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Abstract 

 

A hybrid model has been considered an effective way to improve forecast 

accuracy. This paper proposes the hybrid model of the linear autoregressive 

moving average (ARIMA) and the non-linear generalized autoregressive 

conditional heteroscedasticity (GARCH) in modeling and forecasting. Malaysian 

gold price is used to present the development of the hybrid model. The goodness 

of fit of the model is measured using Akaike information criteria (AIC) while the 

forecasting performance is assessed using bias, variance proportion, covariance 

proportion and mean absolute percentage error (MAPE).   
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1 Introduction 
 

A popular precious metal for investment is gold. In Malaysia, one of the 

highest gold investment demand is for its own gold bullion coins called Kijang 

Emas. The coins which come in three different sizes of 1 oz, ½ oz and ¼ oz are 

minted by the Royal Mint of Malaysia. The daily selling and buying prices of 

these coins are important to investors in order to make an investment decision. 

 

Autoregressive integrated moving average (ARIMA) models have been used 

for forecasting different types of time series to capture the long term trend. In the 

case of financial time series that have been shown to have volatility clustering 

where large changes in the data tend to cluster together and resulting in 

persistence of the amplitudes of the changes, ARCH based models have been 

used. In the context of Malaysian gold, the selling price of the 1 oz coins was 

modelled and forecast using ARIMA and GARCH models [1] [2]. While the 

models produced a good fit of the data with the GARCH being more superior, a 

hybrid of those two models is proposed to be able to improve forecasting accuracy 

[3]. 

 

In the current study, a selected series of Malaysian gold is modelled and 

forecast using the hybrid of ARIMA-GARCH. Akaike information criterion (AIC) 

is used to assess the goodness of fit. Bias, variance proportion, covariance 

proportion and mean absolute percentage error (MAPE) are used to evaluate the 

forecasting performances. All analyses are carried out using a software called 

E-views. 

 

The paper is organized into 4 sections. Section 2 presents the methodology 

of the study. Section 3 presents the data analysis. The study is concluded in 

Section 4.  

 

  

2 Methodology 
 

Hybrid ARIMA-GARCH Models 

ARIMA models are the most general class of models for forecasting a time 

series, applied in cases where data show evidence of non-stationarity [4]. 

Non-stationarity in mean can be removed by transformations such as differencing, 

while non-stationary in variance can be removed by a proper variance stabilizing 

transformation introduced by Box and Cox [3]. The ARIMA(p,d,q) can be written 

as 

tqt

d

p ByBB  )()1)((   

 

where 
p

pp BBB   ...1)( 1 is the autoregressive operator of order p;  

http://en.wikipedia.org/wiki/Stationary_process
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q

qq BBB   ...1)( 1  is the moving average operator of order q; (1B)
d
  is 

the d
th

 difference; B is backward shift operator; and t is the error term at time t. 
The orders are identified through the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) of the sample data. The error terms are generally 

assumed to be independent identically distributed random variables (i.i.d.) 

sampled from a normal distribution with zero mean, that is t ~ N(0,σ
2
) where σ

2
 is 

the variance. At this point, the model can be used for forecasting.  

 

However, some time series errors do not satisfy the assumption of common 

variance. The variances are time-varying and conditional.  The autoregressive 

conditional heteroskedasticity (ARCH) class of models pioneered by Engle in 

1982 and generalized by Bollerslev in 1986 are popular class of econometric 

models for describing a series with time-varying conditional variance [5]. The 

generalized autoregressive conditional heteroskedasticity (GARCH) family 

models were developed to capture volatility clustering or the periods of 

fluctuations, and predict volatilities in the future [6]. Past variances and past 

variance forecasts are used to forecast future variances. The GARCH (p, q) model 

is  

 

where   ttttt hu   2
,   )1,0(~ Nt  

   

                           

where , ,  for stationarity;  

p is the order of the GARCH terms  
2 

, which is the last period forecast variance. 

q is the order of the ARCH terms  2
, which is the information about volatility 

from the previous period measured as the lag of squared residual from the mean 

equation.  

