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Abstract Nano-field research has been expanded rapidly

since those tiny materials such as carbon nanotubes

(CNTs), cobalt catalyst and iron catalyst can give huge

impact to the application products with their extraordinary

properties. The scientific discovery of these materials can

be defined as a magic key to solve the raw materials

shortage and unlock the limitation performance of the

devices. CNTs have been found to be one of the new

nanomaterials that can improve different kind of devices’

performance. CNT can be grown on the substrates with the

presence of active metal catalysts. Since small metal cat-

alyst particles (diameter \10 nm) are crucial in growing

CNTs, the deposition method of metal catalyst on the

substrates has been studied. The optional processes using

solutions to produce catalyst nanoparticles will be dis-

cussed in this review. Sol–gel process along with spin

coating is the most suitable deposition method with low

cost of production and the easiness to control particle size

deposited on the substrates.

Keywords Carbon nanotube � Metal catalyst �
Nanoparticles � Sol–gel process � Spin coating

1 Introduction

Nowadays, people are talking about nanotechnology in all

fields of studies such as sciences, engineering, medicine,

etc. Nanotechnology is all about producing, manipulating

small objects and building from objects that are extremely

small which is less than 100 nm. There are several

advantages in economic and technology by making things

smaller such as the cost of production will be reduced by a

mass production when the materials or things getting

smaller. The quantity of materials used for the production

also can be cut-off due to the extraordinary properties of

the nanomaterials themselves. Thus, the shortage of nat-

ure’s sources could be solved accordingly.

1.1 What is CNT?

Carbon nanotube (CNT) is just tiny structures in nano-

scales in which the diameter is about 10,000 times smaller

than human hair but they have huge impact on science and

technology. They have been rapidly known by the people

in the world ever since Sumio Iijima had been published

his research in 1991 [1] and exposed the unique structural

and properties of CNTs to the world. His invention often

cited in most of the published paper on the topic of carbon

nanotubes. However, he was not the first person who dis-

covered these allotropes of carbon because CNTs had been

observed prior to his invention by many researchers since

1952 until 1989 [2–18]. Basically, carbon nanotubes are

formed from a repeated chemical element of carbon (C) in

which bonded by covalent bonding. Covalent bonding is a

strong chemical bond that involves in sharing electron pairs

between atoms. The most well-known allotropes of carbon

are 2D-graphite, 3D-diamond, and amorphous carbon.

Graphite has been widely used as the cores of pencils after

lead because lead has poisonous issue back then. Diamond

is the hardest nature material known because it is arranged

in diamond lattice. The highest hardness own by this

structure leads to the restructured as synthetic diamond to
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be used in industrial application like cutting and polishing

tools. Another form of carbon is 0D-fullerene that has been

discovered by Kroto [19]. Hence, based on that finding,

nanotubes can be classified as one of the fullerence’s

family member.

CNTs can be classified based on the helicity and the

direction of CNT growth. There are two famous types of

carbon nanotubes related to helicities found in the research

field such as single-walled CNT (SWCNT) and multi-

walled CNT (MWCNT) [20]. SWCNT structure is like

wrapping a 2D-graphene sheet into a seamless cylindrical

structure or by elongating a Bulkyball or C60 to be a tubular

structure [21–23]. There are three ways of graphene sheet

is wrapped which are zigzag, armchair and chiral. Different

ways of wrapping will promote different properties in

which can be used in various application. Meanwhile,

MWCNT structure is quite similar to the SWCNT but the

different is only that it consists of multiple rolled layers of

graphene. However, SWCNT has been a spot interest

because of its physical properties. CNTs can be grown

entangle or align. Aligned CNT in which can be used to

improve the device performance is divided into two pat-

terns; vertically and horizontally [24–26]. These two pat-

terns can be tailored by controlling several parameters

especially during the catalyst preparation and CNT growth

process in which will be discussed further in the next

section.

1.2 CNT growth

CNT growth is the most important process in order to

produce high quality of CNT. In order to grow the CNT,

there are three main materials needed to achieve the goal

which are catalyst, substrate, and carbon sources. Those

‘ingredient’ is like the concept of planting a tree. Without

the seed, soil, water and sunlight, tree cannot be grown. It

is the same goes to CNT growth. Without the main mate-

rials, the CNT cannot be grown out of nowhere. In addi-

tion, the CNT growth process selection is also crucial.

