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Abstract 

 

Market properties and shares are important in the field of finance in order to 

measure the economic growth of a country. These market properties are volatile 

time series as they have huge price swings in a shortage or an oversupply period. 

In this study, we use two time series models which are Box-Jenkins 

Autoregressive Integrated Moving Average (ARIMA) and Generalized 

Autoregressive Conditional Heterocedasticity (GARCH) models in modelling and 

forecasting Malaysia property market. The capabilities of ARIMA and GARCH 

models in modelling and forecasting Malaysia property market will be evaluated 

by using Akaike's Information Criterion (AIC), Mean Absolute Percentage Error 

(MAPE) and Root Mean Squared Error (RMSE). It can be concluded that 

Box-Jenkins ARIMA model perform better compared than GARCH model in 

modelling and forecasting Malaysia market properties and shares. 
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1 Introduction 
 

The investment market is influenced by various economic conditions and 

factors. These factors not only affect the investment market internally but also 

affect the global investment. At times, the market is volatile with huge swings. 

Volatility is a condition where the conditional variance changes between 

extremely high and low values.  

 

Malaysia has maintained its positive growth in gross domestic product (GDP) 

and expected to evolve in 2014 as a result of higher business and customer 

spending. The country is now still recovering from the epidemic that has resulted 

an increase of the unemployment rate. This has slightly affected the property 

sector as the terms and conditions become tighter and subsequently the borrowing 

for property purchasing has become too expensive. This crisis had a major impact 

to the overall financial markets including the property market and share.  

 

Although Malaysia is one of the countries that can survive from both Asian 

and Global financial crisis, Malaysia should be more alert of the economic 

changes especially in the property investment sector since it is the largest 

contributor to GDP. In the current study, the volatility of the Malaysia Market 

Properties and Shares is investigated. The monthly data used are the Kuala 

Lumpur Stock Exchange Properties for properties and Kuala Lumpur Composite 

Index (KLCI) for shares from July 1997 to July 2012. 

 

Two time series models where one has the ability to capture the non-constant 

volatility throughout the observations are used. These models are Autoregressive 

Integrated Moving Average (ARIMA) and Generalized Autoregressive 

Conditional Heterocedasticity (GARCH). These models will be used to fit the data 

where the best model will be used to forecast the future of forecasting market 

properties and shares. 

 

2 Methodology 

 

Data used for analysis using both ARIMA and GARCH models must be 

stationary. The data is said to be stationary if the mean, variance and 

autocorrelation structure are constant over the time interval. A stationary series  
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does not contain trend, it has no seasonality and flat looking. Stationarity of the 

data is important to describe the future behaviour of the process. 

 

If the data are not stationary, we must transform them by using first 

difference. First differences are the data changes from one period to the next. 

Plotting the data of the first difference can reveal whether the data has been 

transformed to a stationary series or not. If it is still not stationary the second 

difference is taken. Model fitting can be carried out once the stationarity of the 

series has been achieved. In the current study, two time series models will be 

considered. 

 

i) Box-Jenkins ARIMA models 

 

Box-Jenkins ARIMA model has been used widely in many areas of Time 

Series analysis. Since ARIMA is among the earliest models, the capability of this 

model always being tested and widely used as a benchmark with other Time 

Series models. Box-Jenkins ARIMA is known as ARIMA(p,d,q) model where p is 

the number of autoregressive (AR) terms, d is the number of difference taken and 

q is the number of moving average (MA) terms. ARIMA models always assume 

the variance of data to be constant. ARIMA(p,d,q) model can be represented by 

the following equation. 

 

(1 − ∅1𝐵 − ⋯ − ∅𝑝𝐵𝑝)(1 − 𝐵)𝑑𝑌𝑡 = 𝛿 + (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡 

where 

 1 − ∅1𝐵 − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝 is the AR operator of order 𝑝 

 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 is the MA operator of order 𝑞 

 𝛿 is the constant term 

 𝑎𝑡 is the shock element at time 𝑡 

 

ii) GARCH models 

 

GARCH model is known as a model of heterocedasticity which means not 

constant in variance. This model has been used widely in financial and business 

areas since the data of these areas tend to have variability or highly volatile 

throughout the time. GARCH model is written as GARCH(q,p) model where q is 

the number of moving average (MA) terms and p is the number of autoregressive 

(AR) terms. GARCH(q,p) model can be represented by the following equation. 