 

 

Augmented Dickey-Fuller (ADF) 

ADF is one of the widely used unit-root tests to determine stationarity. The 

testing procedure is applied to the model 

   

where yt  is the tested time series,  indicates the first difference, k is the lag 

order of the autoregressive process. Rejection of the null hypothesis implies that 

the series is stationary. 

 

http://en.wikipedia.org/wiki/Independent_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Normal_distribution
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Breusch-Godfrey Lagrange Multiplier Test (BG-LM) 

BG-LM  is a test for autocorrelation. The null hypothesis states that there is 

no serial correlation of any order up to a certain order lag.  

 

 

ARCH Lagrange Multiplier Test (ARCH-LM) 

ARCH-LM is used to test the presence of heterocedasticity. Let 

 be the residual series. The squared series,  is used to check the 

presence of ARCH effects where it is defined as follows, 

 

 
where p is the length of ARCH lags and t is the residual of the series. Test 

statistic for LM test is the usual F statistics for the squared residuals regression. 

Rejection of the null hypothesis implies that ARCH effect exists.   

 

 

Akaike Information Criterion (AIC)  

AIC is used to assess the goodness of fit of a model. It is defined as  

AIC = 2k 2 ln (L)         

where L is the maximized value of the likelihood function for the estimated model 

and k is the number of free and independent parameters in the model.  

 

 

Mean Absolute Percentage Error (MAPE) 

MAPE measures the accuracy of forecast in terms of percentage. The 

formula is as follows:  

MAPE = %100/
ˆ

1




























 



n
y

yyn

t t

tt  

where  is the actual value;  is the forecast value; n is the number of periods. 

 

 

3 Data Analysis and Results 

 
The data used in the study are daily selling prices of the 1 oz Malaysian gold 

recorded from 18
th

 July 2001 until 15
th

 April 2014 as plotted in Figure 1. A total 

of 2875 observations from 18
th

 July 2001 until 25
th

 Sept 2012 which account for 

90% of the data are used for modelling. Out-sample forecasts are produced for 

observations in the period from 26
th

 Sept 2012 until 15
th

 April 2014.     

 

http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Serial_correlation
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Figure 1: Daily 1 oz Malaysian Gold Prices from 18

th
 Jul 2001 to 15

th
 Sept 2014  

 

An upward trend exists in the gold price data. Let {yt} be the time series of 

the daily gold price. The return on the t
th

 day is defined as rt = ln(yt)ln(yt-1). 

Figure 2 shows the plot of the returns which appears to be stationary. Most of the 

data are located around the mean of zero.  
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Figure 2: Plot of the Returns  

 

The stationarity of the returns is confirmed by the ADF unit-root test as illustrated 

in Table 1. Based on the table, the null hypothesis that the returns are 

non-stationary is rejected.  

 
Table 1: Unit Root Test of the Returns  

 

Null Hypothesis: DLN has a unit root  

Exogenous: None   

Lag Length: 0 (Automatic based on SIC, MAXLAG=27) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -56.48802  0.0001 

Test critical values: 1% level  -2.565767  

 5% level  -1.940934  

 10% level  -1.616625  
     
     *MacKinnon (1996) one-sided p-values.  
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Using ordinary least squares method to estimate the parameters, the most 

appropriate ARIMA model for this series is ARIMA(1,1,1) with an AIC value of 

10.08545 and MAPE value for in-sample forecast of 0.812356 [7]. The model is 

checked for serial correlation using Breusch-Godfrey Serial Correlation LM Test. 

The results are shown in Table 2, which indicate that with significance level of 

5%, the developed model does not suffer from serial correlation up to lag 5.   

