanced nodes and also minimize minimize to advanced nodes and also minimize to advanced nodes and als		Combination of CSA and GA	problem			
 Venkaliakami PSJ and CSA Venkaliakami PSJ and CSA is superior in a tarbitros Venkaliakami PSJ and CSA is superior in a tarbitros Venkaliakami PSJ and CSA is more effective and feasible in a tarbitros Venkaliakami PSJ and CSA Venkaliakami PSJ and CSA is more effective and feasible in a tarbitros Venkaliakami PSJ and CSA Venkaliakami PSJ and CSA<	Karthikeyan &	Technique:	Solving the	Better performance of PSO and CSA in extending	[19]	
PSO incorporated CSA Wireless Searce communication distance compare to GA Network's Lifespan S.P. II, Prioritzation: Binary coded CSA deals with economic dispatch Binary coded CSA deals with economic dispatch problem. Problem (EP) assisted by fuzzy which generates boundary variables. Strivastwa, Chandrakal, Mybridization: Canbination of the strength of CSA in converging Runnar, Combination of the strength of CSA in converging Runnar, Runnar, Combination Runnar, Runn	Venkatalakshmi	PSO and CSA Hybridization:	clustering to	the lifespan of network by utilizing more in advanced nodes and also minimize the		
Chandneskarm Chandneskarm S.P. Birzy codd CSA Birzy codd CSA S.P. Birzy codd CSA Birzy codd Birzy codd		PSO incorporated CSA	Wireless Sensor	communication distance compare to GA		
ChandraskarmTechnique:lifespan objective unitThe feasibility and performance of fuzzy and CSA ouperform Hybrid GA and PSO committem[2]S.P.Hybridization: problem (PD) assisted by fuzzy which economic dispant boundary variables.Solving software problem.Perform better in producing optimal test cases[2]Srivastava, Khandelval,CSA and and Tabu mechanismSolving software testing to produce a feasible testPerform better in producing optimal test cases[2]Silvastava, Kumadeval,Combination of the strength of CSA in converging testing to a tabu mechanism in backtracking from Levy flight. CasesSolving software testing to a software of GA and CAS is superior in attributes[2]Zhou, Y, Cuo, CAS fine-ture the initial population with the assistance of GA to up of the convergenceSolving shareraft testing the objective function values assisted with runwary compare to GA and CLS testing the objective function values assisted testing the objective function values assisted to convergence of GA testing the objective function values assisted testing the objective function values assisted testing the objective function values assisted by fuzzy and CSA testing the objective function values assisted the fuzzy and CSA testing the objective function values assisted by fuzzy and CSA testing the objective function values assisted by fuzzy and CSA testing the objective function values assisted by fuzzy and CSA testing the objective fuzzy and CSA testing the objective fuzzy and CSA testing testing the objective fuzzy and CSA testing testing the objective fuzzy and CSA testing testing		i i i i i i i i i i i i i i i i i i i	Network's	I I I I I I I I I I I I I I I I I I I		
Chandneskaram Technique: Solving multi The feasibility and performance of fuzzy and CSA [20] K.S. Simo, K.S. Simo, Hybrid CSA deals with economic dispatch problem (EDP) assisted by fuzzy which generates Sitvastava, Technique: Solving multi The feasibility and performance of fuzzy and CSA [21] Kanaddwal, CSA and aAT abu mechanism to backtracking from Levy flight CSA and CA Tabu mechanism in backtracking from Levy flight CSA functure the initial population with the assistance of GA Wang, G. (O. C. C. SA and GA P. C. SA functure the initial population with the assistance of GA Wang, G. (O. C. C. SA and GA P. C. SA functure the initial population with the assistance of GA Wang, G. (O. C. SA and GA P. C. SA functure the initial population with the assistance of GA Wang, G. (O. C. SA and GA P. C. SA functure the initial population with the assistance of GA Wang, G. (O. C. SA and GSA L. Duan, H., DE and CSA L. Duan, H., DE AD AD AD AD AD AD AD L. Duan, H., DE AD AD			lifespan			
K. Sindoni, Fuzzy and CSA objective unit outperform Hybrid GA and PSO S.P. Hiphridzation: commination of the strength of CSA in converging from the strength of the strength of CSA in converging from the strength of the strengt	Chandrasekaran	Technique:	Solving multi	The feasibility and performance of fuzzy and CSA	[20]	
3.7. Ity initiation. Communication problem proble	, K., Simon,	Fuzzy and CSA	objective unit	outperform Hybrid GA and PSO		
problem (CDP) assisted by fuzzy which generates boundary variables.(MOUCP)Srivatava Khandelwal, Khandelwal, Khandelwal, Khandelwal, CSA and a Tabu mechanism in backtracking from Lévy flight. Casa and tabu mechanism in backtracking from Lévy flight. Casa Ranganaha P. et Hybridization: CSA fune-turne to initial population with the assistance of GA CSA and GASolving Aircraft Performance of GSA and CSA is superior in compare to GA econting the objective function values and dependent attributesPerformance of GSA and CSA is superior in compare to GA and GLS[21] (22] (23] (23] (24) (25) <br< td=""><td>5.F.</td><td>Binary coded CSA deals with economic dispatch</td><td>problem</td><td></td><td></td></br<>	5.F.	Binary coded CSA deals with economic dispatch	problem			
Srivatava, Technique: Solving software Perform hetter in producing optimal test cases [21] Khandelwal, GSA and and Tabu mechanism produces a Khandelwal, Hybridization: produces a Runganta and tabu mechanism in backtracking from Lévy flight, cases Solving Aircraft Performance of GSA and CSA is superior in [22] Zhou, Y., Guo, CSA and GA P. (SA and GA) P. (SA and Gauss Distribution (GCS) T. (SA and Gauss Distribution (GCS) T. (SA function) C. (SA and Gauss Distribution (GCS) T. (SA and Gauss Distribution (GCS) T. (SA and Levenberg- CAS and Back-Propagation neural network (CSBP) Solving CASP performs better compare to Artificial Bec (SA) and Back-Propagation neural network (SBP) Solving CASP performs better compare to Artificial Bec CASA and Back-Propagation neural network (SBP) Solving CASP performs better compare to Artificial Bec CASA and Back-Propagation neural network (SBP) Solving CASP performs better compare to Artificial Bec CASA and Support Vector Regression (SVR) The improve Levenberg- CASA and Support Vector Regression (SVR) T. (SA		problem (EDP) assisted by fuzzy which generates boundary variables.	(MOUCP)			
Khandelwal, Khan, Khandelwan, Khandelwan, Khandelwan, Khandelhan, Khandelwan, Khandelwan, Khandelwan, Khand	Srivastava,	Technique:	Solving software	Perform better in producing optimal test cases	[21]	
Khandelwal, Hybridization: produce a fashe test combination of the strength of CSA in converging fashe test cases and tabu mechanism in backtracking from Lévy flight, cases for CSA, and CSA is superior in Zehnigue. Solving the objective function values and with runway computational time compare to GA and CIA is superior in Zehnigue. Solving the objective function values and with runway computational time compare to GA and GL sequences. Solving the Objective function values and with runway computational time compare to GA and GL sequences. Solving the Objective function values and with runway computational time compare to GA and GL sequences. Solving the Objective function values and with runway computational time compare to GA and GL sequences. Solving the Objective function values and with runway computational time compare to GA and GL sequences. Solving the Objective function values and three dimensional path planning problem sequences of CSA and Gauss Distribution (GCS) three dimensional path planning compares to a such and engineering design or Gauss Distribution (GCS) three dimensional path planning problem solving standard GCS perform much better than CS in getting the Solving the objective function and engineering design on Gauss Distribution (GCS) three dimensional path planning problem solving standard (CSLM) Algorithm the sing on Gauss Distribution (GCS) the solving the design of CSA and Levenberg- course of a solving the state structure of a suck in the structure of the orbitem of local minimum and the stangard methyloridization: Technique: CSA and Back-Propagation neural network (CSBP) erforms better compare to Artificial Bec (CSI) Algorithm Hybridization: Technique: CSA and SVR to obtain more accurate forecasting result and also the search forecasting result and also t	Khandelwal,	CSA and and Tabu mechanism	testing to	compare to GA		
