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Abstract 
 
The paper describes burst pressures of eight mild steel toriconical shells of 
laboratory scale. This is both a theoretical (numerical) and experimental study. All 
test models were initially loaded by external pressure until they buckled/collapsed. 
The toricones were subsequently internally pressurised until burst. 

The details about the numerical process which simulates the two-stage loading 
profile, i.e., starting with buckling by external pressure being followed by re-loading 
using internal pressure for up to the burst, are given.  

The paper concentrates on numerical procedure which allows computation of the 
burst pressure using extensive plastic straining as a possible superior approach. It is 
argued that burst pressure based on the excessive plastic straining is closer to reality 
than the alternative approach based on plastic instability. The ratio of experimental 
burst pressure to the finite element computed values was found to be [(1.35, 0.96), 
(0.89, 0.92), (0.93, 0.90), (1.07, 0.95)] for four nominally identical pairs, 
respectively. Alternative approach to the estimation of burst pressure, based on 
plastic instability, gives the above ratio as [(0.79, 0.83), (0.77, 0.76), (0.74, 0.74), 
(0.74, 0.75)]. Hence the plastic instability based burst significantly, and consistently, 
overestimated experimental values. The proposed algorithm gave safe predictions 
for two cases (1.35, 1.07) and in the remaining six the predictions were on unsafe 
side (0.96, 0.89, 0.92, 0.93, 0.90, 0.95) but the disparity was not as bad as for the 
plastic instability approach. 
 
Keywords: buckling, collapse, burst, external pressure, internal pressure, steel 
closures. 
 

1  Introduction 
 
Design of any structural element, or structure, is aimed at its safe performance 
during routine operation. Safe performance of pressure vessels, for example, is of 
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critical importance especially when they carry hazardous materials. In the latter 
situation, the magnitude of operational pressure is supplemented by an additional 
safety margin which can vary from application to application.  

It is surprizing that little information is available on what might happen once 
pressure exceeds this supplemented safety margin. In this context the burst pressure 
is of great value from a practical point of view as it gives an indication of additional 
margin of safety for a single incremental loading. This is an important quantity, 
especially, at a design stage or at an emergency situation. 

A number of studies which are relevant to the issue of burst pressure are available 
in the literature, and a brief summary can be found in reference 0. A procedure for 
numerical calculation of burst pressure, at tensile plastic instability for internally 
pressurized axisymmetric pressure vessels, has been developed in papers [2], [3], 
[4]. The proposed pressure is to be an upper bound to the burst pressure that could 
be achieved in real vessels. Whilst the failure mode caused by plastic instability has 
been studied analytically and experimentally, it is excessive plastic deformation 
which is a more probable mode of failure than bursting due to plastic instability - see 
reference [5]. A recent theoretical and experimental study into burst of internally 
pressurised domes can be found in 0. Here the burst pressure is based on excessive 
plastic deformation rather than on plastic instability. A series of calculations have 
been performed for mild steel shallow spherical caps, tested previously for buckling, 
and for torispherical heads tested previously for plastic loads. The latter were from 
mild steel. Also four torispheres were freshly machined from aluminium alloy 
AA6061-T1 to complement the series of tests. Hence burst tests were carried out on: 
six steel and four aluminium torispheres and six spherical caps. Computed burst 
pressures for steel spherical caps were between -21.1 % and -4.9% below 
experimental values. At the same time the errors between computed plastic 
instability pressures and the experiments were between +35.1% and +51.8% 
(overestimated experimental results). For steel torispheres the respective ranges of 
errors were: [+12.1%, +32.4%] and [+17.6%, 42.8%]. In aluminium torispheres the 
ranges were: [-0.4%, -14.0%] and [+12.7%, +20.8%]. It is seen here that the 
magnitudes of computed plastic instability pressures were always above 
experimental values for all tested models. Derivation of plastic instability load for 
internally pressurised stainless steel toroid, followed by burst tests of two models, 
can be found in [6], [7]. Seventeen, 45 litre, carbon steel toroidal tanks were burst-
tested during qualifying procedure for the anticipated LPG usage [8], [9]. Water was 
the pressurisation media. Vessels burst when volume increased by about 11 %, and 
the standard deviation on average burst pressure of 8.56 MPa was about 0.220 MPa. 
The FE assessment of structural integrity was based on monitoring the maximum 
deflections at the apex and at outer equatorial plane. Other relevant work in this area 
can be found in [10], [11], [12].  

