
Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

121

A PERSPECTIVE OF AUTOMATED

PROGRAMMING ERROR FEEDBACK APPROACHES

IN PROBLEM SOLVING EXERCISES

1
S. SUHAILAN,

 2
 S. ABDUL SAMAD and

 3
M.A BURHANUDDIN

1,2,3Faculty of Information and Communication Technology,

Universiti Teknikal Malaysia Melaka, Melaka, Malaysia

1Faculty of Informatics and Computing,
Sultan Zainal Abidin University, Terengganu, Malaysia

E-mail: 1suhailan@unisza.edu.my , 2samad@utem.edu.my , 3burhanuddin@utem.edu.my

ABSTRACT

Programming tools are meant for student to practice programming. Automated programming error feedback
will be provided for students to self-construct the knowledge through their own experience. This paper has
clustered current approaches in providing automated error programming feedback to the students during
problem solving exercises. These include additional syntax error messages, solution template mismatches,
test data comparison, assisted agent report and collaborative comment feedback. The study is conducted
based on published papers for last two decades. The trends are analyzed to get the overview of latest
research contributions towards eliminating programming difficulties among students. The result shows that
future direction of automated programming error feedback approaches may combine agent and
collaborative feedback approaches towards more interactive, dynamic, end-user oriented and specific goal
oriented. Such future direction may help other researchers fill in the gap on new ways of assisting learners
to better understand feedback messages provided by automated assessment tool.

Keywords: Programming Language, Automated Programming Error Feedback, Computer Aided Learning

System, e-Learning

1. INTRODUCTION

Computer programming is a mandatory subject

for computer science. It is usually offered to
students in the early semester. Although as an
introductory subject, nature of the subject requires
students to practice programming rather than
understanding and memorizing the concepts and
techniques. Through practices of real
programming, student will be able to
constructively build up the programming skills
through own experience as described in
constructive learning concept. The most common
outcomes from the practice sessions are syntax
competencies and semantics skills capabilities.
Practice sessions usually conducted in computer
lab under supervision of tutor or teacher. Students
will try individually to complete problem solving
exercises by writing codes using Integrated
Development Environment (IDE) and
programming language compiler. Each time the

codes are compiled, the tool will automatically
provide feedback messages highlighting all the
syntax errors found in the codes.

Nowadays, lots of automated programming
assessment tools with automated feedbacks [1]
are continuously developed. Researchers have put
effort to automate codes assessment not only in
term of syntax errors or runtime output, but also
in coding structure, styles and performance.
Feedbacks are instantly provided on each
assessment when errors or mistakes are made by
students. Such feedbacks are static library of
messages based on language syntax errors.
Instead of syntax checking, solution structure
checking are also available using mismatched
comparison between predefined teacher's solution
and current students' solution. However, current
automated feedbacks are still insufficient
compared to teacher’s feedback [2][3][4].Current
feedbacks require self-interpretation that will be

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

122

difficult among novice students. Furthermore, the
feedbacks cannot be further explored in
understanding the messages. Without proper
feedback or guidance, students will fail to learn
and construct their own knowledge on
programming [5]. Continuous guidance and
instant feedback by teacher is among the key
factor [6] in learning programming. Teacher
should first guide the students to help them self-
discover the errors by applying syntax knowledge
and justifying the semantic of the codes.
Meanwhile, guiding students can be challenging
tasks for a teacher when involving groups of
students. Students' understanding of programming
topics are different and varies among individuals.
Teacher need to provide specific feedback on
each students based on the quick assessment of
students' codes. Such assessment may take longer
time to be analyzed.

This paper has reviewed current approaches of
automated programming error feedback in
helping student completing problem solving
exercises. The motivation of this paper to
highlight new direction of automated error
programming feedback that can support self-
constructive learning in systematic and automated
collaborative human feedback. Such future
direction may help other researchers to fill in the
gap in modern techniques for helping the
programming self-learning style.

2. RESEARCH QUESTIONS AND

METHODS

This study is conducted based on analysis of
published papers from year 1990 to 2013.
Although many researches are done on learning
programming, this research is focusing on related
approaches to provide automated feedback
messages during real coding exercises. The trends
are analyzed to get the overview of latest research
contributions towards eliminating difficulties
among students specifically in problem solving
programming exercises.

The following research questions are addressed
in this paper:

1. What are the techniques used to provide
automatic feedback on automatic assessment
systems reported in the literature since 1990?