Kumar, Combination of the strength of CAA in converging teasine test Renganatha and tabu mechanism in backtracking from Levy fillst. cases Zheng, H., CSA and GA P. Hybridization: Landing Problem searching the objective function values and computational time compare to GA and GLS Kumar, G., Guo, C., Con, Technique: Solving the DE and CSA is superior in [22] L, Duan, H., DE and CSA Lin L., Wang, J. DE optimize the process of CSA Hybridization: Combut Air Lu, L., Wang, J. DE optimize the process of CSA Vehicle (UCAV) Writere- dimensional path problem Solving the DE and CSA is used to basic CS Combut Air Vehicle (UCAV) Writere- dimensional path problem Solving the DE and CSA and SUS isribution (GCS) test functions Hybridization: Solving the Solving the GSA and CSLM is better than other Zhou, Y. CSA and Gauss Distribution (GCS) test functions Hybridization: optimization Marquart Resch Propagation (LMBP) algorithm is complete with CSLM oavoid the problem of local minimum and the istgnant index forepagation fueural network is integrated with stack in local minimum and the stagna	Khandelwal,	Hybridization:	produce a			
Technique: Technique: Solving Aircraft Performance of GSA and CSA is superior in gets [22] Zhou, Y., Guo, R., Gao, Gao, Technique: Solving Aircraft Performance of GA and GLS solving Aircraft Performance of GA and GLS Wang, G., Guo, Technique: DE and CSA Ummaned UCAV path planning compare to basic CS [23] Liu, L., Wang, J. DE of CSA Ummaned UCAV path planning compare to basic CS [24] Zhou, Y. CSA and Gauss Distribution (GCS) Combat Air UCAV path planning problem [24] Zhou, Y. CSA and Gauss Distribution (GCS) test functions Feasible solution and engineering design optimization [24] Zhou, Y. CSA and Levenberg- Solving the solution and engineering design optimization problems Performance of CSLM is better than other [25] Nawi, N.M., Technique: CSA and Levenberg- Solving the stack in animina Performance of CSLM is better than other [25] Nawi, N.M., Technique: CSA and Levenberg- Solving the stack in animina Performance of CSLM is better than other [25] Nawi, N.M., Technique: CSA and Back-Propagation neural network (CSBP) Solving currence of colony (ABC) combined with Back-Propagation Algorithm Solving currence of colony (ABC) combined with Back-Propagation Algorithm Nawi, N.M., Technique: CSA and Back-Propagation ne	Kumar, Ranganatha	and tabu mechanism in backtracking from L évy flight	reasible test			
Zhou, Y., Guo, CSA and GA Landing Problem searching the objective function values and mybridization: P. Hybridization: computational time compare to GA and GLS Wang, G., Guo, Technique: Solving the DE and CSA Early and CSA L., Duan, H., DE and CSA Unmanned UCAV path planning compare to basic CS [23] Lin, L., Wang, J. DE optimize the process of CSA Vehicle (UCAV) UCAV path planning compare to basic CS [24] Zhou, Y. Technique: Solving the planning compare to basic CS Immediate the process of CSA Vehicle (UCAV) Zhou, Y. Technique: Solving standard GCS perform much better than CS in getting the planning problem and genering the objective function values and the stand the	Zheng, H.,	Technique:	Solving Aircraft	Performance of GSA and CSA is superior in	[22]	
P. Hybridization: with rumway computational time compare to GA and GLS CSA fire-tune the initial population with the assistance of GA attributes attributes Wang, G, Guo Technique: Solving the DE and CSA is more effective and feasible in Unmanned [23] Liu, L, Wang, J DE and CSA Combat Air Combat Air [24] Zheng, H., Technique: Combat Air Combat Air [24] Zheng, H., Technique: Solving standard GCS perform much better than CS in getting the [24] [24] Zhou, Y. CSA and Gauss Distribution (GCS) test functions and engineering adesign optimization feasible solution and engineering design optimization problem solution (GCS) problem solution and engineering design optimization problems [25] Nawi, N.M., Technique: Solving the occurrence of algorithm stuck in minimum and also the search (CSA and Sack-Propagation neural network is inte	Zhou, Y., Guo,	CSA and GA	Landing Problem	searching the objective function values and		
CSA fine-tune the initial population with the assistance of GAdependent attributesWang, G., Guo, L., Duan, H., Liu, L., Wang, J. DE and CSADE and CSA is more effective and feasible in UCAV path planning compare to basic CS[23] UCAV path planning compare to basic CSLiu, L., Wang, J. H., Wang, J.DE optimize the process of CSAUmanned UCAV path planning compare to basic CS[24] ensitiesZheng, H., Zhou, Y.Technique: CSA and Gauss Distribution (GCS)Solving tha problemGCS perform much better than CS in getting the problem[24]Nawi, NM, Khan, A., CSA and Levenberg- Rehman, MZ.CSA and Causs Distribution (SCM and Levenberg- Marquardt (CSLM) Algorithm minimum and The improve Levenberg- Marquardt Back Propagation (LMBP) algorithm is complete with CSA to avoid the problem of local minima CSA and Back-Propagation neural network (CSBP) Rehman, MZ.Solving recurrence of stuck in end minima CSA and Back-Propagation neural network (SBP) accurate for exasting courtence of stuck in local minima CSA and Back-Propagation neural network (SBP) Acs and Back-Propagation neural network (SBP) stored convergence speed pack-Propagation neural network is integrated with Solving CSA and Support Vector Regression (SVR)CSBP performs better compare to Artificial Bec courtence of colony (ABC) combined with Back-Propagation accurate forecasting result and also the search forecasting result and also the search foreca	Р.	Hybridization:	with runway	computational time compare to GA and GLS		
Mang, G., Gu L, Duan, H., Liu, L., Wang, J.DE and CSADE and CSA is more effective and feasible in UCAV path planning compare to basic CS[23]Liu, L., Wang, J.DE optimize the process of CSAUCAV path planning compare to basic CS[24]H, Wang, J.DE optimize the process of CSAVehicle (UCAV) three- dimensional path planning problem[24]Zheng, H., Zhou, Y.Technique: CSA and Gauss Distribution (GCS) Hybridization: Low convergence of rate of cuckoo search algorithm basing on Gauss Distribution modelsGCS perform much better than CS in getting the feasible solution and engineering design optimization problems[24]Nawi, N.M., Rehman, M.Z.Technique: CSA and Levenberg- Marquardt Back Propagation (LMBP) algorithm Hybridization: The improve Levenberg- Marquardt Back Propagation neural network (CSBP) Rehman, M.Z.Performance of CSLM is better than other minimum and the supprove Levenberg- Marquardt Back Propagation neural network (CSBP) scourrence of Algorithm Hybridization: Autoregressive integrated moving average (ARIMA) CSA and Back-Propagation neural network is integrated with Solving CSA and Support Vector Regression (SVR)Solving scouregene of CCCS is good in generating the relia		CSA fine-tune the initial population with the $assistance of CA$	dependent			
L, Duan, H., DE and CSA Liu, L., Wang, J. DE optimize the process of CSA H, Wang, J. Nawi, N.M., CSA and Levenberg- CSA and Levenberg- Rehman, M.Z. Hybridization: Hybridization: The improve Levenberg- Marquardt Reak Propagation neural network (CSBP) Rehman, M.Z. Algorithm Hybridization: Rehman, M.Z. Algorithm Hybridization: Algorithm Hybridization: Rehman, M.Z. Algorithm Hybridization: Rehman, M.Z. Algorithm Hybridization: Rehman, M.Z. Hybridization: Algorithm Hybridization: Rehman, M.Z. Hybridization: Algorithm Hybridization: Rehman, M.Z. Hybridization: Algorithm Hybridization: Rehman, M.Z. Hybridization: Algorithm Hybridization: Algorithm Hybridization: Algorithm Hybridization: Rehman, M.Z. Hybridization: Algorithm Hybridization: Algorithm Hybridization: Algorithm Hybridization: CSA and Support Vector Regression (SVR) Holes Hybridization: CSA and Support Vector Regression (SVR) Holes Hybridization: CSA and Support Vector Regression (SVR) Holes Hybridization: Combination of on- Combination of algorithms improve the accuracy of forecasting result ability Hybridization: CSA and Support Vecto	Wang G Guo	Technique:	Solving the	DE and CSA is more effective and feasible in	[23]	