Numerical predictions of burst pressures given in 0, and based on plastic 
instability, were always much higher than those based on the excessive plastic 
straining. In addition, all of them were above experimental values of the burst. 
Hence it appears appropriate to explore burst pressures based on extensive plastic 
straining, as possibly more safe, and to adopt this methodology to domed ends with 
different geometries, e.g., toriconical. Steel toriconical shells described in this paper 
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were first buckled by external pressure. The next section briefly describes the tests 
with further details available in [13]. Subsequent parts of the paper detail numerical 
and experimental procedures leading to burst loads of toriconical vessel heads. 

 

 
 

Figure 1:  Geometry of a toriconical shell (a), and view of T2a model embedded 
into the base plate and before being bolted (b). 

 

Model 
t D 

r/D 
  

(mm) deg. 
T1, T1a 2.0 206.0 0.20 45.0 
T2, T2a 2.0 206.0 0.10 45.0 
T3, T3a 2.0 206.0 0.05 45.0 
T4, T4a 2.0 206.0 0.0 45.0 

 
Table 1: Nominal geometry of toriconical models (see Fig. 1 for notation). 

 
2 Summary of buckling tests on externally pressurised 

toricones 
 
Eight steel toricones were machined from 250 mm diameter steel billet. Models 
were manufactured in batches of two where each pair had nominally the same 
geometry – see Table 1. Fig. 1a provides the notation whilst Fig. 1b depicts model 
T2b embedded in the heavy base plate (100 mm thick), and about to be fixed to the 
base by the set of twelve M5 bolts. Each model had integrally machined 15 mm 
thick flange. Pressure tightness was secured by rubber O-ring between the flange 
and the base plate. Shells were filled with oil and vented to outside of 350 mm x 950 
mm pressure tank in which they were tested. Tests took place at Engineering 
Department, The University of Liverpool, UK. Single incremental pressure loading 
with steps of 0.05 MPa, and close to anticipated collapse with steps of 0.025 MPa, 
was applied manually. Acoustic ‘bang’ with simultaneous large outflow of oil 
signalled the collapse of tested models. Once removed from the test tank, all tested 
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specimens had a number of lobes in the hoop direction, see Fig. 2. But the incipient 
buckling mode was not identified as shells were inside thick wall vessel. 
 

 
 

Figure 2: Buckled models T1 and T1a. 
 

Material properties of the billet were established by testing round, 10 mm 
diameter and 200 mm long specimens cut along the billet length and in the 
perpendicular direction. Fig. 3 shows average engineering stress-strain curve 
obtained from experiments, and its true-stress true-strain equivalent. The properties 
of steel were established to be: Young’s modulus, E =198.56 GPa, Poisson’s ratio, ν 
= 0.28, and the yield point of material yp  = 205.85 MPa (based on 0.2 % proof 

stress).  

 
 

Figure 3: Plastic strain criteria, u
p , and, f

p , adopted for burst pressures. 
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More details can be found in [14]. Comparison of experimental collapse pressures 
with numerically predicted values is given in Table 2. The latter were obtained using 
modelling in ABAQUS, ([15], S8R-shell elements), and BOSOR5, [16]. These 
analyses were based on overall average wall thickness and average geometry. 
Numerical estimates of buckling strength were also carried out using true-stress 
true-strain modelling of steel. It appears that the ‘0.2 % - yield’ gives safe estimates 
of buckling for all tested models. The ratio of experimental-to-computed collapse 
pressures ranges from 1.03 % to 1.18 % for ABAQUS and from 1.03 % to 1.18 % 
for BOSOR5. Measurements of geometry and wall thickness of all models were 
taken prior to buckling tests and analyses incorporating this data are to be carried out 
separately. 

At the next stage, collapsed models were pressurised up to the burst. Prior to 
these tests, measurements of internal volume of collapsed models were carried out – 
as described next. 
 