 
Table 2: Breusch-Godfrey Serial Correlation LM Test 

     
     F-statistic 2.918448     Prob. F(5,2865) 0.0124 

Obs*R-squared 14.55872     Prob. Chi-Square(5) 0.0124 
     

 

The descriptive statistics and plot of the residuals of the model are presented 

in Figure 3 and Figure 4 respectively. As presented in Figure 3, the residuals have 

excess kurtosis and a mean which is very close to zero. From the Jarque-Bera 

statistic, the null hypothesis of residuals following the normal distribution is 

rejected.   
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Figure 3: Descriptive Statistics of the Residuals for ARIMA(1, 1, 1)  
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Figure 4: Volatility Clusterings in the Residuals for ARIMA(1, 1, 1) 
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As plotted in Figure 4, there are volatility clustering in the residuals. The 

residuals of the ARIMA are tested for ARCH effects using the ARCH- LM test. 

The results are presented in Table 3. From the table, with significance level of 5%, 

the null hypothesis of ARCH effects do not exist is rejected. 
 

Table 3: Heteroskedasticity Test for ARIMA(1, 1, 1) 
     
     F-statistic 120.8169     Prob. F(1,2870) 0.0000 

Obs*R-squared 116.0172     Prob. Chi-Square(1) 0.0000 
     
     

 

    Thus, although the hypothesis of no serial correlation in the model is not 

rejected, the presence of volatility clustering in the residuals and the results of the 

ARCH LM test show that the model is not a good fit. Hence, it is necessary to 

develop a better model for Malaysian gold price. A GARCH model is proposed to 

handle heteroscedasticity in the series. Table 4 presents the estimation results for 

the hybrid ARIMA (1, 1, 1)-GARCH(2, 1) model as applied to the Malaysian gold 

price. 

 

Table 4: Estimation Result for ARIMA(1, 1, 1)-GARCH (2, 1) 
 

 Variance Equation   
     
     C 1.744212 0.487440 3.578313 0.0003 

RESID(-1)^2 0.104766 0.022469 4.662635 0.0000 

RESID(-2)^2 0.048091 0.023100 -2.081865 0.0374 

GARCH(-1) 0.940387 0.006248 150.5098 0.0000 
     
     R-squared 0.003390     Mean dependent var 1.624782 

Adjusted R-squared 0.002695     S.D. dependent var 37.52772 

S.E. of regression 37.47711     Akaike info criterion 9.285385 

Sum squared resid 4031012.     Schwarz criterion 9.299914 

Log likelihood -13331.46     Hannan-Quinn criter. 9.290622 

F-statistic 1.627001     Durbin-Watson stat 1.995463 

Prob(F-statistic) 0.135481    
     
     

 

In Table 4, with significance level of 5%, both the ARCH and GARCH 

effects are significant. They are the internal causes of volatility in the residuals. 

The AIC value of the hybrid model is 9.299914 with MAPE value for in-sample 

forecast of 0.808684. The residuals of the ARIMA-GARCH are tested for ARCH 

effects using the ARCH- LM test. The results are presented in Table 5.  

 
Table 5: Heteroskedasticity Test for ARIMA (1, 1, 1)-GARCH (2, 1) 

   
     
     F-statistic 0.005485     Prob. F(1,2870) 0.9410 

Obs*R-squared 0.005488     Prob. Chi-Square(1) 0.9409 
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The results in Table 5 indicate that at significance level of 5%, the null 

hypothesis of no ARCH effects cannot be rejected. The hybrid model is then 

tested for serial correlation as presented in Table 6. 

  
Table 6: Ljung-Box Q-statistics on squared residuals for 

ARIMA(1,1,1)-GARCH(2,1) 
             