Liu, L., Wang, J. Hybridization: H, Wang, J. DE optimize the process of CSA DE optimize the process of CSA Technique: CSA and Gauss Distribution (GCS) Hybridization: Low convergence of rate of cuckoo search algorithm basing on Gauss Distribution Solving standard CSA and Levenberg- CSA and Levenberg- Marquardt (CSLM) Algorithm Hybridization: Low convergence of rate of cuckoo search algorithm basing on Gauss Distribution Solving the CSA and Levenberg- CSA and Levenberg- Marquardt (CSLM) Algorithm Hybridization: The improve Levenberg- Marquardt Back Propagation neural network (CSBP) Rehman, M.Z. Algorithm Nawi, N.M., Kanousi-Fard, A. Kavousi-Fard, F. CSA and Support Vector Regression (SVR) Zheng, H., Zhou, Y. CSA and Support Vector Regression (SVR) Zheng, H., Zhou, Y. Combination of co- Combination of algorithm and it is more robust combination of co- Combination of co- Combina	L., Duan, H.,	DE and CSA	Unmanned	UCAV path planning compare to basic CS	[=0]	
H., Wang, J. DE optimize the process of CSA Vehicle (UCAV) three- dimensional path planning problem Zheng, H., Zhou, Y. CSA and Gauss Distribution (GCS) Hybridization: Low convergence of rate of cuckoo search algorithm basing on Gauss Distribution Of auss Distribution Nawi, N.M., Technique: Nawi, N.M., Technique: CSA and Levenberg- Rehman, M.Z. Marquardt (CSLM) Algorithm Hybridization: Low convergence of rate of cuckoo search algorithm is complete with CSA to avoid the problem of local minima Nawi, N.M., Technique: CSA and Back-Propagation neural network (CSBP) Rehman, M.Z. Algorithm Hybridization: Rehman, M.Z. Technique: CSA and Support Vector Regression (SVR) Hybridization: Autorgressive integrated moving average (ARIMA), Fard, Fard, Fard, T. Chonique: Zheng, H., Zhou, Y. Co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-	Liu, L., Wang,	Hybridization:	Combat Air			
Zheng, H., Zheng, H.,Technique: Technique:Solving standard Solving standardGCS perform much better than CS in getting the solving standard[24]Zhou, Y.CSA and Gauss Distribution (GCS)test functions design optimization problemstest functions optimization problemsGCS perform much better than CS in getting the and engineering design optimization problems[24]Nawi, N.M., Technique: CSA and Levenberg- Rehman, M.Z.CSA and Levenberg- Marquardt (CSLM) Algorithm The improve Levenberg- Marquardt Back Propagation (LMBP) algorithm is complete with CSA to avoid the problem of local minima Back-Propagation neural network (CSBP) Rchman, M.Z.Solving Technique: CSA and Back-Propagation neural network (CSBP) occurrence of CSA and Back-Propagation neural network (CSBP) occurrence of CSA to avoid the problem of local minima made. SolvingSolving ccurrence of CSBP performs better compare to Artificial Bee (Colony (ABC) combined with Back-Propagation stuck in local algorithm stuck in local algorithm stuck in local algorithm[26]Nawi, N.M., Rehman, M.Z. AlgorithmTechnique: CSA and Back-Propagation neural network (CSBP) convergence speedCSBP performs better compare to Artificial Bee slow convergence or speed[27]Ravousi-Fard, A., Kavousi-Fard, F.Technique: CSA and Support Vector Regression (SVR)Solving currence of CCCS is good in generating the rechnique: accurate forceasting result abilityThe performance of CCCS is good in generating the reflability of solution and it is more robust engineering problem[27]Zheng, H., Zhou,	H., Wang, J.	DE optimize the process of CSA	Vehicle (UCAV)			
Zheng, H., Zheng, H.,Technique: CSA and Gauss Distribution (GCS) Hybridization: Low convergence of rate of cuckoo search algorithm basing on Gauss Distribution basing on Gauss DistributionCGSA and Gauss Distribution (GCS) test functions and engineering design optimization problemsPerformance of CSLM is better than other algorithm is listed[24]Nawi, N.M., CSA and Levenberg- Rehman, M.Z.Technique: (CSA and Levenberg- Marquardt (CSLM) Algorithm Hybridization: minima minimaPerformance of CSLM is better than other algorithm swhich is listed[25] algorithm swhich is listedNawi, N.M., Technique: CSA and Back-Propagation neural network (CSBP) Rehman, M.Z.Solving CSBP performs better compare to Artificial Bee solving to courcrence of stuck in local algorithm minima discSolving courcrence of courcrence of stuck in local occurrence of courcrence of courcren			three-			
Zheng, H., Zheng, H., Zhou, Y.Technique: CSA and Gauss Distribution (GCS) Hybridization: Low convergence of rate of cuckoo search algorithm basing on Gauss Distribution Marquardt (CSLM) Algorithm Hybridization: The improve Levenberg- Marquardt (CSLM) Algorithm The improve Levenberg- Marquardt (CSLM) Algorithm The improve Levenberg- Marquardt Back Propagation neural network (CSBP) Rehman, M.Z.Solving the statis in minimum and the stagnant networkCSBP performance of CSLM is better than other algorithm is listed algorithm swhich is listed tuck in minimum and the stagnant nimima263 performance of CSLM is better than other algorithm swhich is listed[25] algorithm stuck in minimum and the stagnant notivina algorithm is complete with CSA to avoid the problem of local minima201ving curverse curverse SolvingCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation Algorithm minimum and slow[26]Nawi, N.M., Rehman, M.Z.Technique: CSA and Back-Propagation neural network is integrated with Sake-Propagation neural network is integrated with Back-Propagation neural network is integrated with Sake-Propagation neural network is integrated with Sake-Propagation neural network is integrated with Sake-Propagation neural network (SCBP) CSA and Support Vector Regression (SVR)Solving convergence speed Determining the relability of accurate forecasting result and also the search forecasting result and also the s			planning			
Zheng, H., Zhou, Y.Technique: (CSA and Gauss Distribution (GCS) Hybridization: Low convergence of rate of cuckoo search algorithm basing on Gauss DistributionSolving standard (GSS) etst functions and engineering optimization problemsGCSA perform much better than CS in getting the feasible solution[24]Nawi, N.M., Technique: Rehman, M.Z.Technique: CSA and Levenberg- Marquardt (CSLM) Algorithm The improve Levenberg- Marquardt Back Propagation (LMBP) algorithm is complete with CSA to avoid the problem of local minimum manaPerformance of CSLM is better than other algorithms which is listed[25]Nawi, N.M., Technique: Complete with CSA to avoid the problem of local minimaminimum mand ecurrence of stuck in local minimum and stuck in local minimum and Back-Propagation neural network (CSBP) Sca and Back-Propagation neural network (SBP) Sca and Sack-Propagation neural network is integrated with CSA to avoid local minimum problem CSA to avoid local minimum problem A, Kavousi-Fard, A, Kavousi-Fard, F.Technique: Technique: CSA and Support Vector Regression (SVR)Solving stuck in local minimum and slowThe combination of algorithms improve the accuracy of forecasting result and also the search forecasting result ability[27]Kavousi-Fard, F.Technique: CSA and Support Vector Regression (SVR)Solving reliability of solving accurate forecasting coultion and quality of solution and it is more robust engineering quality of solution and it is more robust[28]Zheng, H., Zheng, H., Technique: Coutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-Solving reliability			problem			