    Numerical Results 
    ABAQUS BOSOR5 

Model r/D nomt  avgt  %2.0
collp  tsts

collp   %2.0
collp   

(mm) (MPa) 
T1 

0.20 
2.0 1.793 4.02(1.09) 4.17(1.05) 3.95(1.11) 

T1a 2.0 1.810 4.07(1.07) 4.22(1.03) 3.97(1.10) 
T2 

0.10 
2.0 1.856 3.51(1.18) 3.78(1.10) 3.52(1.18) 

T2a 2.0 1.843 3.48(1.18) 3.75(1.09) 3.50(1.17) 
T3 

0.05 
2.0 1.872 3.56(1.09) 3.95(0.98) 3.68(1.05) 

T3a 2.0 1.779 3.32(1.16) 3.65(1.06) 3.42(1.13) 
T4 

0.0 
2.0 1.960 4.02(1.03) 4.50(0.92) 4.03(1.03) 

T4a 2.0 1.949 4.0(1.04) 4.44(0.93)  3.99(1.04) 
 
Table 2:  Comparison of experimental collapse pressures with predictions given by 

ABAQUS and BOSOR5. Note: %2.0
collp  ≡ collapse pressure based on 0.2 % 

yield point and elastic perfectly plastic modelling of the stress-strain 
curve;  tsts

collp   ≡ collapse pressure based on true stress - true strain 

modelling; experimental-to-numerical ratios are in brackets. 

 
3  Experimental burst pressures of buckled toricones 
 
Models to be tested for burst were initially placed upside-down in a horizontal 
support rig – as illustrated in Fig. 4a. Next, they were fully filled with water – 
volume of which was measured whilst emptying. The change of internal volume 
between as manufactured condition and permanently deformed at post-collapse 
state, measuredinitial VVV   is given in Table 3 as the percentage of the initial, 

nominal volume. Two thin strings attached to the flange helped to keep the level of 
the water horizontal and they helped to mitigate the effects of meniscus – as seen in 
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Fig. 4b. The measured change of volume allowed establishing the starting, deformed 
geometry for the subsequent FE calculations. 

Initial design of toricones did not envisage their testing for burst by internal 
pressure. Changes had to be made to the way in which shells were to be fixed to the  
 

 
Figure 4: Arrangements for measuring internal volume of buckled model, T1. 

 
base in order to facilitate loading by substantial internal pressure. Heavy ring was 
designed, and manufactured, in order to clamp the collapsed models to a new base 
plate. Fig. 5a illustrates the test set up whilst Fig. 5b depicts buckled shell clamped 
by sixteen M10 bolts to the base, and Fig. 5c shows the external tank used to capture 
expelled oil due to the expansion of internally pressurised toricone. The amount of 
expelled oil was measured using a scale to +/- 0.5 mg accuracy. Loading by internal 
pressure was of single monotonic incremental profile until the model lost its 
structural integrity. Some models developed a small crack, or couple of cracks, and 
some ruptured with a single large tearing. Table 4 provides experimental values of 
burst pressures for all eight models. 

 

Model restartp   

(MPa) 
initialV

V  (%) 

Exptl Computed 
T1 1.71 7.2 7.3 
T1a 1.79 7.3 7.1 
T2 2.09 6.3 6.1 
T2a 2.66 8.0 8.3 
T3 2.70 12.7 13.1 
T3a 2.17 12.6 12.8 
T4 3.0 14.2 13.7 
T4a 4.13 4.9 4.7 

 
Table 3: Numerical values of external pressure, prestart, required for expelling 

similar amounts of oil as seen in the experiment. 
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It also indicates whether the shell suddenly ruptured (R), or whether it developed 
a leak (C) - usually through a small through-thickness crack. The history of 
experimentation with model T3a is illustrated in Fig. 6. The model, as manufactured, 
is depicted in Fig. 6a whilst post-collapse shape is shown in Fig. 6b. Under the 
internal pressure, toricone T3a failed suddenly by a substantial tearing running 
meridionally – see Fig. 6c. It is seen here that prior to rupture the dome, T3a, has 
undergone large change in shape. Fig. 7, on the other hand, illustrates the model T2a 
after burst/leak through two, small cracks (Fig. 7b). Again, prior to the leak the 
model has undergone large change in shape. Photograph of the enlarged cracked 
area is depicted in Fig. 7c where the cracks are hardly seen. It is worth noting that 
the leak occurred within the dented area which had resulted from an earlier collapse 
by external pressure. 
 