There are several processes that have been used by the

researchers up to this century in which will be elaborated

later. Moreover, along with the catalyst preparation and

CNT growth stages, there are also several parameters that

are needed to take into account.

1.2.1 Catalysts selection

Catalyst selection is one of the most important things

towards a good result of CNT production. With proper

selection of materials and good control of particle size of

catalyst, the desired type, quality and characteristics of

CNT can be achieved. Transition metals are the most

effective catalyst to grow CNT on substrate especially iron

(Fe), cobalt (Co) and nickel (Ni) [27]. These metals have

high solubility of carbon at high temperature and high

diffusion rate in which very helpful during the CNT growth

process. Moreover, the melting point for those catalyst

candidates is suitable to grow CNT since the growing

temperature is in range of 700–900 �C [28]. They also have

stronger adhesion with the CNT produced at the end of the

process and potential in forming high curvature of CNT.

Back then, the CNT growths were carried out with different

single metal catalysts (Fe, Co and Ni). Iron catalyst has

potential to produce higher CNT deposit on the selected

substrate due to high catalytic effect in hydrocarbon

decomposition own by this metal but the CNTs were

poorly graphitized [29]. Meanwhile, cobalt has the oppo-

site effect on CNT growth found on iron catalyst. Thus, by

combining these two metals means that the individual

advantages are combined, hence it will improve the quality

of CNTs. It was proved by Nakayama’s group that binary

catalyst was able to grow CNTs and the study was suc-

cessful at low temperatures [30]. In short, by combining

more metal catalysts for CNT growth will give an inter-

esting result but of course it will be more complicated.

Besides those metals, other metals in the same group

such as Pt, Ag, Cu, and Pd are also potential in CNT

growth [31–35]. Apart from transition metals, other metals

which are known as new catalyst for CNT like Al, Mg, Sn,

Cr, Mo and Mn are also very useful for CNT growth

especially to grow horizontally-aligned SWCNT [24]. In

order to produce aligned CNT, catalyst support is needed to

be employed. The examples of catalyst supports that are

commonly used are Al, Al–O, Al2O3, and SiO2 [36–41].

All the catalyst particles; main catalysts and catalysts

support, are in nano-scaled, hence they need careful han-

dling to make sure that they are attached well to the sub-

strates. So, the route to synthesize catalyst nanoparticles is

very crucial to determine the attachment ability of the

catalyst to the substrate as well as to drive the quality of

CNTs produced. There are many ways to synthesis nano-

particles like wet chemical, mechanical, form-in-place and

gas-phase processes. All these four methods will be dis-

cussed further in the following sections.

1.2.2 Substrates selection

A good selection of catalyst should come with a good

selection of substrate for CNT growth. There are many

available substrates for CNT growth such as Si, SiO2, SUS

310 S and many more. The most common substrates that

have been used in the CNT studies are graphite [10, 11],

quartz [42, 43], magnesium oxide [44–46], alumino-sili-

cate; zeolite [47, 48], alumina [49, 50], silicon [51, 52],

silicon carbide [53, 54] and silica [55, 56]. Furthermore,

every substrate has its own special catalyst-substrate
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interaction with the selected catalyst in the direction of

enhancing the growing process of CNTs. This interaction is

related to the chemical bonding formation between these

two things. A good chemical bonding of catalyst-substrate

will help to avoid the detachment of catalyst particles from

the substrate especially during the CNT growth process.

Thus, it will lead to produce good quality of CNTs in

straight direction.

In addition, good handling of substrate during the

experiment is a must because substrate is a very sensitive

product especially substrate with Si base like silicon and

silicon oxide wafers. Si based substrates are quite brittle

and easily breakup when dropped. Besides, the uniformity

of catalyst thin film formed on the substrates during the

deposition process could be affected by the uniformity of

substrates’ surface. When there are scratches on the sub-

strate, the uniform catalyst thin film is difficult to be

achieved. Other factor that will lead to the failure of cat-

alyst deposition process is the existence of impurities on

the surface of substrates. Thus, cleaning process is needed

before the catalyst deposition process. There are several

methods for substrate cleaning. Substrates can be cleaned

by piranha solution. This solution is a mixture of 1/1 (v/v)

sulphuric acid and hydrogen peroxide. After 15 min of

treatment by that solution, then substrates are rinsed with

de-ionised water before the spin coater is used to dry them

at speed of 8,000 rpm for 30 s [57]. Furthermore, sub-

strates also can be cleaned with acetone by sonication

process for 5 min. Then, just like the first method of

cleaning, the substrates are washed with de-ionized water.