Zhou, Y. CSA and Gauss Distribution (GCS) test functions: feasible solution Hybridization: and engineering feasible solution Nawi, N.M., Technique: Solving the Performance of CSLM is better than other [25] Khan, A., CSA and Levenberg- occurrence of algorithms which is listed algorithms which is listed Rehman, M.Z. Marquardt (CSLM) Algorithm stuck in minimum and the stagnant Nawi, N.M., Technique: Solving CSBP performs better compare to Artificial Bee [26] Nawi, N.M., Technique: Solving CSBP performs better compare to Artificial Bee [26] Nawi, N.M., Technique: Solving CSBP performs better compare to Artificial Bee [26] Khan, A., CSA and Back-Propagation neural network (CSBP) occurrence of Algorithm Algorithm Rehman, M.Z. Algorithm slow ccurrence of Colony (ABC) combined with Back-Propagation [26] Kavousi-Fard, Technique: Determining the accuracy of forecasting result and also the search [27] Fard, F. CSA and Support Vector Regression (SVR) Determining the <	Zheng, H.,	Technique:	Solving standard	GCS perform much better than CS in getting the	[24]	
In yor duration: Low convergence of rate of cuckoo search algorithm basing on Gauss Distributionand engineering optimization problemsPerformance of CSLM is better than other[25]Nawi, N.M., Khan, A., Rehman, M.Z.Technique: Marquardt (CSLM) Algorithm Hybridization: The improve Levenberg- Marquardt Back Propagation (LMBP) algorithm is complete with CSA to avoid the problem of local minima Mawi, N.M., Technique: Conjete with CSA to avoid the problem of local minimaSolving cocurrence of stuck in networkCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation Algorithm Algorithm adder the stagnant minima and slow cocurrence of SolvingCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation Algorithm Algorithm Marquardt back-Propagation neural network (CSBP) accurate for CSA to avoid local minimum problem CSA to avoid local minimum problem CSA to avoid local minimum problem CSA and Support Vector Regression (SVR)Solving cocurrence of colony of forecasting result and also the search forecasting result ability[27]Autoregressive integrated moving average (ARIMA), Fard, F.Technique: CSA and Support Vector Regression (SVR)Solving reliability of accurate forecastingThe performance of CCCS is good in generating the engineering quality of solution and it is more robust engineering problem[28]Zheng, H., Tybridization: Combination of co-Solving represent to combine and problemThe performance of CCCS is good in generating the engineering problem[28]	Zhou, Y.	CSA and Gauss Distribution (GCS)	test functions	feasible solution		
Nawi, N.M., Khan, A., Rehman, M.Z.Technique: CSA and Levenberg- more velucionary of the second of the		Low convergence, of rate of cuckoo search algorithm	design			
Nawi, N.M., Khan, A., Rehman, M.Z.Technique: (CSLM) AlgorithmSolving stuck in minimum and the stagnant minimum and the stagnant the stagnant the stagnant <td></td> <td>basing on Gauss Distribution</td> <td>optimization</td> <td></td> <td></td>		basing on Gauss Distribution	optimization			
Nawi, N.M., Khan, A., Rehman, M.Z.Technique: CSA and Levenberg- Marquardt (CSLM) Algorithm Hybridization: minimum mand minimaSolving tuck in minimum and the stagnant networkPerformance of CSLM is better than other[25] algorithms which is listedNawi, N.M., Khan, A., CSA and Back-Propagation (LMBP) algorithm is complete with CSA to avoid the problem of local minimaminimum and the stagnant networkCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation Algorithm Back-Propagation neural network (CSBP) occurrece of Stack in local Back-Propagation neural network is integrated with CSA to avoid local minimum problem CSA to avoid local minimum problemSolving courrece of Colony (ABC) combined with Back-Propagation Algorithm Algorithm minimum and Back-Propagation neural network is integrated with CSA to avoid local minimum problem CSA to avoid local minimum problem CSA to avoid local minimum problem CA, Kavousi-Fard, A, Kavousi-Fard, F.The cinque: Autoregressive integrated moving average (ARIMA), CSA and Support Vector Regression (SVR)Determining the reliability of accuracy of forecasting result and also the search forecasting result abilityThe performance of CCCS is good in generating the [27]Zheng, H., Zhou, Y.Technique: Co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-Solving optimization and engineering problemThe performance of CCCS is good in generating the engineering problem[28]		6	problems			
Khan, A., CSA and Levenberg- occurrence of minimum and stuck in minimum and the stagnant must be store to avoid local minimum problem (CSA and Support Vector Regression (SVR) Solving (CSBP performs better compare to Artificial Bee (Colony (ABC) combined with Back-Propagation (Convergence speed peed (Colony (ABC) combined with Back Propagation neural network is integrated with slow (CSA to avoid local minimum problem (CSA to avoid local minimum problem (CSA and Support Vector Regression (SVR) The combination of algorithms improve the accuracy of forecasting result and also the search encurate forecast	Nawi, N.M.,	Technique:	Solving the	Performance of CSLM is better than other	[25]	
 Keinnan, M.Z. Marquardi CCSLW/Algorithm Hybridization: minimum and The improve Levenberg- minimum and the stagnant network complete with CSA to avoid the problem of local minima Nawi, N.M., Technique: CSA and Back-Propagation neural network (CSBP) Rehman, M.Z. Algorithm Hybridization: Back-Propagation neural network is integrated with CSA to avoid local minimum problem CSA and Support Vector Regression (SVR) Hybridization: Autoregressive integrated moving average (ARIMA), Fard, F. CSA and Support Vector Regression (SVR) Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecasting Zhou, Y. Co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co- 	Khan, A., Rahman M 7	CSA and Levenberg-	occurrence of	algorithms which is listed		
The improve Levenberg- Marquardt Back Propagation (LMBP) algorithm is complete with CSA to avoid the problem of local minimainetworkNawi, N.M., Technique:SolvingCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation[26]Khan, A., Rehman, M.Z.CSA and Back-Propagation neural network (CSBP) Hybridization: Back-Propagation neural network is integrated with CSA to avoid local minimum problemSolving occurrence of Subw Convergence speedCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation Algorithm[26]Kavousi-Fard, Fard, F.Technique: CSA and Support Vector Regression (SVR)Determining the forecasting result and also the search forecasting result abilityThe combination of algorithms improve the accurate of CCCS is good in generating the apaint is more robust[27]Zheng, H., Zhou, Y.Technique: Co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-Solving optimization and engineering problemThe performance of CCCS is good in generating the engineering problem[28]	Kennian, M.Z.	Hybridization:	minimum and			
Marquardt Back Propagation (LMBP) algorithm is complete with CSA to avoid the problem of local minimanetwork[26]Nawi, N.M., Technique: (SA and Back-Propagation neural network (CSBP) Algorithm Back-Propagation neural network is integrated with CSA to avoid local minimum problemSolving occurrence of stuck in local minimum and slowCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation Algorithm Algorithm Back-Propagation neural network is integrated with CSA to avoid local minimum problemSolving occurrence of stuck in local minimum and slowCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation Algorithm[27]Kavousi-Fard, A., Kavousi- Fard, F.Technique: CSA and Support Vector Regression (SVR)Determining the forecasting resultThe combination of algorithms improve the accuracy of forecasting result and also the search forecasting result ability[27]Zheng, H., Zhou, Y.Technique: Co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-Solving optimization and engineering problemThe performance of CCCS is good in generating the engineering problem[28]		The improve Levenberg-	the stagnant			