2. What are the current problems in automatic
feedback messages provided by automatic
assessment systems?

3. What are the future directions of automated
feedback that can be concluded based on the
current problems? This future directions may be
possible gaps that can be filled by future research
enhancement in automatic assessment.

By automated feedback on problem solving
exercises we mean automatic messages that
provided to students who write code and submit it
for syntax and problem solution assessment.
Therefore, this study will focus on approaches in
providing feedback messages rather than
assessment techniques. In addition, other
assessment such as on programming theories, fill
in the blank, error or output tracing are not
included.

Data are collected by searching for phrases
"(automatic or automated)" and "(assessment or
grading or feedback)" and "programming" from
the conference proceedings and journals through
ACM Digital Library, IEEE Xplore, Springer and
ScienceDirect. Current programming competitive
system are also reviewed to identify the most
applicable technique for automated feedback. We
then applied the inclusion criteria to the abstracts
and finally read all the remaining papers.

An iterative process is applied to find the
consensus on compiling all the automated
feedback techniques into groups (Section 3). Then
problems on automated feedback are classified
(Section 4) to conclude the future direction on the
possible solutions (Section 5). Papers are selected
then categories are made or revised. This was
repeated until no significant features leading into
new categories were found.

3. AUTOMATED ERROR PROGRAMMING

FEEDBACK APPROACHES

Automated error programming feedback is an
automated report messages to student in notifying
what are the errors contains in the programming
codes. The errors can be possibly in term of
compilation errors, runtime errors and solution
errors. Five types of analysis approach are
identified in providing automated feedback to
students so that the codes can be successfully
compiled, executed and fulfilled to the problem
specification.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

123

3.1 Additional Syntax Error Messages

Feedback

Inappropriate and unclear error message will
lead to misinterpretation and demoralization
among novice students. Researchers have put
effort to enhance standard error feedback
messages provided in standard programming
language compiler to become more appropriate
and clear.

Merr developed by [7] to mapping new
additional error messages into existing syntax
error analysis report using Yacc. It will
supplement the standard error messages with the
new added error messages. This tool can be used
by compiler writer to easily add new messages of
certain existing error identification.

Java Error Correction Algorithm (JECA) is
proposed by [8] to detect syntax errors in the
codes and provide hints to guide student on how
to correct the errors. Syntax error analysis are
based on auto-recovery of the possible misspelled
source code tokens with the programming
language reserved words ("for", "while", "break",
"double", "int", and "void") and previously
declared variables. For example, "forr" will be
replaced by reserved word "for" if it is not
declared as a variable. Another example is
undefined variable of "count" will be changed to
"count1" if "count1" is already defined as variable
previously.

More comprehensive enhanced standard
feedback of standard Sun-Java errors is provided
by [9]. More clearer messages interpretation are
associated on standard error feedback messages
which produced by standard Sun-Java covering
on: -

i. compile errors that consists of syntax errors,
identifier errors, computational errors, return
statements and access to static entities;

ii. runtime errors that consists of out of range,
dereferencing null, computation, insufficient
memory, program execution

However, the effectiveness of such additional
interpretation is not yet tested since the solution is
more in written notes.

This kind of approaches can be very helpful
for student especially in identifying the exact
location of the syntax error in the codes.
However, the such error enhancements feedback
are static and does not reflect to student's specific
intention or goal. For example, syntax error in

variable initialization such as "int msg = "10"';",
will raise type mismatched error and may provide
recovery hint either to change the variable type to
"String" or remove the double quote of the value.
The feedback does not evaluate the student's
intention in creating such variable either to be
manipulated as string or integer.

3.2 Solution Template Mismatches Feedback

In order to be able to assess student's code
intention, researchers suggest all the problem
questions to be associated with specific goals and
sub-goals. Each sub-goals must be represented
using specific solution template. The template is a
sample programming codes solution to achieve
the sub goals. Such template will provide basic
structure of codes logic or semantic to be
compared with student's answer.