 



7004                                       Nor Hamizah Miswan et al. 

 

 

𝑍𝑡 = 𝜇𝑡 + 𝜀𝑡 , 𝜀𝑡~𝑁(0, ℎ𝑡) 

 𝜀𝑡 = 𝑒𝑡√ℎ𝑡   ,         𝑒𝑡~𝑁(0,1) 

ℎ𝑡 = 𝛼 + ∑ 𝛽𝑖
𝑝
𝑖=1 𝜀𝑡−𝑖

2 + ∑ 𝛾𝑖ℎ𝑡−𝑖
𝑞
𝑖=1         

where 

 𝜇𝑡 is the mean or constant term 

 ℎ𝑡 is the conditional variance 

 ℎ𝑡−𝑖 is the past conditional variance 

 𝜀𝑡−𝑖
2  past squared residual return 

 𝛼 > 0, 𝛽𝑖 ≥ 0, 𝛾𝑖 ≥ 0  

 

Before using any GARCH models, we need to check the volatility of a data. 

One of the methods is by computing histogram for a stationary series and check 

the distribution of data. Kurtosis is the measure of peakness of the data 

distribution and skewness is the measure of symmetrical of the distribution about 

the mean. When the value of kurtosis is greater than 3 and it is skewed either to 

the left or right, then the series is volatile. The kurtosis, K and skewness, S are 

defined as follows, 

 

𝐾 =
1

𝑛
.

∑ (𝑦𝑖−�̅�)4𝑛
𝑖=1

(
1

𝑛
∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1 )
2          

  

𝑆 =
1

𝑛
.

∑ (𝑦𝑖−�̅�)3𝑛
𝑖=1

1

𝑛
∑ (𝑦𝑖−�̅�)3/2𝑛

𝑖=1

           

where 

 �̅� is the mean of the data 

 𝑦𝑖 is the Time Series value of the data 

 𝑛 is the total number of observations 

 

The first step in fitting the model is model identification. In order to 

determine the autoregressive (p) and moving average (q) values, correlogram of 

sample autocorrelation function (ACF) and partial autocorrelation function (PACF) 

will be computed. ACF and PACF specify the value of q and p respectively.  

The next step is to estimate the parameters of the selected models by using 

Maximum Likelihood Estimation (MLE). MLE is suitable for both linear and 

nonlinear models and also satisfies all the properties of point estimator. MLE 

techniques will be applied to both ARIMA and GARCH models. The derivation 

of MLE for Box-Jenkins ARIMA model is given by the following equation. 
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𝑙 = −
𝑛

2
ln{2𝜋𝜎𝑎

2} −
∑ 𝑎𝑡

2𝑛
𝑡=1

2𝜎𝑎
2                  

 

where 

𝑙 is log-likelihood function of the distribution 

𝑎𝑡 = 𝜃1𝑎𝑡−1 + ⋯ + 𝜃𝑞𝑎𝑡−𝑞 + 𝑌𝑡 + ∅1𝑌𝑡−1 − ⋯ − ∅𝑝𝑌𝑡−𝑝 

�̂�𝑎
2 =

∑ 𝑎𝑡
2𝑛

𝑡=𝑝+1

df
, df = n − (2p + q + 1) 

 

The derivation of MLE for GARCH model is defined as follows, 

 

𝑙 == −
𝑛

2
ln{2𝜋} −

1

2
∑ {ln{ℎ𝑡} +

𝑒𝑡
2

ℎ𝑡
}𝑛

𝑡=1         (7) 

 

where 

𝑙 is log-likelihood function of the distribution 

ℎ𝑡 = 𝛼 + ∑ 𝛽𝑖

𝑝

𝑖=1

𝜀𝑡−𝑖
2 + ∑ 𝛾𝑖ℎ𝑡−𝑖

𝑞

𝑖=1

 

 

 To select the best model fitting, Akaike Information Criterion (AIC) can 

be used. The smaller the value of AIC, the better is the model fitting. AIC is 

defined as follows, 

 

𝐴𝐼𝐶 = 𝑛 ln(𝑀𝑆𝐸) − 𝑛 ln 𝑛 + 2𝑝       

where 

 𝑝 is the number of parameters used 

 𝑛 is the number of observations 

 𝑀𝑆𝐸 is Mean Square Error of the model 

 

The next step is forecasting. The purpose of forecasting is to predict the 

future values of the data. The accuracy of the forecasting model can be evaluated 

by computing the forecast accuracy criterion. Accuracy can be measured using 

Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) 

and it is defined as, 

 

𝑀𝐴𝑃𝐸 = {[∑ |
𝑦𝑡−�̂�𝑡

𝑦𝑡
|𝑛

𝑡=1 ] 𝑛⁄ } × 100%   
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𝑅𝑀𝑆𝐸 = √{∑ (𝑦𝑡−�̂�𝑡)2𝑛
𝑡=1 } 𝑛⁄               

where 

𝑦𝑡 is the actual value 

�̂�𝑡 is the forecast value 

n is the number of period.  