          lags AC   PAC  Q-Stat  Prob lags AC   PAC  Q-Stat  Prob   
          
          1 0.001 0.001 0.0055  19 -0.002 -0.002 9.8829 0.908  

2 -0.019 -0.019 1.0609  20 0.010 0.010 10.195 0.925  

3 0.019 0.020 2.1524 0.142 21 -0.007 -0.007 10.349 0.944  

4 -0.007 -0.008 2.3092 0.315 22 0.003 0.003 10.372 0.961  

5 0.000 0.001 2.3099 0.511 23 0.011 0.010 10.733 0.968  

6 0.026 0.026 4.3112 0.366 24 0.011 0.011 11.058 0.974  

7 -0.019 -0.019 5.3550 0.374 25 -0.029 -0.030 13.484 0.941  

8 -0.009 -0.008 5.6073 0.469 26 0.042 0.041 18.554 0.775  

9 0.009 0.007 5.8215 0.561 27 -0.010 -0.012 18.868 0.803  

10 -0.017 -0.016 6.6147 0.579 28 -0.010 -0.009 19.186 0.828  

11 -0.004 -0.004 6.6683 0.672 29 -0.018 -0.021 20.089 0.827  

12 0.003 0.001 6.6919 0.754 30 -0.016 -0.016 20.845 0.832  

13 -0.017 -0.016 7.5387 0.754 31 -0.017 -0.017 21.711 0.832  

14 -0.009 -0.009 7.7595 0.804 32 -0.007 -0.011 21.841 0.860  

15 -0.023 -0.024 9.2705 0.752 33 0.008 0.009 22.030 0.882  

16 -0.006 -0.004 9.3642 0.807 34 -0.015 -0.014 22.675 0.888  

17 -0.008 -0.009 9.5398 0.848 35 0.003 0.003 22.707 0.911  

18 -0.011 -0.011 9.8662 0.874 36 -0.019 -0.019 23.724 0.906  
          
          

 

Based on the results in Table 6, the null hypothesis of no serial correlation 

cannot be rejected. The descriptive statistics of the residuals from the hybrid 

model are presented in Figure 5.  
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Figure 5: Descriptive Statistics of the Residuals 

for ARIMA(1, 1, 1)-GARCH(2, 1)  
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From the Jarque-Bera statistic in Figure 5, the residuals are not normally 

distributed. However, the hybrid model is used for forecasting. The results of 

out-sample forecasting are presented in Figure 6. 
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Figure 6: Forecasting Results of ARIMA (1, 1, 1)-GARCH (2, 1)  

 

 
For comparison purposes, the out-sample forecasts for ARIMA(1, 1, 1) are plotted 

in Figure 7.  
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Figure 7: Out-sample Forecasts of ARIMA (1, 1, 1)  
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Conclusion 
 

Table 7 presents some results of modelling and forecasting of the daily 

prices of 1 oz Malaysian gold recorded from 18
th

 July 2001 until 15
th

 April 2014. 

Two models were used, namely ARIMA and ARIMA-GARCH. 

 
Table 7: Modelling and Forecasting Results 

 

Models ARIMA ARIMA-GARCH 

AIC 10.08545 9.299914 

MAPE of in-sample 0.812356 0.808684 

MAPE  of out-sample 0.830665 0.827670 

Bias Proportion 0.034607 0.020026 

Variance Proportion 0.000627 0.000061 

Covariance Proportion 0.964766 0.979913 

 

Some information will always be lost due to using one of the candidate 

models. Based on the AIC values, the model that minimizes the estimated 

information loss more is ARIMA-GARCH. ARIMA is 0.46 times as probable as 

ARIMA-GARCH to minimize the information loss. The bias proportion, the 

variance proportion, and the covariance proportion sum up to 1. While the bias 

proportion measures how far the mean of the forecast is from the mean of the 

actual series, the variance proportion measures how far the variation of the 

forecast is from the variation of the actual series. The remaining unsystematic 

forecasting errors are measured by the covariance proportion measures. Based on 

Table 7, the forecasts produced by ARIMA-GARCH are better since the bias and 

variance proportions are lower than those produced by ARIMA. Furthermore, 

MAPE values for in-sample and out-sample forecasts for ARIMA-GARCH are 

lower than those for ARIMA. It can be concluded that in the case of the selling 

prices of 1 oz Malaysian gold, the hybrid model of ARIMA-GARCH can be an 

effective way to improve forecasting accuracy achieved by using ARIMA only.   
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