PROUST developed by [10] to diagnose error
based on program sub goals. It define common
programming goals as data input, output and
processing. Each goal will be associated with one
or many of solution template alternatives. These
pre-defined goals need to be selected by teacher
to be associated with a new created problem
exercise. Then, PROUST will analyze student's
codes using representation tree to find which part
of the codes matches with any of the specified
template in the pre-defined sub goals. Automatic
feedback will be tailored based on errors found
from portion of codes that failed to match certain
structure of the specific solution template. Any
mismatches will be inserted into the appropriate
line of codes by translating the codes into pseudo-
codes statements. However, the technique may
fail to assess the codes intention if the codes are
written totally different from the existing pre-
defined solution template. [11] create a similar
approach as PROUST called GOES. As
PROUST is designed for Pascal language, GOES
is designed for C language.

Java Intelligent Tutoring System (JITS) is
developed by [12] to provide special feedback
based on specific problem exercises on variables,
operators and looping. Problems have been
initially designed and assigned with list of
programming decision tree to assess student's
answer against the trees. Programming decision
tree is a specific knowledge representation for
achieving goals in the given problem statement. It
consists of discrete section evaluation steps on
verifying a programming statement. For example,
if the problem requires a loop, the system will
check if there is "for" or "while" statement in the

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

124

codes. If the word is found, it will assess the
looping correctness using the tree. It will start to
assess the looping section correctness; initial
value, conditional section and update section. If
this step success, it will continue to check on
initial value section in depth such as is it variable
has been correctly defined, is it initial value has
been assigned and so on. If student's codes did not
match with the discrete code structure template, it
will provide feedback to guide which part of the
codes need to be revised. This approach however
limit the creation of new problems set as each
problems need to be constructed with specific
solution goal templates. Thus, it cannot be
recycled for new incoming students because the
answers of the exercises can be easily obtained
from previous students. It also does not entertain
other new solution alternatives provided by
student if the structure is not exists in the system
knowledge-base.

New approach to check student's codes by
comparing on common mistakes template to
complement the solution template approach is
proposed by [13]. They have designed error
model language (EML) that consists of potential
correction rule-list based on common errors on
the specific problem. The model is much like
context free grammar (CFG) that originally used
in representing syntax of a language.
Alternatively, the EML are used to represent
common mistakes pattern with some additional
hints on how to correct the mistakes. However,
the EML is not designed to be global because it
just represent common mistakes on a specific
exercise or problem.

Solution templates can be taken from correct
codes which are submitted by students is
proposed by [14]. This will eliminate burden on
teacher to prepare the solution templates on each
problem exercises. It also provides more solution
alternatives for mismatched comparison.

Many of researchers that use pre-defined
solution template strategy claim that highest
success rate in helping student solving
programming problems are achieved. Although it
helped in term of solving problem, but it cannot
be concluded as learning effectiveness because
student tend to abuse the automated feedback
using trial and error strategy to get closer to the
solution and finish the [15]. Instead of analyzing
the errors, student may tend to use try-and-error
strategy with the intention of just solving the
problems. If the scenarios happens, students are
not contributing themselves in the learning

process. Furthermore, student will become
frustrated after several of the attempts failed to
solve the problems. So the outcome of the
programming tool usage to help student at least
constructively learn programming by correcting
misconception cannot be effectively achieved.

3.3 Test Data Error Feedback

Automated programming assessment tool such
as [16]–[20] are among common platform for
students to practice programming skills by
writing codes to solve real life problem solving
questions. These tools provide online
programming editor for the students to write and
submit the codes answer via internet browser. It
will automatically check either the submitted
codes are correct or not by automatically execute
the codes with the specified test input and
compare the output with expected output data.
However, such platform are not popular among
novice students because it more towards
competitive programming among highly
interested or expert students.

[21] develops CodeCloud to function same as
the competitive programming tools but are made
open source for researchers to possibility exploit
their own log data using their own server. While
other tool require teacher to post exercise, [22]
develop CodeWrite to offer exercises and test
case to be provided by students themselves. This
tool can provide instant feedback for student to
overcome deficiency in manual assessment [23].
However, since such tools only concern with the
correctness of the final output, not much feedback
detail can be provided to students in helping them
correcting the mistakes. For example, the codes
may be correct in dealing with input and process,
but failure in formatting the output. Another
example is that the codes run well in data
processing and output formatting, but it has
mistake in interpreting input types or formats.
Furthermore, in some cases that involve number
of branches, more than one possible output may
need to be specified to assess the answered codes.

3.4 Assisted agent feedback

Tracking and logging student e-learning
activities as profile for assisting teacher is
proposed by [24]. It then detect any learning
conflicts and report the possible reason to teacher
based on association rules. Conflicts may be
alerted to teacher if students do not participate or
fail to finish in the assigned exercises. The

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

125

conflict detection is based the association of
current student activity on the exercises such as
error encountered or silent action. It provide
assistance for teachers to provide instant
interference to individual student who really
require constructive feedback.