Lastly, dry them with nitrogen gas [58]. The third sug-

gestion of cleaning substrate is by acetone ultrasonic

cleaning, followed by ultraviolet ozone cleaner treatment

[59]. The last method is rinsed the substrates with acetone,

subsequently treated by ethanol through sonication process

for 10 min [60, 61]. Proper cleaning will contribute to good

result of CNTs. Thus, proper selection of substrates

cleaning method is very important.

1.2.3 CNT growth methods

CNT growth is the climax part of CNT growth process.

There are three growth methods to produce CNTs such as

arc discharge, laser ablation and chemical vapor deposi-

tion. Other methods like pyrolysis, flame and liquid

hydrocarbon synthesis also have been employed in this

field but the scope is just up to laboratory level. These

methods have their own contribution towards CNT growth.

The differences of these methods are given in Table 1.

Early of the CNTs discovery, arc discharge method has

been used for the CNT growth purpose. It is a method

where a direct-current arc voltage is applied across two

graphite electrodes (\1 mm apart) immersed in an inert gas

such as He and Ar [63]. MWCNTs and SWCNTs can be

produced through this method by the employment of pure

graphite rods as cathode. MWCNTs will be deposited on

the cathode by the deposition of fullerenes (as soot) inside

the chamber. In 1992, the first CNT was obtained from this

method; MWCNT. The dimension of the MWCNT was in

micrometer length and the diameter was about 5–30 nm

[64]. SWCNTs can be generated only with the existence of

metal catalyst in graphite anode along with a pure graphite

cathode. The first SWCNT was produced in 1993 [65].

However, defects have been detected on the produced

CNTs. Thus, it was the start point where researchers have

found laser ablation to improve the quality of the CNTs.

Both methods have some similarities in terms of the pro-

cessing principle; the evaporation of carbon solids gener-

ates carbon atoms condensation. The difference is just on

the source of heat needed to produce high temperatures, as

the laser ablation used laser source and arc discharge used

electric arc source. These sources lead to the high cost of

Table 1 Comparison of the available CNT growth methods [62]

Method Arc discharge Laser ablation Chemical vapor deposition

Description Vaporization of carbon in the presence of catalyst under

reduced atmosphere of inert gas; formation

of CNTs on electrodes during quenching

Vaporization of carbon target by

laser; formation of CNTs on

substrate during quenching

Formation of CNTs by

decomposition of hydrocarbons

on catalyst nanoparticles

Processing

parameters

Temp: [3,000 �C

Pressure: 50–7,600 Torr (under vacuum)

Temp: [3,000 �C

Pressure: 200–750 Torr (under

vacuum)

Temp: \1,200 �C

Pressure: 760–7,600 Torr

Advantages High quality of CNTs; MWCNT and SWCNT High quality of CNTs; SWCNT Flexibility of substrates; variety

forms of CNTs can be grown;

mass production is possible

Disadvantages Limited types of substrates; mass production is

difficult; expensive

Limited types of substrates;

mass production is difficult;

expensive

Quality of CNTs varied from

each laboratory

486 J Sol-Gel Sci Technol (2015) 73:484–500

123

Author's personal copy



CNTs production and the mass production is quite difficult

due to the ineffective cost for commercial purpose.