 

The smaller the values of MAPE and RMSE, the better are the model. 

 

 

3 Data Analysis and Results 
 

   Data of Kuala Lumpur Stock Kuala Lumpur Stock Exchange Properties and 

Kuala Lumpur Composite Index (KLCI) are plotted in Figure 1 and Figure 2. 

 

 

 

 
Figure 1 : Kuala Lumpur Stock Exchange Properties from July 1997 to July 

2012 
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Figure 2 : Kuala Lumpur Composite Index (KLCI) from July 1997 to July 

2012 

 

For both observations, it is clear that both data are not stationary. Hence, first 

difference of the data is needed. For GARCH models, we need to plot the histogram 

at first difference level. GARCH can only be used when the data is volatile. Figure 

3 and Figure 4 show the histogram and descriptive statistics for both data at first 

difference level. 

 
 

 
 

Figure 3 : Histogram for Kuala Lumpur Stock Exchange Properties at first 

difference level 
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Figure 4 : Histogram for Kuala Lumpur Composite Index (KLCI) at first 

difference level 

 

The values of kurtosis for both series are more than 3 and skewed to the left 

indicating that GARCH models can be used for both series. Next, identifying the 

models involved can be done by computing the sample PACF, p and ACF, q. 

ARIMA model is denoted by ARIMA(p,d,q) and GARCH(q,p) for GARCH model. 

The order of differencing, d is 1 since we are taking first difference of the series. 

The corresponding value of p is 1 and values of q are 1 and 4 for properties 

data and for shares, the values of p and q are both 1 and 7. In order to obtain the 

parameters values for each models, Eviews software are used. Table 1, Table 2, 

Table 3 and Table 4 show the equation of ARIMA(p,d,q) and GARCH(q,p) and 

their corresponding AIC values. 

 

Table 1 : Equation of ARIMA(p,d,q) models for Kuala Lumpur Stock 

Exchange Properties and their corresponding AIC values 

Model Equation AIC 

ARIMA(1,1,1) (1 − 0.769497𝐵)(1 − 𝐵)𝑦 𝑡
= 3.002597 + (1

+ 0.753951𝐵)𝑎𝑡  

11.55521 

ARIMA(1,1,4) (1 − 0.818696𝐵)(1 − 𝐵)𝑦 𝑡 = −1.644376 + 

(1 + 0.576091𝐵 + 0.375584𝐵2 − 0.077890𝐵3

+ 0.244720𝐵4)𝑎𝑡  

11.39220 

ARIMA(1,1,0) (1 − 0.360012𝐵)(1 − 𝐵)𝑦 𝑡 = −3.820079 + 𝑎𝑡  11.61201 

ARIMA(0,1,1) (1 − 𝐵)𝑦 𝑡 = −6.462743 + (1 − 0.432535𝐵)𝑎𝑡  11.64870 

ARIMA(0,1,4) (1 − 𝐵)𝑦 𝑡 = −6.502618 + (1 − 0.433552𝐵

− 0.094861𝐵2 

−0.225968𝐵3 + 0.017799𝐵4)𝑎𝑡  

11.63985 
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Table 2 : Conditional variance equation of GARCH(q,p) models for Kuala 

Lumpur Stock Exchange Properties and their corresponding AIC values 

 

Model Equation AIC 

GARCH(1,1) ℎ𝑡
2 = 226.2584 + 0.159873𝜀𝑡−1

2 + 0.763929ℎ𝑡−1
2  11.17227 

GARCH(4,1) ℎ𝑡
2 = 438.5962 + 0.350611𝜀𝑡−1

2 1.158576ℎ𝑡−1
2

− 1.164714ℎ𝑡−2
2  

+0.774968ℎ𝑡−3
2 − 0.174557ℎ𝑡−4

2  

11.14682 

ARCH(1) ℎ𝑡
2 = 3886.305 + 0.432588𝜀𝑡−1

2  11.53150 

 

 

Table 3 : Equation of ARIMA(p,d,q) models for Kuala Lumpur Composite 

Index (KLCI) and their corresponding AIC values 

 