 
 

Figure 5:  View of arrangements for burst tests (Fig. 5a). Model T2a bolted to the 
base plate – Fig. 5b, and the external tank attached to the base (Fig. 5c). 

 

 
 

Figure 6:  Photographs of toricone T3a: as manufactured (Fig. 6a), after buckling 
(Fig. 6b), and after burst (Fig. 6c). 

 
4  Burst pressures – numerical methodology 
 
In the first phase of calculations, the deformed shape of collapsed models had to be 
simulated numerically. The FE code ABAQUS was used here. Eight-node shell 
element designated in [15] as S8R was adopted for modelling the shells. In the 
ensuing computations, nominal geometry was used with constant wall thickness 
including overall average, minimum, and maximum measured values. The material 
properties of steel were modelled using true-stress true-strain representation, and 
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approximated by fourteen linear segments – as detailed in [14]. The FE grid, after 
convergence studies, had 39 S8R elements along the meridian, and 120 S8R 
elements in the hoop direction. The apex layer was modelled using three-node 
triangular element, STRI3. Two types of burst analyses were carried out. In the first 
one, the starting geometry was an approximate representation of buckled models. In 
the second one, the starting geometry was assumed to be as manufactured. Both of 
these are described next. 
 

 

 
Figure 7:  Model T2a after burst/leak – side view (Fig. 7a). Two leak areas encircled 

and enlarged (Figs 7b, 7c). 
 

 
 

Figure 8: External pressure versus the amount of expelled oil for toricone T2a. 
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4.1 Loading of buckled toricones 
 
The first task here was establishing the initial, permanently deformed shapes of 
models which would resemble those obtained in buckling experiments. To this end, 
external pressure was applied to as manufactured models and the resulting change in 
volume, ΔV, was computed. As pressure increased the value of ΔV also grew for up 
to the collapse as seen Fig. 8 for the case of T2a model. On the post-collapse path 
the shell continued to be deformed for diminishing values of external pressure. As 
mentioned earlier, the only quantity available to quantify post-collapsed 
configuration for any given model was the volume change between as manufactured 
and post-collapsed configurations. Hence, the numerical process of loading 
continued until the computed change of volume was near-enough to experimentally 
measured value. In Figure 8 it is seen that experimentally measured volume change 
(8 %) corresponds, more-or-less, to the computed one (8.3 %) at pressure, prestart = 
2.66 MPa, on the post-collapse path. Also, there is a good visual comparison of 
deformed geometries – as exemplified in Fig. 9 for the model T2a. Table 3 provides 
values of pressures for the remaining models which generated deformed profiles 
seen in experimentation. Computed values of collapse load are given in Table 2. The 
collapse loads were obtained using RIKS method, NLGEOM option in ABAQUS as 
well as the true-stress true-strain material data. Once shrinkage of pressurised 
toricone reached the level close to the experimentally measured magnitude, the 
stress-state was frozen, and the internal pressure was applied. 

 

 
 
Figure 9:  View of collapsed toricone T2a – Fig. 9a, and the FE simulated post-

collapse shape with approximately the same deformed pattern and its 
volume – Fig. 9b. 

 
4.2 Loading of as manufactured toricones 
 
A natural question arises regarding the burst pressures of dented/buckled models and 
burst pressures of as manufactured shells, i.e. what is the difference between these 
two approaches, if any ? Hence burst pressures for as manufactured models were 
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also carried out in order to ascertain any differences in burst pressures associated 
with both geometries at which the internal pressure was applied. As in the previous 
case, the FE models were incrementally loaded for up-to burst by internal pressure. 
The only differences were the initial geometries of pressurised models, and here the 
nominal geometries given in Table 1 were used. The FE grid and modelling of 
material was the same as in the case of dented models. Equally, the burst criteria 
were the same as for buckled models, and these are provided next. 