Individual reports may be a burden for a
teacher to analyze and entertain possibly same
feedback for each individual. [25] use data mining
technique to compile the current errors of students
into groups of errors. The error groups are
categorized into field, syntax, type, import,
method, constructor and visualization (output)
error. The groups are processed based on
compiler messages (warnings and errors) from the
student's code attempt to answer programming
exercises. Such reports are then can be used by
teacher to analyze student understanding and help
the teacher to re-emphasize on certain concept
that most students failed to achieve in the
classroom.

Test My Code tool was developed by [26] to
provide online exercises that composed of small
incremental tasks, which combine into bigger
programs. It also include automatic test and
assessment on the smaller parts. Thus student can
self assess which parts of the exercise that has
problem and ask for specific code review from
teacher. Instead of studying the whole codes,
teacher can save lot of time to response on
specific skills.

However, assisted agent feedback may not be
effective in large size of students number. If the
feedback are required at the same time by many
students, feedback from a teacher to individual
students may be delayed and eventually distract
the learning motivation.

3.5 Collaborative peer feedback

Another approach to support programming
error feedback is using collaborative environment
platform such as electronic forum discussion or
social network.

Stack overflow [27] is a sample effective
electronic forum discussion that offer student to
post any questions and receive answers from
experts from all over world. Compare to other
electronic forum discussion that manage question
into topics and subtopics tree, the platform offer
easy and fast open ended text discussion with
some keyword tagging techniques to index the
discussion.

Java Assisted Learning System (JALs) is
developed by [28] as an application running on
Facebook platform, which allow students to
compile Java programming codes and get assisted
feedback from other Facebook's peer. It uses
Facebook to enable students to discuss with other
members to gain more feedback in clarifying the
mistakes or errors encountered during the
exercises. List of peer will be listed based on
person who has previously successfully answered
the problem, or if known, the teacher will be the
peer to assist the student. However, instead of
guiding, learning outcome may be violated if it
happen that the peer distributed the whole correct
answer to the students.

4. PROBLEMS WITH AUTOMATED

ERROR PROGRAMMING FEEDBACK

Automated feedback are hard to be interpreted
and exploiting among novice students in self-
learning mode. Three types of problems or
difficulties are identified as the following.

4.1 Unclear and inappropriate feedback

In certain cases, the standard feedback is not
clear and inappropriate especially to novice
students [9]. For example, an error of undeclared
variable may generate feedback with more
messages for each line of the variable occurrence.
Thus, novice students will struggle to rectify the
syntax errors especially when they are given with
these imprecise error and inappropriate
feedback[29][2]. Meanwhile, codes that do not
have any syntax errors does not mean it has
solved the exercise problem. It may fail in term of
missing to address some of the problem
specification or incorrect solution logic. Some of
the researchers have also provided automated
feedback to tell the missing or incorrect codes
based on provided solution templates. However,
student may tend to abuse the automated feedback
using trial and error strategy to get closer to the
solution and finish the exercises [15]. Thus
constructive learning will not be achieved if the
case happens.

4.2 Lacking of interactivity

Although automated feedback has covers for
syntax and semantic guidelines, but still the
approach is insufficient compared to teacher or
peer feedbacks [2], [3][4]. Automated feedbacks

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

126

are provided as static messages and no further
responses are generated without changes to the
current codes. Lacking of such interactibility
requires students to think and figure out on their
own of the meaning of the feedback. Thus, many
of students tend to ignore the provided feedback
since they don't understand the messages and
cannot interact with the system to ask for further
clarification. Contrary, experienced teacher or
peer can entertain student's responses in tailoring
feedback to be understood. Social network
platform or other electronic forum can be used as
effective human interaction platform to seek
feedback and comments. Looking at the
opportunities of social network in assisting
learning progress, [24], [25], [28], [30]–[32] have
implemented programming learning into social
network setting. The platform provides an
environment that enable live messages and
feedback discussion among peer or teacher to be
done online. It also provides mechanism to log
and index the interactive feedback discussion into
topics or sub topics for future references.
However, such interaction platform is not
designed to be responsive in helping inactive
students.