complete with CSA to avoid the problem of local minimaComplete with CSA to avoid the problem of local minimaCSB performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation[26]Nawi, N.M., Rehman, M.Z.Algorithm Hybridization: Back-Propagation neural network is integrated with CSA to avoid local minimum problemSolving minimum and Slow convergence speedCSBP performs better compare to Artificial Bee Colony (ABC) combined with Back-Propagation[26]Kavousi-Fard, Fard, F.Technique: Autoregressive integrated moving average (ARIMA), reliability of Fard, F.The combination of algorithms improve the forecasting result and also the search forecasting result ability[27]Kavousi- Fard, F.Technique: CSA and Support Vector Regression (SVR)Determining the forecasting result abilityThe combination of algorithms improve the accuracy of forecasting result and also the search forecasting result ability[27]Zheng, H., Zhou, Y.Technique: Co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-Solving optimization and engineering problemThe performance of CCCS is good in generating the engineering problem[28]		Marquardt Back Propagation (LMBP) algorithm is	network			
minimaNawi, N.M., Khan, A.,Technique:SolvingCSBP performs better compare to Artificial Bee[26]Rehman, M.Z.Algorithmstuck in localAlgorithmHybridization:minimum andslowAlgorithmBack-Propagation neural network is integrated with CSA to avoid local minimum problemslowConvergenceCSA to avoid local minimum problemconvergence speedspeedKavousi-Fard, Fard, F.Technique:Determining the Autoregressive integrated moving average (ARIMA), Fard, F.The combination of algorithms improve the accurate forecasting[27]Kapong, H., Zhou, Y.Technique:Determining the forecastingThe combination of algorithms improve the accurate forecasting[28]Zheng, H., Zhou, Y.Co- co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-Solving problemThe performance of CCCS is good in generating the engineering problem[28]		complete with CSA to avoid the problem of local				
 Khan, A., CSA and Back-Propagation neural network (CSBP) Rehman, M.Z. Algorithm Hybridization: Back-Propagation neural network is integrated with CSA to avoid local minimum problem Kavousi-Fard, Technique: Autoregressive integrated moving average (ARIMA), reliability of accuracy of forecasting result and also the search forecasting result ability Hybridization: Autoregressive with CSA and SVR to obtain more accurate forecasting Zheng, H., Technique: Zhou, Y. Co- <lic-< li=""> co- <lic-< li=""> co-<td>Nawi NM</td><td>minima Technique:</td><td>Solving</td><td>CSBP performs better compare to Artificial Ree</td><td>[26]</td></lic-<></lic-<>	Nawi NM	minima Technique:	Solving	CSBP performs better compare to Artificial Ree	[26]	
Rehman, M.Z. Algorithm Hybridization: Back-Propagation neural network is integrated with CSA to avoid local minimum problem Kavousi-Fard, A., Kavousi- Fard, F. Zheng, H., Zheng, H., Zhou, Y. Co- combination of co- Mathematical and the search (CCCS) algorithm for co- Solving the stuck in local and source accurate for co- Solving the stuck in local algorithm for co- Solving	Khan, A.,	CSA and Back-Propagation neural network (CSBP)	occurrence of	Colony (ABC) combined with Back-Propagation	[20]	
Hybridization:minimum andBack-Propagation neural network is integrated with CSA to avoid local minimum problemslow convergence speedKavousi-Fard, A., Kavousi- Fard, F.Technique:Determining the reliability of forecasting result and also the search forecasting result abilityThe combination of algorithms improve the accuracy of forecasting result and also the search forecasting result abilityFard, F.CSA and Support Vector Regression (SVR)Determining the reliability of forecasting result abilityThe performance of CCCS is good in generating the engineering problem[27]	Rehman, M.Z.	Algorithm	stuck in local	Algorithm		
Back-Propagation neural network is integrated with CSA to avoid local minimum problemslow convergence speedKavousi-Fard, A., Kavousi- Fard, F.Technique: Autoregressive integrated moving average (ARIMA), CSA and Support Vector Regression (SVR)Determining the reliability of accuracy of forecasting result and also the search forecasting result ability[27]Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecastingHybridization: SolvingThe performance of CCCS is good in generating the engineering problem[28]		Hybridization:	minimum and			
CSA to avoid local minimum problem convergence speed Kavousi-Fard, A., Kavousi- Fard, F. Technique: Autoregressive integrated moving average (ARIMA), CSA and Support Vector Regression (SVR) The combination of algorithms improve the accuracy of forecasting result and also the search forecasting result ability [27] Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecasting Solving The performance of CCCS is good in generating the evolutionary Cuckoo Search (CCCS) algorithm [28] Zhou, Y. Co- evolutionary Cuckoo Search (CCCS) algorithm engineering problem The performance of CCCS is good in generating the engineering [28]		Back-Propagation neural network is integrated with	slow			
Kavousi-Fard, Technique: Determining the The combination of algorithms improve the accuracy of forecasting result and also the search forecasting result ability [27] Fard, F. CSA and Support Vector Regression (SVR) Determining the forecasting result ability The combination of algorithms improve the accuracy of forecasting result and also the search forecasting result ability [27] Kavousi-Fard, F. Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecasting Solving The performance of CCCS is good in generating the [28] [28] Zheng, H., Co- optimization and evolutionary Cuckoo Search (CCCS) algorithm engineering problem problem [28]		CSA to avoid local minimum problem	speed			
A., Kavousi- Fard, F. Autoregressive integrated moving average (ARIMA), CSA and Support Vector Regression (SVR) reliability of forecasting result ability accuracy of forecasting result and also the search forecasting result ability Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecasting Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecasting Zheng, H., Technique: Solving The performance of CCCS is good in generating the evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co- Solving The performance of Solution and it is more robust	Kavousi-Fard.	Technique:	Determining the	The combination of algorithms improve the	[27]	
Fard, F. CSA and Support Vector Regression (SVR) forecasting result ability Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecasting Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecasting Solving The performance of CCCS is good in generating the [28] Zhou, Y. Co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co- Solving The performance of CCCS is good in generating the [28]	A., Kavousi-	Autoregressive integrated moving average (ARIMA),	reliability of	accuracy of forecasting result and also the search	r . 1	
Hybridization: ARIMA corporate with CSA and SVR to obtain more accurate forecasting Zheng, H., Technique: Solving The performance of CCCS is good in generating the [28] Zhou, Y. Co- optimization and quality of solution and it is more robust evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-	Fard, F.	CSA and Support Vector Regression (SVR)	forecasting result	ability		
ARIMA corporate with CSA and SVR to obtain more accurate forecasting Zheng, H., Technique: Solving The performance of CCCS is good in generating the [28] Zhou, Y. Co- optimization and quality of solution and it is more robust evolutionary Cuckoo Search (CCCS) algorithm engineering Hybridization: problem		Unhuidigation				
Zheng, H., Technique: Solving The performance of CCCS is good in generating the [28] Zhou, Y. Co- optimization and quality of solution and it is more robust evolutionary Cuckoo Search (CCCS) algorithm engineering Hybridization: problem		ARIMA corporate with CSA and SVR to obtain more				
Zheng, H., Technique: Solving The performance of CCCS is good in generating the [28] Zhou, Y. Co- optimization and quality of solution and it is more robust evolutionary Cuckoo Search (CCCS) algorithm engineering Hybridization: problem		accurate forecasting				
Zhou, Y. Co- evolutionary Cuckoo Search (CCCS) algorithm Hybridization: Combination of co-	Zheng, H.,	Technique:	Solving	The performance of CCCS is good in generating the	[28]	
evolutionary Cuckoo Search (CCCS) algorithm engineering Hybridization: problem Combination of co-	Zhou, Y.	Co-	optimization and	quality of solution and it is more robust		
Combination of co-		evolutionary Cuckoo Search (CCCS) algorithm	engineering			
		Combination of co-	problem			