 
4.3 Burst pressure - algorithm 
 
Irrespective of initial geometry the following procedure has been adopted in order to 
obtain burst pressures for internally pressurised toriconical shells. 

It is postulated to use the true plastic strain, u
p , corresponding to the ultimate 

tensile strength, UTS, for computing the magnitude of burst pressure. 
Experimentally obtained engineering stress-strain curve as plotted in Fig. 3, together 
with the equivalent true-stress true-strain, are to be used for the calculation of burst 
pressure. The latter curve is modelled by 14 linear segments (numerical values are 
available in [14]). One needs not only the magnitude of plastic strain but also a place 
where this strain is to be attained. Based on the above criterion for admissible 
magnitude of plastic strain, it is additionally postulated to define the burst pressure 
as follows: numerical

UTSbp 1  is the pressure at which the equivalent plastic strain, PEEQ, 

reaches the ultimate plastic strain, u
p , anywhere at the mid-surface of a structure. 

Another possibility would be to have the burst pressure, numerical
fracturebp 2 , corresponding to 

the failure plastic strain, f
p . 

This means that after obtaining a converged solution for a given pressure level, 
one has to check the spread of PEEQ through the wall thickness at every Gauss 
point. If only at one of them the magnitude of PEEQ reaches the mid-surface then 
this pressure is called the burst pressure. The flow of PEEQ through the wall 
thickness is illustrated in Fig. 10 for the model T2a for both, u

p  and f
p , criteria. 

Both of these magnitudes were reached at different Gauss points but in both cases 
plastic straining progressed from inside wall towards the outer side. Figure 11 shows 
the deformed shapes of the model T2a at three load levels, i.e., (i) prestart = 2.66 MPa, 
(ii) numerical

UTSbp 1  = 15.75 MPa, and (iii) numerical
fracturebp 2  = 17.65 MPa. In each case the relevant 

magnitude of PEEQ is marked (note different location of plastic straining for every 
pressure level). As mentioned earlier, the amount of expelled oil by expanding 
models being internally pressurised has been measured using the arrangement shown 
in Fig. 5. Comparison between experiment and the FE computed plots of internal 
pressure versus volume change is shown in Fig. 12. The initial, linear responses, 
agree very well. Afterwards the experimental plot undershoots the computed 
response, and it stops below both, numerical

UTSbp 1  and numerical
fracturebp 2 , pressures - values of 

which for all tested models are given in Table 4. The values in brackets are the ratios 
of computed burst to the corresponding experimental magnitude. 
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Figure 10:  Distribution of equivalent plastic strains through the wall thickness at a 
number of internal pressure steps. 

 

 
Figure 11:  Side view of model T2a at: prestart (Fig. 11a), and at burst pressures (Figs 

11b, 11c). Locations of mid-surface PEEQ corresponding to prestart, pb1, 
and pb2 are marked. 

 

 
 

Figure 12:  Comparison of computed change of internal volume with experimental 
data. 
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Model 
t tl

burstpexp  Type of 
failure 

numerical
UTSbp 1  numerical

fracturebp 2  

(mm) (MPa) (MPa) 
T1 1.793 14.27 R 10.54(1.35) 17.29(0.83) 
T1a 1.81 15.1 C 15.69(0.96) 17.71(0.85) 

T2 
1.79(1) 

14.55 C 
15.77(0.92) 17.34(0.84) 

1.856(2) 16.32(0.89) 17.91(0.81) 
1.91(3) 7.83(1.86) 18.55(0.78) 

T2a 1.843 14.48 C 15.75(0.92) 17.65(0.82) 
T3 1.872 14.13 R 15.22(0.93) 17.61(0.80) 
T3a 1.779 13.44 R 14.99(0.90) 16.86(0.80) 

T4 
1.91(1) 

14.48 C 
14.44(1.0) 17.78(0.81) 

1.96(2) 13.53(1.07) 18.24(0.79) 
2.02(3) 14.58(0.99) 18.74(0.77) 

T4a 1.949 14.48 C 15.24(0.95) 18.69(0.77) 
 