4.3 Non systematic and static feedback

Assisted feedback on programming error need
to be provided in real time so that student can
construct their own knowledge. Otherwise,
students tend to forget the encountered
misunderstanding concepts. Learning motivation
may also decrease after the lab learning session
ended. Previous discussion on the same
programming errors need to be re-utilized in
enhancing automated feedback in programming
exercises on the same occurring problems or
errors. Currently, many of automated feedback is
designed based on set of pre-defined static
messages library. Not many research have been
done in utilizing social discussion as a way to
improvise automated programming error feedback
in becoming more sufficient and interactive. Such
electronic discussion logs are currently not
systematically designed to be intelligent
especially in self-extracting previous related
discussion content of the same programming
errors occurrence.

5. DISCUSSION AND FUTURE DIRECTION

Based on the review, current automated
feedback of the first three approaches are
implemented in one way interaction where the
feedback cannot be further explored without any
modification or correction done to the codes.
Changing the codes may create more errors
without assessing and correcting student's code
intention. Thus, if students themselves failed to
construct the knowledge after experiencing errors,
they will start to become clueless and frustrated.
Although solution template try to guide student to
modify the codes towards the answer schema, it
may lead to try and error strategy and constructive
learning may not in the place. It also does not
entertain other solution alternative based on
individual's creativity. Meanwhile, working alone
with one way automated feedback interaction
may discourage motivation among weak students
who do not know what else need to be done to
proceed.

On the other hand, assisted and peer feedback
approaches can offer much richer, specific and
support two ways communication. By having two
ways communication, student can be guided
specifically towards self-constructing
understanding and avoid misconception in
programming. [33] shows that new trend in online
learning using social network interaction can
motivate unmotivated students to learn
programming.

It is likely that new approach of automated
programming error feedback in social network
will become an important element in future
developments. However, involving human to
complement automated programming error
feedback can be very challenging in term of
resources and knowledge management. Instead of
burdening teachers, it may be impossible to
provide instant feedback to individuals when the
situation involves with many students. It also
seems that content of feedback discussion may
be violated with answer sharing or redundant with
existing or unnecessary content. New specific
ways of social network communication need to be
addressed to become more responsive towards
automatically detecting programming difficulties
among students. The text discussion structure of
the social feedback must be reinvented
systematically so that it can be reutilized in self-
improvising the static library of automated error
feedback messages. Filtering agents must be
designed to avoid unnecessary comments. The
library must also be associated with template of

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

127

common programming goal concepts such as
static looping, dynamic looping, sentinel looping,
array, input types, string manipulation and etc. By
having programming goal, it can guide students
towards answering the question and getting more
appropriate automated feedback.

There are other review papers on the types of
automatic assessment in learning programming
and its experimental results of using certain types
such as in [34][35][36][37][38][39][40][41][42].
However, the papers are more concern on the
automated assessment and does not focus on the
automated feedback. Thus, most of the papers
have highlighted that the automated feedback
need to be improved towards more clearer and
understandable messages after the automated
assessment are successfully executed. This paper
has contribute towards classification of automated
error programming feedback messages and
highlight the future direction for researchers who
want to improve the automated feedback.

6. CONCLUSION

Various automated programming error
feedback approaches in helping student
completing problem solving exercises have been
reviewed. The approaches provide instant
programming error feedback after automatically
analyze student’s solutions which serve as an
important means for improving programming
skills. Types of feedback approaches are
identified as additional of syntax error messages,
solution template mismatches, test data
comparison, assisted agent report and
collaborative comment feedback. There are some
drawback that need to be addressed in the current
approaches such as too much burden on teacher,
lacking of interaction for clarification,
unsystematic discussion and insufficient
programming goal guideline. The reviewed result
shows that future direction of e-learning feedback
approaches are now embarking towards
collaborative learning such as in social network
environment. It may involve agents in assisting
collaborative feedback approaches towards more
interactive, dynamic, end-user oriented and
specific goal oriented. Such future direction may
help other researchers fill in the gap on new ways
of assisting learners to better understand
feedback messages provided by automated
assessment tool.

REFRENCES:

[1] N. Le, S. Strickroth, S. Gross, and N.

Pinkwart, A Review of AI-Supported

Tutoring Approaches for Learning

Programming, vol. 479. Heidelberg:
Springer International Publishing, 2013, pp.
267–279.