Model Equation AIC 

ARIMA(1,1,1) (1 − 0.641073𝐵)(1 − 𝐵)𝑦 𝑡
= 6.100240 + (1 + 0.530897𝐵)𝑎𝑡  

10.83197 

ARIMA(1,1,7) (1 − 0.629056𝐵)(1 − 𝐵)𝑦 𝑡 = 5.751219 + 

(1 + 0.443371𝐵 + 0.066435𝐵2 − 0.039412𝐵3

+ 0.142493𝐵4 

−0.118046𝐵5 + 0.095017𝐵6 − 0.136152𝐵7)𝑎𝑡  

10.85835 

ARIMA(7,1,1) (1 − 0.117693𝐵 − 0.034255𝐵2 − 0.037158𝐵3

+ 0.091153𝐵4 

−0.064306𝐵5 + 0.0061907𝐵6 − 0.195353𝐵7) 

(1 − 𝐵)𝑦 𝑡 = 5.662369 + (1 − 0.046419𝐵)𝑎𝑡  

10.79335 

ARIMA(7,1,7) (1 + 0.268623𝐵 − 0.141927𝐵2 + 0.128353𝐵3

+ 0.206048𝐵4 

0.443837𝐵5 + 0.209924𝐵6 − 0.491756𝐵7)(1 − 𝐵)𝑦 𝑡 

= 6.166295 + (1 − 0.452098𝐵 + 0.046524𝐵2

− 0.190470𝐵3 

−0.235781𝐵4 − 0.686566𝐵5 − 0.382487𝐵6

+ 0.574162𝐵7)𝑎𝑡  

10.60028 

ARIMA(1,1,0) (1 − 0.210693𝐵)(1 − 𝐵)𝑦 𝑡 = 4.318731 + 𝑎𝑡  10.84947 

ARIMA(7,1,0) 1 − 0.159747𝐵 − 0.028071𝐵2 − 0.035761𝐵3

+ 0.090314𝐵4 

−0.068635𝐵5 + 0.064337𝐵6 − 0.198009𝐵7)(1 − 𝐵)𝑦 𝑡
= 5.650164 

10.78202 

ARIMA(0,1,1) (1 − 𝐵)𝑦 𝑡 = 3.175129 + (1 − 0.192543𝐵)𝑎𝑡  10.88662 

ARIMA(0,1,7) (1 − 𝐵)𝑦 𝑡 = 3.125076 + (1 − 0.224597𝐵 − 0.068880𝐵2

− 0.083819𝐵3 

+0.062752𝐵4 − 0.016080𝐵5 + 0.081837𝐵6

− 0.127904𝐵7)𝑎𝑡  

10.89789 
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Table 4 : Conditional variance equation of GARCH(q,p) models for Kuala 

Lumpur Composite Index (KLCI) and their corresponding AIC values 

 

Model Equation AIC 

GARCH(1,1) ℎ𝑡
2 = 103.6221 + 0.096757𝜀𝑡−1

2

+ 0.855591ℎ𝑡−1
2  

10.75801 

GARCH(1,7) ℎ𝑡
2 = 2380.795 + 0.063533𝜀𝑡−1

2

− 0.042459𝜀𝑡−2
2 + 0.061589𝜀𝑡−3

2  

+0.010853𝜀𝑡−4
2 + 0.044823𝜀𝑡−5

2

+ 0.023590𝜀𝑡−6
2  

+0.273671𝜀𝑡−7
2 − 0.188178ℎ𝑡−1

2  

10.82678 

GARCH(7,1) ℎ𝑡
2 = 1172.796 + 0.126781𝜀𝑡−1

2

− 0.549902ℎ𝑡−1
2 + 0.113817ℎ𝑡−2

2  

−0.150067ℎ𝑡−3
2 − 0.049296ℎ𝑡−4

2

− 0.238405ℎ𝑡−5
2  

+0.507796ℎ𝑡−6
2 + 0.713102ℎ𝑡−7

2  

10.75714 

GARCH(7,7) ℎ𝑡
2 = 2320.376 + 0.074029𝜀𝑡−1

2

− 0.026897𝜀𝑡−2
2 + 0.107617𝜀𝑡−3

2  

+0.081705𝜀𝑡−4
2 + 0.061621𝜀𝑡−5

2

+ 0.063598𝜀𝑡−6
2 + 0.260546𝜀𝑡−7

2  

−0.136159ℎ𝑡−1
2 − 0.034856ℎ𝑡−2

2

− 0.021197ℎ𝑡−3
2 − 0.093275ℎ𝑡−4

2  

−0.038293ℎ𝑡−5
2 − 0.007106ℎ𝑡−6

2

− 0.004816ℎ𝑡−7
2  

10.88835 

ARCH(1) ℎ𝑡
2 = 2592.293 + 0.194692𝜀𝑡−1

2  10.91190 

ARCH(7) ℎ𝑡
2 = 851.3916 + 0.091275𝜀𝑡−1

2

− 0.015023𝜀𝑡−2
2 + 0.107512𝜀𝑡−3

2  

+0.035505𝜀𝑡−4
2 + 0.068279𝜀𝑡−5

2

+ 0.072775𝜀𝑡−6
2 + 0.324163𝜀𝑡−7

2  

10.77852 

 