Table 4:  Comparison of experimental and computed burst pressures. Note: (1) 

corresponds to the minimum wall thickness; (2) denotes overall average 
wall thickness; (3) denotes the maximum wall thickness; R ≡ rupture; C ≡ 
small crack/leak; 

 

Model 

‘dented’ models ‘as manufactured’ models 
numerical

UTSbp 1  numerical
fracturebp 2

numerical
UTSbp 1  numerical

fracturebp 2  

(MPa) 
T1 10.54 17.29 16.22 17.51 
T1a 15.69 17.71 16.30 17.67 
T2 16.32 17.91 16.56 17.99 
T2a 15.75 17.65 16.44 17.89 
T3 15.22 17.61 16.49 18.05 
T3a 14.99 16.86 15.73 17.15 
T4 13.53 18.24 16.97 18.88 
T4a 15.24 18.69 16.89 18.77 

 
Table 5:  Comparison of computed burst pressures for ‘dented’ models with 

computed results for ‘as manufactured’ models. 
 

5  Discussion of results 
 

Values of computed burst pressures, numerical
UTSbp 1  and numerical

fracturebp 2 , for dented and for as 

manufactured models are given in Table 4 and Table 5, respectively. It is seen from 
Table 5 that the burst pressures for ‘as manufactured’ geometries are all higher or 
equal to the corresponding burst pressures for ‘dented’ models. The ratio of 

dented
b

edmanufacturas
b

p

p

1

1  varies between 1.00 and 1.54 whilst the ratio 
dented
b

edmanufacturas
b

p

p

2

2  
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varies between 1.00 and 1.05. The above values indicate that perfect, as 
manufactured models, can in some cases support larger internal pressure before their 
structural integrity is lost.  

Finally, the burst pressures based on plastic instability, ppl, are provided in Table 
6 where they are compared with experimental values and with magnitudes of burst 
pressures, (pb1, pb2) associated with the excessive plastic straining. It is seen here 
that the plastic instability burst pressures significantly overestimate the experimental 
values. The latter are below the numerical values by -20% to -40%. 
 

Model 
tl

burstpexp  numerical
UTSbp 1  Error numerical

fracturebp 2  Error plp  Error 

(MPa) (%) (MPa) (%) (MPa) (%) 
T1 14.27 10.54 +26.1 17.29 -21.2 18.06 -26.6 

T1a 15.1 15.69 -3.9 17.71 -17.3 18.24 -20.8 

T2 14.55 16.32 -12.2 17.91 -23.1 18.82 -29.3 

T2a 14.48 15.75 -8.8 17.65 -21.9 18.68 -29.0 

T3 14.13 15.22 -7.7 17.61 -24.6 19.03 -34.7 

T3a 13.44 14.99 -11.5 16.86 -25.5 18.08 -39.9 

T4 14.48 13.53 +6.6 18.24 -26.0 19.49 -34.6 

T4a 14.48 15.24 -5.3 18.69 -29.1 19.31 -33.4 
 
Table 6:  Comparison of experimental burst pressures with computed burst 

pressures pb1 and pb2, and with pressure at plastic instability, ppl. 

 
6  Conclusions 
 
Repeatability of experimental burst data was good. The errors within each pair were: 
0%, 0.5%, 5%, and 6%. The smallest two errors were associated with burst by 
cracks. The other two corresponded to tearing mechanism at the burst, and there is 
no obvious explanation what were the causes behind the ultimate loss of structural 
integrity. Computed plastic instability pressures were significantly overestimating 
the experimental values by 20% to 40 %. A similar pattern has been recorded in 
previous studies for: (a) bursting steel spherical caps (with the errors between 35% 
and 50%), (b) bursting steel torispheres (with errors between 18% and 43%), and (c) 
bursting aluminium torispheres (with errors between 13% and 21%). Hence it can be 
said that the burst pressures based on plastic instability are likely to overestimate the 
experimental values. In practical terms, this means that such predictions are not safe.  
The proposed approach for computing the burst pressures does not give universally 
safe values. For some geometries and materials its predictions are safe but for others 
they are not. The unsafe predictions are however much closer to the experimental 
data than the plastic instability based estimates. 

It looks that further investigations would be appropriate in order to gain a wider 
inside into the burst mechanisms. 
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