[2] M. Rubio-sánchez, P. Kinnunen, C. Pareja-
flores, and Á. Velázquez-iturbide, “Student
perception and usage of an automated
programming assessment tool,” Computers

in Human Behavior, vol. 31, pp. 453–460,
2014.

[3] R. Queirós, I. La, D. Ipp, and J. P. Leal,
“PETCHA A Programming Exercises
Teaching Assistant,” in 17th ACM Annual

Conference on Innovation and Technology

in Computer Science Education, 2012, pp.
192–197.

[4] H. Mungunsukh and Z. Cheng, “An Agent
Based Programming Language Learning
Support System,” in International

Conference on Computers in Education

(ICCE), 2002, pp. 148–152.
[5] A. Yadin, “Reducing the dropout rate in an

introductory programming course,” ACM

Inroads, vol. 2, no. 4, pp. 71–76, 2011.
[6] M. A. Brito and F. De Sá-soares,

“Assessment frequency in introductory
computer programming disciplines,”
Computers in Human Behavior, vol. 30, no.
30, pp. 623–628, 2013.

[7] C. L. Jeffery, “Generating LR syntax error
messages from examples,” ACM

Transactions on Programming Languages

and Systems, vol. 25, no. 5, pp. 631–640,
Sep. 2003.

[8] E. R. Sykes, “Qualitative Evaluation of the
Java Intelligent Tutoring System,” Journal

of Systemics, Cybernetics and Informatics,
vol. 3, no. 5, pp. 49–60, 2005.

[9] M. M. Ben-ari, “Compile and Runtime
Errors in Java,” Israel, 2007.

[10] W. L. Johnson, “Understanding and
debugging novice programs,” Artificial

Intelligence, vol. 42, no. 1, pp. 51–97, Feb.
1990.

[11] J. S. Song, “AN INTELLIGENT
TUTORING SYSTEM FOR
INTRODUCTORY C LANGUAGE
COURSE,” Computers & Education, vol.
28, no. 2, pp. 93–102, 1997.

[12] E. R. Sykes and F. Franek, “An Intelligent
Tutoring System Prototype for Learning to

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

128

Program Java TM,” in IEEE International

Conference on Advanced Learning

Technologies (ICALT 2003), 2003, no.
figure 2, p. 7695.

[13] R. Singh, S. Gulwani, and A. Solar-lezama,
“Automated Feedback Generation for
Introductory Programming Assignments,” in
ACM Programming Language Design and

Implementation (PLDI), 2013, pp. 15–26.
[14] M. Gaudencio, A. Dantas, and D. D. S.

Guerrero, “Can Computers Compare Student
Code Solutions as Well as Teachers ?,” in
45th ACM Technical Symposium on

Computer Science Education, 2014, pp. 21–
26.

[15] B. E. Vaessen, F. J. Prins, and J. Jeuring,
“Computers & Education University
students ’ achievement goals and help-
seeking strategies in an intelligent tutoring
system,” Computers & Education, vol. 72,
pp. 196–208, 2014.

[16] “Programmr,” 2014. [Online]. Available:
http://www.programmr.com/. [Accessed: 10-
Apr-2014].

[17] “Codeforces,” 2014. [Online]. Available:
http://codeforces.com/. [Accessed: 10-Apr-
2014].

[18] “Codechef,” 2014. [Online]. Available:
http://www.codechef.com/. [Accessed: 10-
Apr-2014].

[19] “UVa Online Judge,” 2014. [Online].
Available: http://uva.onlinejudge.org/.
[Accessed: 31-Mar-2014].

[20] “Topcoder,” 2014. [Online]. Available:
http://www.topcoder.com/. [Accessed: 10-
Apr-2014].

[21] A. Papancea, J. Spacco, and D. Hovemeyer,
“An open platform for managing short
programming exercises,” in Proceedings of

the ninth annual international ACM

conference on International computing

education research - ICER ’13, 2013, pp.
47–51.

[22] P. Denny, A. Luxton-reilly, E. Tempero, and
J. Hendrickx, “CodeWrite : Supporting
Student-Driven Practice of Java,” in
Proceedings of the 42nd ACM technical

symposium on Computer Science education,
2011, pp. 471–476.

[23] A. Kurnia, A. Lim, and B. Cheang, “Online
Judge,” Computers & Education, vol. 36,
no. 4, pp. 299–315, May 2001.