From the above tables, the lowest AIC values are considered to be the best 

model for modelling properties and shares data. Hence, it can be concluded that 

ARIMA(1,1,4) and GARCH(4,1) are the best model for Kuala Lumpur Stock 

Exchange Properties where the AIC values are 11.39220 and 11.14682 

respectively. For KLCI series, ARIMA(7,1,7) and GARCH(7,1) are the best 

models where the AIC values are 10.60028 and 10.75714.  
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The best models will be used to forecast the data and check the accuracy of 

these models by using forecast accuracy criterion, MAPE and RMSE. The lowest 

MAPE and RMSE values are considered to best the best model for forecasting 

properties and shares data. Table 5 tabulates the MAPE and RMSE values when 

the selected models 

 

Table 5 : Forecasting performances of ARIMA and GARCH models 

Series Best Model MAPE RMSE 

Kuala Lumpur 

Stock Exchange 

Properties 

ARIMA(1,1,4) 6.323847 69.66109 

GARCH(4,1) 7.142265 88.38717 

Kuala Lumpur 

Composite Index 

ARIMA(7,1,7) 3.938200 44.45587 

GARCH(7,1) 5.085875 57.14706 

 

From Table 5, the MAPE and RMSE values for ARIMA(1,1,4) are smaller 

for Kuala Lumpur Stock Exchange Properties and ARIMA(7,1,7) are smaller for 

Kuala Lumpur Composite Index data. The differences in MAPE and RMSE 

values between ARIMA and GARCH models for properties data are 0.818418 and 

18.72608 and for shares data are 1.147675 and 12.69119. These differences are 

considered large.  

 

 

4 Conclusion 
 

It is known that GARCH models have been used widely for volatile data. 

However, for Kuala Lumpur Stock Exchange Properties and Kuala Lumpur 

Composite Index, GARCH models cannot give the best result. One of the reason 

is the data are not highly volatile based on the values of kurtosis which are only 

6.716612 and 4.014856. Hence, GARCH models cannot capture variability of the 

data much better that ARIMA models. 

 

As a conclusion, ARIMA is the best models in modelling and forecasting 

Malaysia market properties and shares as compared to GARCH model. Hence, 

ARIMA model can be used to predict the future values of Malaysia properties and 

shares. The forecasting values can help firm and investors to plan their market 

strategy as well as bring Malaysia economic towards positive growth. 

 



7012                                       Nor Hamizah Miswan et al. 

 

 

Acknowledgements. The main author would like to acknowledge the support of 

the Faculty of Engineering Technology (FTK), Universiti Teknikal Malaysia 

Melaka (UTeM).  

 

 

References 
 

[1] D.H. Ackley, G.E. Hinton and T.J. Sejnowski, A learning algorithm for 

Boltzmann machine, Cognitive Science, 9 (1985), 147 - 169. 

 

[2] F.L. Crane, H. Low, P. Navas, I.L. Sun, Control of cell growth by plasma 

membrane NADH oxidation, Pure and Applied Chemical Sciences, 1 (2013), 31 - 

42. http://dx.doi.org/10.12988/pacs.2013.3310 

 

[3] D.O. Hebb, The Organization of Behavior, Wiley, New York, 1949. 

 

[4] Chong Choo, Nie Lee and Nie Ung, Macroeconomics Uncertainty and 

Performance of GARCH Models in Forecasting Japan Stock Market Volatility. 

International Journal of Business and Social Science, 2 (2011), 200-208 (2011) 

 

[5] J. D. Cryer and K. S. Chan, Time Series Analysis with Applications in R (2nd 

ed.), New York : Springer, 2008 

 

[6] Malaysia GDP to Grow 5.1% in 2013, 2014 : World Bank (2013)[Online]. 

Accessed [6th January 2014]. Available from The Sun Daily : www.the 

sundaily.my/news/751900 

 

[7] Nor Hamizah Miswan, Modelling and Forecasting Volatile Data by using 

ARIMA and GARCH Models, Master Thesis, Universiti Teknologi Malaysia, 

2013. 

 

[8] Pung Yean Ping, Nor Hamizah Miswan and Maizah Hura Ahmad, 

Forecasting Malaysian Gold using GARCH Model, Applied Mathematical 

Sciences, 7 (2013), 2879-2884 

 

 

Received: July 1, 2014 