Copyright © 2014 Praise Worthy Prize S.r.l. - All rights reserved

International Review of Automatic Control, Vol. 7, N. 5

Author	Technique/ Hybridization	Problem	Result	Ref.
	evolutionary and cuckoo search algorithm which includes population of organization and organization of dynamic individuals			
Li, XT., Yin,	Technique:	Improving the	The performance of this algorithm is better compare	[29]
МН.	CSA and Orthogonal strategy	estimation of parameter of	to PSO and GE in getting a quality solution	
	Hybridization:	Lorenz system		
	Combination of the stochastic exploration (CS) and	and Chen system		
	the exploitation capability (orthogonal learning			
	strategy)			

TABLE V CSA APPLICATIONS				
Area	Applications	Authors	Year	Ref
Computer Science	Solve structural optimization problems	Gandomi, A.H., Yang, XS., Alavi, A.H.	2013	[1]
	Solving planar graph coloring problem	Zhou, Y., Zheng, H., Luo, Q., Wu, J.	2013	[2]
	A novel hybrid Cuckoo Search algorithm based on simplex operator	Zheng, H., Luo, Q., Zhou, Y.	2012	[4]
	Formal description for global optimization	Zhang, Y., Wang, L., Wu, Q.	2012	[5]
	Solving knapsack problems	Zheng, H., Zhou, Y., He, S., Ouyang, X.	2012	[6]
	Opposition-	Zhao, P., Li, H.	2012	[7]
	based cuckoo search algorithm for optimization problems		0010	503
	Spherical traveling salesman problem	Ouyang, X., Zhou, Y., Luo, Q., Chen, H.	2013	[8]
	Design optimization	Yang, XS., Deb, S.	2013	[9]
	Migration planning	Saeiim, A., Rasmequan, S., Kuikasem, P., Chinnasarn, K., Rodtook, A.	2013	[12]
	Unconstrained optimization problems	Tuba, M., Subotic, M., Stanarevic, N.	2012	[13]
	Reliability-	Kanagaraj G., Ponnambalam S.G., Jawahar N	2013	[17]
	Redundancy Allocation Problems		0010	[10]
	Job scheduling	Babukarthik R.G., Raju R., Dhavachelvan P.	2013	[18]
	Multi-objective scheduling problem	Chandrasekaran, K., Simon, S.P.	2012	[20]
	Automated test data generation	Srivastava, P.K., Knandelwal, K., Knandelwal, S.,	2012	[21]
	A mouth Country Country and and invitation allocations have an	Kumar, S., Kanganatha, S.S.	2012	[24]
	gauss distribution	Zneng, H., Znou, Y.	2012	[24]
	A new Cuckoo Search Based Levenberg-	Nawi, N.M., Khan, A., Rehman, M.Z.	2013	[26]
	Marquardt (CSLM) algorithm			
	Correction method for short-term load forecasting	Kavousi-Fard, A., Kavousi-Fard, F.	2013	[27]
	Channel estimation of MIMO-OFDM	Vidya K., Shankar kumar K.R.	2013	[31]
	Edge magnitude based multilevel thresholding	Panda R., Agrawal S., Bhuyan S.	2013	[32]
	Tsallis entropy based optimal multilevel thresholding	Agrawal S., Panda R., Bhuyan S., Panigrahi B.K.	2013	[33]
	Particle filter for Non-linear state estimation	Walia G.S., Kapoor R.	2013	[34]
	Clustering	Senthilnath J., Das V., Omkar S.N., Mani V.	2013	[35]
	Supplier selection: Reliability based total cost of ownership	Kanagaraj, G., Ponnambalam, S.G., Jawahar, N.	2012	[39]
	Bloom filter optimization	Natarajan, A., Subramanian, S.	2012	[40]
	A novel strategy of biomimicry	Goel, S., Sharma, A., Bedi, P.	2011	[41]
	Energy efficient cluster formation in wireless sensor networks	Dhivya, M., Sundarambal, M., Vincent, J.O.	2011	[42]
	Path optimization for software testing	Srivastava, P.R., Chis, M., Deb, S., Yang, XS.	2011	[43]
	Design optimization for reliable embedded system	Kumar, A., Chakarverty, S.	2011	[44]
	Data clustering	Manikandan P., Selvarajan S.	2013	[45]
	Inverse problems and topology optimization	Yang, XS., Deb, S.	2013	[46]
	Business optimization applications	Yang, XS., Deb, S., Karamanoglu, M., He, X.	2012	[47]
	optimization	Yang, XS.	2012	[49]
	Solving the problem of optimum synthesis of a six-bar double dwell linkage	Bulatovi, R.R., Dordevi, S.R., Dordevi, V.S.	2013	[53]
	Optimizing the semantic web service composition process	Chifu, V.R., Pop, C.B., Salomie, I., Suia, D.S., Niculici, A.N.	2011	[54]
	Multimodal function optimization	Jamil, M., Zepernick, HJ.	2013	[55]
	Training spiking neural models	Vazquez, R.A.	2011	[57]
Engineering	Weighted sum optimization for linear antenna array	Abdul Rani, K.N., Hoon, W.F., Abd Malek, M.F.,	2012	[10]
	synthesis	Mohd Affendi, N.A., Mohamed, L., Saudin, N., Ali, A., Neoh, S.C.		
	Structural damage identification of bridge erecting machine	Wang, L., Yang, S., Zhao, W.	2013	[15]
	Energy conscious clustering of Wireless Sensor Network	Karthikeyan, M., Venkatalakshmi, K.	2012	[19]
	Solving runway dependent aircraft landing problem	Zheng, H., Zhou, Y., Guo, P.	2013	[22]
	UCAV path planning	Wang, G., Guo, L., Duan, H., Liu, L., Wang, H.,	2012	[23]
	Back-	Nawi, N.M., Khan, A., Rehman, M.Z.	2013	[25]

Copyright © 2014 Praise Worthy Prize S.r.l. - All rights reserved

International Review of Automatic Control, Vol. 7, N. 5

Area	Applications	Authors	Year	Ref
	propagation neural network			
	Optimization of scaling factors in electrocardiogram	Dey N., Samanta S., Yang XS., Das A., Chaudhuri	2013	[30]
	signal watermarking	S.S.		
	Expedition of groundwater exploration	Gupta D., Das B., Panchal V.K.	2013	[36]
	Scheduling optimization of flexible manufacturing	Burnwal S., Deb S.	2013	[37]
	system		2012	5203
	An efficient algorithm for gray level image enhancement	Agrawal, S., Panda, R.	2012	[38]
	Symmetric linear antenna array geometry synthesis	Rani, K.N.A., Malek, F.	2011	[50]
	Flood forecasting	Chaowanawatee, K., Heednacram, A.	2012	[52]
	The selection of optimal machining parameters in milling operations	Yıldız, A.K.	2013	[56]
	Real-world simulation-based manufacturing optimization	Syberfeldt, A., Lidberg, S.	2012	[58]
	Design optimization of truss structures	Gandomi, A.H., Talatahari, S., Yang, XS., Deb, S.	2013	[59]
	Optimization of antenna arrays	Khodier, M.	2013	[60]
	Optimum design of steel frames	Kaveh, A., Bakhshpoori, T.	2013	[61]
	Side lobe suppression in a symmetric linear antenna array	Abdul Rani, K.N., Abd Malek, M.F., Siew-Chin, N.	2012	[62]
	A new approach for DG allocation in distribution network with time variable loads	Moravej, Z., Akhlaghi, A.	2012	[63]
Mathematics	RBF neural network	Chaowanawatee K Heednacram A	2013	[11]
	Knapsack problems	Laveb. A.	2011	[14]
	A new gradient free optimization algorithm	Walton, S., Hassan, O., Morgan, K., Brown, M.R.	2011	[16]
	A cooperative co-evolutionary cuckoo search algorithm	Zheng, H., Zhou, Y.	2013	[28]
	for optimization problem			L - J
	Engineering optimization	Yang, XS., Deb, S.	2010	[64]
	Determining optimal link capacity expansions in road	Baskan, O.	2013	[65]
	networks			
	Parameter estimation of photovoltaic models	Ma, J., Ting, T.O., Man, K.L., Zhang, N., Guan, S U., Wong, P.W.H.	2013	[66]
Energy	Optimal DG allocation in a smart distribution grid	Buaklee, W., Hongesombut, K.	2013	[51]
65	A soft computing MPPT for PV system	Ahmed, J., Salam, Z.	2013	[67]
	Parameters optimization of support vector machine	Ye, Z., Li, Q., Wang, C., Liu, W., Chen, H.	2013	[68]
	Allocation and sizing of DG	Tan, W.S., Hassan, M.Y., Majid, M.S., Rahman,	2012	[69]
		H.A.		
Physics and	Parameter estimation for chaotic systems	Li, XT., Yin, MH.	2012	[29]
Astronomy	Numerical function optimization	Ong, P., Zainuddin, Z.	2013	[70]
Multi-	Medical image retrieval system	Jaganathan, Y., Vennila, I.	2013	[3]
disciplinary	A new approach for solving the unit commitment problem	Gharegozi, A., Jahani, R.	2013	[71]

It can be clearly seen that CSA can solve real-world problems by the number of publications in various applications in the area of Computer Science, Mathematics, Energy, and Engineering. In fact the performance of CSA still can be improved through modification and hybridization. There are many enhancements introduced in the structure of CSA, and the result are promising.

Acknowledgements

The authors would like to thank Universiti Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education (MOHE) of Malaysia for its financial support from Research Acculturation Grant Scheme (RAGS) RAGS/2013/FKE/TK02/03/B00026 for sponsoring the resources for this research.

References

- Gandomi, A.H., Yang, X.-S., Alavi, A.H., "Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems," Engineering with Computers, 2013, pp 17-35.
- [2] Zhou, Y., Zheng, H., Luo, Q., Wu, J."An improved cuckoo search algorithm for solving planar graph coloring problem," Applied Mathematics and Information Sciences, 2013, pp 785-792.
- [3] Jaganathan, Y., Vennila, I.,"An integrated framework based on

texture features, cuckoo search and relevance vector machine for medical image retrieval system," American Journal of Applied Sciences, 2013, pp 1398-1412.