Then, the CNT technology has shifted to catalytic vapor

deposition (CVD) method. This method is the solution for

the cost problem of arc discharge and laser ablation

methods. This is because the processing temperature nee-

ded for CNT growth is low which is in range of

600–1,200 �C and the energy source to transfer energy to

gaseous carbon molecule is plasma or a resistively heated

coil in ambient pressure [27, 65, 66]. CVD is a method of

decomposition of hydrocarbon gases; methane, ethanol,

carbon monoxide, acetylene, ethylene, etc., with the pres-

ent of metal catalysts to grow CNTs in a tubular reactor

[67]. There are five types of CVD available in this research

world such as alcohol catalytic CVD (ACCVD), water-

assisted CVD (WACVD), floating catalyst CVD (FCCVD),

thermal CVD (TCVD) and plasma-enhanced CVD (PEC-

VD) [21]. By controlling the processing parameter; tem-

perature, pressure, gas flow rate, carbon feedstock,

deposition time, reactor geometry and catalyst, the desired

CNT structures can be tailored [28, 68–70]. The function of

catalyst to synthesize CNTs throughout the process is to

enhance the nucleation of CNTs by reducing the activation

energy, Ea, from carbon feedstock into reactive atomic

carbon. The reactive carbon is then diffused towards the

substrate to generate the CNTs by heating and coating with

the transition metal catalyst like Fe, Co and Ni. In addition,

the diameter of CNTs can be varied by varying the particle

size of metal catalysts. Small diameter of CNTs will

increase the device performance. Thus, to produce CNTs

with small diameter (\10 nm), it is very important to select

the suitable process to synthesize catalysts nanoparticles.

There are four routes to synthesize nanoparticles; wet

chemical, mechanical, form-in-place and gas phase pro-

cesses, in which will be discussed in the next section.

1.3 Four routes to synthesize nanoparticles

There are two different approaches to nanofabrication which

are top-down and bottom-up [71]. Top-down approach is

about breaking materials into basic blocks or structure. This

kind of approach is time consuming, thus it is not suitable for

large scale production since it is difficult to control the pro-

cess and to get the narrow distribution of nanoparticles size.

Lithography which is placed in form-in-place process is one

of the examples for this approach. It can cause the crystal-

lographic damage to the pattern itself. Other than that,

mechanical process is also placed under the same approach

meanwhile gas-phase process is classified under bottom-up

approach. Bottom-up approach is a process of combining

simple atomic level components to be a complex system. The

simple components can be atom-by-atom, molecule-by-

molecule or cluster-by-cluster. The desired products can be

achieved by this approach with some modification on the

processing parameters such as temperatures, concentration

and etc. The most interesting part is that it is an inexpensive

process. Wet chemical process is a unique approach because

it can be classified in both approaches and this process will be

elaborated in details through the upcoming section.

1.3.1 Wet chemical processes

Wet chemical process is a process that involved in the reac-

tion of two or more chemical solutions under certain condi-

tions and processing parameters [72]. It is the best method for

production of nanoparticles especially to prepare catalyst

nanoparticles for CNT growth because the homogeneity of

the nanoparticles can be achieved from the molecular level

design of the materials. Homogeneity of the solution is cru-

cial due to achieve a good distribution and good uniformity of

the deposited nanoparticles on substrates. Chemical pro-

cesses also allow control of particles size and size distribu-

tion, morphology and agglomerate size through single

manipulation of the parameter [73]. Those parameters are

important to determine nucleation, growth and coalescence of

the nanoparticles themselves. Moreover, growth rate also

another point that is needed to take into account because it

will give huge effects on particle size, particle size distribu-

tion, amount of crystallinity, crystal structure and degree of

dispersion [73]. The growth rate can be controlled by con-

trolling four factors; (1) concentration of reagents, (2) pro-

cessing temperatures, (3) pH and (4) the order in which the

reagents are added to the solution [73].

Furthermore, wet chemical process has three main types

which are colloidal chemistry, hydrothermal and sol–gel

methods. The additional types to this process are com-

bustion and organized membranes method. Each method

has their own suitable precursors, solvents and other

materials such as surfactants in which will be discussed in

details later. The advantages of this method compared to

others are it is a simple technique, cheap; less instrumen-

tation, and low temperature (\350 �C) synthesis [73]. It is

also able to produce large scale of production in variety of

sizes and shapes. A wide variety of inorganic, organic and

metallic nanoparticles can be fabricated through the wet

chemical methods. Other than that, during the synthesis, it

is possible for doping of foreign atoms (ions) into the

process. Since it is able to convert the liquid form into dry

powder or thin film easily especially sol–gel method, thus

it has been suggested as the most suitable method to pre-

pare metal catalysts for CNT growth.