[24] A. Casamayor, A. Amandi, and M. Campo,
“Intelligent assistance for teachers in
collaborative e-learning environments,”

Computers & Education, vol. 53, no. 4, pp.
1147–1154, 2009.

[25] C. Fernandez-Medina, J. R. Pérez-Pérez, V.
M. Álvarez-García, and M. D. P. Paule-
Ruiz, “Assistance in computer programming
learning using educational data mining and
learning analytics,” in Proceedings of the

18th ACM conference on Innovation and

technology in computer science education -

ITiCSE ’13, 2013, pp. 237–242.
[26] A. Vihavainen, T. Vikberg, M. Luukkainen,

and M. Pärtel, “Scaffolding Students ’
Learning using Test My Code,” in Annual

Conference on Innovation and Technology

in Computer Science Education, 2013, vol.
68, pp. 117–122.

[27] “Stack Overflow,” 2014. [Online].
Available: https://stackoverflow.com/tour.
[Accessed: 22-May-2014].

[28] C.-H. Lai, W.-C. Lin, B.-S. Jong, and Y.-T.
Hsia, “Java Assist Learning System for
Assisted Learning on Facebook,” IEEE

Learning and Teaching in Computing and

Engineering, pp. 77–82, Mar. 2013.
[29] P. Denny, A. Luxton-Reilly, E. Tempero,

and J. Hendrickx, “Understanding the syntax
barrier for novices,” Proceedings of the 16th

annual joint conference on Innovation and

technology in computer science education -

ITiCSE ’11, p. 208, 2011.
[30] M. S. Othman, S. M. Suhaimi, L. M. Yusuf,

N. Yusof, and N. Mohamad, “An Analysis
of Social Network Categories: Social
Learning and Social Friendship,” Procedia -

Social and Behavioral Sciences, vol. 56, no.
Ictlhe, pp. 441–447, Oct. 2012.

[31] E. Verdú, L. M. Regueras, M. J. Verdú, J. P.
Leal, J. P. de Castro, and R. Queirós, “A
distributed system for learning programming
on-line,” Computers & Education, vol. 58,
no. 1, pp. 1–10, Jan. 2012.

[32] K. M. Y. Law, V. C. S. Lee, and Y. T. Yu,
“Computers & Education Learning
motivation in e-learning facilitated computer
programming courses,” Computers &

Education, vol. 55, no. 1, pp. 218–228,
2010.

[33] N. Drljevic and I. Boticki, “Leveraging
Social Networks to Increase Motivation in
Learning Programming,” in 54th

International Symposium ELMAR, 2012, no.
September, pp. 12–14.

[34] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä, “Review of recent systems for
automatic assessment of programming

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

129

assignments,” in Proceedings of the 10th

Koli Calling International Conference on

Computing Education Research - Koli

Calling ’10, 2010, pp. 86–93.
[35] V. Pieterse, “Automated Assessment of

Programming Assignments,” in ACM

Computer Science Education Research

Conference, 2013, no. April, pp. 4–5.
[36] N. Truong, P. Roe, and P. Bancroft,

“Automated Feedback for ‘ Fill in the Gap ’
Programming Exercises,” vol. 42, pp. 117–
126, 2005.

[37] R. Romli, S. Sulaiman, and K. Z. Zamli,
“Automatic Programming Assessment and
Test Data Generation,” in IEEE

International Symposium in Information

Technology (ITSim), 2010, pp. 1186–1192.
[38] P. Reimann, M. Kickmeier-rust, and D.

Albert, “Problem solving learning
environments and assessment : A knowledge
space theory approach,” Computers &

Education, vol. 64, pp. 183–193, 2013.
[39] M. Joy, N. Griffiths, and R. Boyatt, “The

BOSS Online Submission and Assessment
System,” vol. 5, no. 3, 2005.

[40] C. Douce, “Automatic Test-Based
Assessment of Programming : A Review,”
ACM Journal of Educational Resources in

Computing, vol. 5, no. 3, pp. 1–13, 2006.
[41] T. Wang, X. Su, P. Ma, Y. Wang, and K.

Wang, “Computers & Education Ability-
training-oriented automated assessment in
introductory programming course,”
Computers & Education, vol. 56, no. 1, pp.
220–226, 2011.

[42] S. A. Naser, “AN AGENT BASED
INTELLIGENT TUTORING SYSTEM,”
Journal of Theoretical and Applied

Information Technology, vol. 4, no. 7, pp.
585–589, 2008.