- [4] Zheng, H., Luo, Q., Zhou, Y., "A novel hybrid Cuckoo Search algorithm based on simplex operator," International Journal of Digital Content Technology and its Applications, 2012, pp 45-52.
- [5] Zhang, Y., Wang, L., Wu, Q., "Modified Adaptive Cuckoo Search (MACS) algorithm and formal description for global optimisation," International Journal of Computer Applications in Technology, 2012, pp 73-79.
- [6] Zheng, H., Zhou, Y., He, S., Ouyang, X.,"A discrete cuckoo search algorithm for solving knapsack problems," Advances in Information Sciences and Service Sciences, 2012, PP 331-339
- [7] Zhao, P., Li, H., "Opposition-based cuckoo search algorithm for optimization problems," Proceedings - 2012 5th International Symposium on Computational Intelligence and Design, ISCID, 2012, PP 344-347.
- [8] Ouyang, X., Zhou, Y., Luo, Q., Chen, H., "A novel discrete cuckoo search algorithm for spherical traveling salesman problem," Applied Mathematics and Information Sciences, 2013, pp 777-784.
 [9] Yang, X.-S., Deb, S., "Multiobjective cuckoo search for design
- [9] Yang, X.-S., Deb, S., "Multiobjective cuckoo search for design optimization," Computers and Operations Research, 2013, pp 1616-1624.
- [10] Abdul Rani, K.N., Hoon, W.F., Abd Malek, M.F., Mohd Affendi, N.A., Mohamed, L., Saudin, N., Ali, A., Neoh, S.C.,"Modified cuckoo search algorithm in weighted sum optimization for linear antenna array synthesis," IEEE Symposium on Wireless Technology and Applications, 2012, pp 210-215.
- [11] Chaowanawatee, K., Heednacram, A., "Improved cuckoo search in RBF neural network with gaussian distribution," Proceedings of the 8th IASTED International Conference on Advances in Computer Science, ACS, 2013, pp 379-386.

Copyright © 2014 Praise Worthy Prize S.r.l. - All rights reserved

International Review of Automatic Control, Vol. 7, N. 5

- [12] Saelim, A., Rasmequan, S., Kulkasem, P., Chinnasarn, K., Rodtook, A.,"Migration planning using modified Cuckoo Search Algorithm," 13th International Symposium on Communications and Information Technologies: Communication and Information Technology for New Life Style Beyond the Cloud, ISCIT, 2013, pp 621-626.
- [13] Tuba, M., Subotic, M., Stanarevic, N., "Performance of a modified cuckoo search algorithm for unconstrained optimization problems," WSEAS Transactions on Systems, 2012, pp 62-74.
- problems," WSEAS Transactions on Systems, 2012, pp 62-74.
 [14] Layeb, A.,"A novel quantum inspired cuckoo search for knapsack problems," International Journal of Bio-Inspired Computation, 2012, pp 297-305.
- [15] Wang, L., Yang, S., Zhao, W., "Structural damage identification of bridge erecting machine based on improved Cuckoo search algorithm," Beijing Jiaotong Daxue Xuebao/Journal of Beijing Jiaotong University, 2013, pp 168-173.
- [16] Walton, S., Hassan, O., Morgan, K., Brown, M.R., "Modified cuckoo search: A new gradient free optimisation algorithm," Chaos, Solitons and Fractals, 2011, pp 710-718
- [17] Kanagaraj G., Ponnambalam S.G., Jawahar N., "A hybrid cuckoo search and genetic algorithm for reliability-redundancy allocation problems," Computers and Industrial Engineering, 2013, pp 1115-1124.
- [18] Babukarthik R.G., Raju R., Dhavachelvan P., "Hybrid algorithm for job scheduling: Combining the benefits of ACO and Cuckoo search," Advances in Intelligent Systems and Computing, 2013, pp 479-490.
- [19] Karthikeyan, M., Venkatalakshmi, K., "Energy conscious clustering of Wireless Sensor Network using PSO incorporated cuckoo search," 3rd International Conference on Computing, Communication and Networking Technologies, ICCCNT, 2012
- [20] Chandrasekaran, K., Simon, S.P.,"Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoo search algorithm," Swarm and Evolutionary Computation, 2012, pp 1-16.
- [21] Srivastava, P.R., Khandelwal, R., Khandelwal, S., Kumar, S., Ranganatha, S.S., "Automated test data generation using cuckoo search and tabu search (CSTS) algorithm," Journal of Intelligent Systems, 2012, pp 195-224.
- [22] Zheng, H., Zhou, Y., Guo, P., "Hybrid genetic-cuckoo search algorithm for solving runway dependent aircraft landing problem," Research Journal of Applied Sciences, Engineering and Technology, 2013, pp 2136-2140
- [23] Wang, G., Guo, L., Duan, H., Liu, L., Wang, H., Wang, J.,"A hybrid meta-heuristic DE/CS Algorithm for UCAV path planning," Journal of Information and Computational Science, 2012, pp 4811-4818
- [24] Zheng, H., Zhou, Y.,"A novel Cuckoo Search optimization algorithm base on gauss distribution," Journal of Computational Information Systems, 2012, pp 4193-4200.
- [25] Nawi, N.M., Khan, A., Rehman, M.Z.,"A new back-propagation neural network optimized with cuckoo search algorithm," Lecture Notes in Computer Science, 2013, pp413-426.
- [26] Nawi, N.M., Khan, A., Rehman, M.Z.,"A new Cuckoo Search Based Levenberg-Marquardt (CSLM) algorithm," Lecture Notes in Computer Science, 2013, pp 438-451
- [27] Kavousi-Fard, A., Kavousi-Fard, F.,"A new hybrid correction method for short-term load forecasting based on ARIMA, SVR and CSA," Journal of Experimental and Theoretical Artificial Intelligence, 2013, pp 559-574.
- [28] Zheng, H., Zhou, Y., "A cooperative coevolutionary cuckoo search algorithm for optimization problem," Journal of Applied Mathematics, 2013.
- [29] Li, X.-T., Yin, M.-H.,"Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method," Chinese Physics B, 2012.
- [30] Dey N., Samanta S., Yang X.-S., Das A., Chaudhuri S.S., "Optimisation of scaling factors in electrocardiogram signal watermarking using cuckoo search," International Journal of Bio-Inspired Computation, 2013, pp 315-326.
- [31] Vidya K., Shankar Kumar K.R., "Channel estimation of MIMO-OFDM using cuckoo search algorithm," Journal of Theoretical and Applied Information Technology, 2013, pp 260-272.

- [32] Panda R., Agrawal S., Bhuyan S.,"Edge magnitude based multilevel thresholding using Cuckoo search technique," Expert Systems with Applications, 2013, pp 7617-7628.
- [33] Agrawal S., Panda R., Bhuyan S., Panigrahi B.K.,"Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm," Swarm and Evolutionary Computation, 2013, pp 16-30.
- [34] Walia G.S., Kapoor R., "Particle filter based on cuckoo search for Non-linear state estimation," Proceedings of the 2013 3rd IEEE International Advance Computing Conference, IACC, 2013, pp 918-924.
- [35] Senthilnath J., Das V., Omkar S.N., Mani V., "Clustering using levy flight cuckoo search," Advances in Intelligent Systems and Computing, 2013, pp 65-75.
- [36] Gupta D., Das B., Panchal V.K., "Applying case based reasoning in Cuckoo search for the expedition of groundwater exploration," Advances in Intelligent Systems and Computing, 2013, pp 341-353.
- [37] Burnwal S., Deb S.,"Scheduling optimization of flexible manufacturing system using cuckoo search-based approach," International Journal of Advanced Manufacturing Technology, 2013, pp 951-959.
- [38] Agrawal, S., Panda, R., "An efficient algorithm for gray level image enhancement using cuckoo search" Lecture Notes in Computer Science, 2012, pp 82-89.
- [39] Kanagaraj, G., Ponnambalam, S.G., Jawahar, N., "Supplier selection: Reliability based total cost of ownership approach using Cuckoo search," Communications in Computer and Information Science, 2012, pp 491-501.
- [40] Natarajan, A., Subramanian, S., "Bloom filter optimization using Cuckoo Search,"International Conference on Computer Communication and Informatics, ICCCI, 2012.
- [41] Goel, S., Sharma, A., Bedi, P.,"Cuckoo search clustering algorithm: A novel strategy of biomimicry," Proceedings of the 2011 World Congress on Information and Communication Technologies, WICT, 2011, pp 916-921.
- [42] Dhivya, M., Sundarambal, M., Vincent, J.O.,"Energy efficient cluster formation in wireless sensor networks using Cuckoo Search," Lecture Notes in Computer Science, 2011, pp 140-147.
- [43] Srivastava, P.R., Chis, M., Deb, S., Yang, X.-S.,"Path optimization for software testing: An intelligent approach using cuckoo search," Proceedings of the 5th Indian International Conference on Artificial Intelligence, IICAI, 2011, pp 725-732
- [44] Kumar, A., Chakarverty, S.,"Design optimization for reliable embedded system using Cuckoo search," 3rd International Conference on Electronics Computer Technology, 2011, pp 264-268.
- [45] Manikandan, P., Selvarajan, S., A hybrid optimization algorithm based on cuckoo search and PSO for data clustering, (2013) *International Review on Computers and Software (IRECOS)*, 8 (9), pp. 2278-2287.
- [46] Yang, X.-S., Deb, S., "Cuckoo search for inverse problems and topology optimization," Advances in Intelligent Systems and Computing, 2013, pp 291-295.
- [47] Yang, X.-S., Deb, S., Karamanoglu, M., He, X., "Cuckoo search for business optimization applications," National Conference on Computing and Communication Systems, NCCCS 2012 – Proceeding, 2012, pp 29-33.
- [48] Dey, N., Samanta, S., Yang, X.-S., Das, A., Chaudhuri, S.S.,"Optimisation of scaling factors in electrocardiogram signal watermarking using cuckoo search," International Journal of Bio-Inspired Computation, 2013, pp 315-326.
- [49] Yang, X.-S., "Cuckoo search for inverse problems and simulateddriven shape optimization," Journal of Computational Methods in Sciences and Engineering, 2012, pp 129-137.
- [50] Rani, K.N.A., Malek, F., "Symmetric linear antenna array geometry synthesis using cuckoo search metaheuristic algorithm," 17th Asia-Pacific Conference on Communications, APCC, 2011, pp 374-379.
- [51] Buaklee, W., Hongesombut, K., "Optimal DG allocation in a smart distribution grid using Cuckoo Search algorithm," 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON, 2013.

Copyright © 2014 Praise Worthy Prize S.r.l. - All rights reserved

- [52] Chaowanawatee, K., Heednacram, A., "Implementation of cuckoo search in RBF neural network for flood forecasting," Proceedings
 2012 4th International Conference on Computational Intelligence, Communication Systems and Networks, 2012, pp 22-26.
- [53] Bulatovi, R.R., Dordevi, S.R., Dordevi, V.S., "Cuckoo Search algorithm: A metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell linkage," Mechanism and Machine Theory, 2013, pp 1- 13.
- [54] Chifu, V.R., Pop, C.B., Salomie, I., Suia, D.S., Niculici, A.N., "Optimizing the semantic web service composition process using Cuckoo Search," Studies in Computational Intelligence, 2011, PP 93-102.
- [55] Jamil, M., Zepernick, H.-J.,"Multimodal function optimisation with cuckoo search algorithm," International Journal of Bio-Inspired Computation, 2013, pp 73-83.
- [56] Yildiz, A.R., "Cuckoo search algorithm for the selection of optimal machining parameters in milling operations," International Journal of Advanced Manufacturing Technology, 2013, pp 55-61.
- [57] Vazquez, R.A., "Training spiking neural models using cuckoo search algorithm," IEEE Congress of Evolutionary Computation, CEC, 2011, pp 679-686.
- [58] Syberfeldt, A., Lidberg, S.,"Real-world simulation-based manufacturing optimization using Cuckoo Search," Proceedings -Winter Simulation Conference, 2012.
- [59] Gandomi, A.H., Talatahari, S., Yang, X.-S., Deb, S.," Design optimization of truss structures using cuckoo search algorithm," Structural Design of Tall and Special Buildings, 2013, pp 1330-1349.
- [60] Khodier, M.,"Optimisation of antenna arrays using the cuckoo search algorithm," IET Microwaves, Antennas and Propagation, 2013, pp 458-464.
- [61] Kaveh, A., Bakhshpoori, T.,"Optimum design of steel frames using Cuckoo Search algorithm with Levy flights," Structural Design of Tall and Special Buildings, 2013, pp 1023-1036.
- [62] Abdul Rani, K.N., Abd Malek, M.F., Siew-Chin, N., "Natureinspired cuckoo search algorithm for side lobe suppression in a symmetric linear antenna array," Radioengineering, 2012, pp 865-874.
- [63] Moravej, Z., Akhlaghi, A., A new approach for DG allocation in distribution network with time variable loads using cuckoo search, (2012) *International Review of Electrical Engineering* (*IREE*), 7 (2), pp. 4027-4034.
- [64] Yang, X.-S., Deb, S.,"Engineering optimisation by cuckoo search,"International Journal of Mathematical Modelling and Numerical Optimisation, 2010, pp 330-343.
- [65] Baskan, O.,"Determining optimal link capacity expansions in road networks using cuckoo search algorithm with Levy flights," Journal of Applied Mathematics, 2013.
- [66] Ma, J., Ting, T.O., Man, K.L., Zhang, N., Guan, S.-U., Wong, P.W.H.,"Parameter estimation of photovoltaic models via cuckoo search," Journal of Applied Mathematics, 2013.
- [67] Ahmed, J., Salam, Z. "A soft computing MPPT for PV system based on Cuckoo Search algorithm," International Conference on Power Engineering, Energy and Electrical Drives, 2013, pp 558-562
- [68] Ye, Z., Li, Q., Wang, C., Liu, W., Chen, H., "Parameters optimization of support vector machine using energy-saving cuckoo search,"Energy Education Science and Technology Part A: Energy Science and Research, 2013, pp 949-954.
- [69] Tan, W.S., Hassan, M.Y., Majid, M.S., Rahman, H.A., "Allocation and sizing of DG using Cuckoo Search algorithm,"IEEE International Conference on Power and Energy, 2012, pp 133-138.
- [70] Ong, P., Zainuddin, Z.,"An efficient cuckoo search algorithm for numerical function optimization,"AIP Conference Proceedings, 2013, pp 1378-1384.
- [71] Gharegozi, A., Jahani, R.,"A new approach for solving the unit commitment problem by cuckoo search algorithm," Indian Journal of Science and Technology, 2013, pp 5235-5241.

Authors' information

Ezreen Farina Shair was born in Selangor, Malaysia in 1987. She received her B.Eng degree in Control and Instrumentation engineering from Universiti Teknologi Malaysia (UTM), in 2009. She received her M.Eng degree in Mechatronics and Automatic Control engineering also from UTM, in 2012. Currently,

Melaka (UTeM) and her interests are in Control System and Digital Signal Processing.

Shen Yang Khor is a final year student at Universiti Teknikal Malaysia Melaka (UTeM). He is currently pursuing his degree in Electrical Engineering – Power Electronics and Drives. His final year project focuses on optimization techniques under the supervision of Ms. Ezreen Farina Shair.

Dr. Abdul Rahim Abdullah was born in Kedah, Malaysia in 1979. He received his B. Eng, Master and PhD Degree from University of Technology Malaysia (UTM) in 2001, 2004 and 2011 in Electrical Engineering and Digital Signal Processing. He is currently a Senior Lecturer at Universiti Teknikal Malaysia Melaka (UTeM) and his interests is in digital signal

processing.

Hazriq Izzuan Jaafar received his B.Eng degree in Electrical Engineering from Universiti Teknologi Malaysia (UTM), in 2008. He received the M.Eng degree in Mechatronics and Automatic Control engineering also from UTM, in 2013. Currently, he is a Lecturer at Universiti Teknikal Malaysia Melaka (UTeM) and his interests are in control system and optimization

techniques.

Nursabillilah Mohd Ali is a lecturer at the Mechatronic Engineering Department in Universiti Teknikal Malaysia Melaka (UTeM). She received her Master of Science in Mechatronic Engineering in 2013 from International Islamic University Malaysia (IIUM). She obtained her B.Eng. degree in Mechatronic Engineering (Hons.) and Diploma

in Electronic Engineering respectively in 2009 and 2006 from Universiti Teknikal Malaysia Melaka (UTeM).

Amar Faiz Zainal Abidin received his Bachelor of Engineering in Electrical & Electronics from University of Nottingham in 2008. While working as Tutor in Universiti Teknologi Malaysia (UTM), he completed his master degrees: Master of Engineering in Electrical (Mechatronics & Automatic Control) from UTM and Master of Science in Computer

Vision from University of Burgundy. Currently, he serves Faculty of Electrical Engineering, Universiti Teknologi MARA (Pasir Gudang) as a Lecturer and his main research interest is in Computational Intelligence.