1.3.2 Mechanical processes

Mechanical process is one of the simplest top-down

nanomanufacturing techniques. This process consists of
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two types of methods which are mechanical milling or

attrition and mechanical alloying. Mechanical milling can

be divided into two types; mechanical milling process and

mechanochemical process. In mechanical milling process,

the only happen is physical change of powder; single ele-

ment or complex compound, in which the particles size is

reduced. For example, the synthesis of CeO2 nanopowder

uses a tungsten carbide ball-milling medium with toluene

as a process control agent at 300 rpm for 10 h [74, 75].

Meanwhile, for the mechanochemical process, the chemi-

cal reaction is happened. For example, by mixing ultrafine

Si nanoparticles with graphite ball-mill, silica powders can

be synthesized [76].

Mechanical milling process is a famous process to

produce materials with nanocrystalline grain size. It is also

the most productive method of producing large quantities

of nanocrystalline powders from different materials such as

metals, alloys, intermetallics, ceramics and composites.

The objectives of this method are to reduce and change the

particle size and shape, accordingly. Besides, for the

mechanical alloying, it is aimed for mixing or blending of

different materials to be a new phase and to synthesize

nanocomposites. The minimum grain size obtainable by

milling has been attributed to a balance between the defect/

dislocation structure introduced by the plastic deformation

of milling and its recovery by thermal processes [77]. In

order to avoid the contamination during the process,

hydrogen or argon atmosphere has been preferred. Other

than that, processing control agent; stearic acid and tolu-

ene, also can be considered.

1.3.3 Form-in-place

Form-in-place process is a process that mainly aimed on

the production of nanostructure layers and coatings. There

are four examples of form-in-place process such as

lithography, physical and chemical deposition and spray

coating. Lithography method is usually employed in the

microfabrication of integrated circuit (IC). It is more about

patterning the microcircuit and most of the time this pro-

cess contributes to wastage. Moreover, this method is quite

expensive. For the physical and chemical deposition, they

are usually seen to be used in CNT growth. Physical vapor

deposition (PVD) is a neat method in which the uniform

thickness of catalyst thin films and catalyst nanoparticles

with the desired particle size can be obtained. However,

this method also is quite expensive because it involves in

high-temperature vacuum evaporation with subsequent

condensation, or plasma sputter bombardment [78]. Thus,

this method is not a cost effective method for the large

scale of production. PVD consists of five variants which

are cathodic arc, electron beam vapor, evaporative, pulsed

laser and sputter depositions. All these methods have the

similarity to deposit thin film onto substrates except the

source and procedures for the deposition. PVD coatings are

usually harder and have high corrosive resistant as well as

good impact strength. Since the process needs high tem-

perature to be conducted, thus it is important to have a

cooling water system to evacuate large heat loads.

Furthermore, chemical vapor deposition (CVD) has

similarity with PVD which is based on deposition of vapor

to deposit the thin films onto the substrates. However, the

operating cost for this method much lower than PVD. This

is due to the low processing temperature needed for the

deposition process and the equipment is much simpler than

the PVD one. It is also can produce high purity of products

as good as PVD. Thus, this method is often to be used in

most of the semiconductor industry. Besides, as stated in

the previous section, CVD is one of the methods to produce

CNT. For the CNT deposition, the carbon source is being

used meanwhile for other deposition materials, other kinds

of sources are employed according to the purposes. All of

the stated methods classified under form-in-place process

can be used to fabricate nanoparticles by scraping the

deposits from the collector.

1.3.4 Gas-phase processes

Gas-phase process is a process that involved in precursors

in gas form. Generally the processing temperature can

reach up to several thousand Kelvin. High temperature is

needed to generate nanoparticles from the vapor sources.

The example of gas-phase process is flame pyrolysis or

synthesis. Flame synthesis is a process that has been widely

used in industry to produce carbon black and ceramic

particles. It is a process of formation of molecular nuclei

from either condensation or chemical reaction and sub-

sequent growth by coalescence in high temperature region

during the process. The generation of nanoparticles from

the flame reactors is either from vapor or sprayed liquid

precursors. Usually, the temperature of the flame can reach

up to 2,500 K which is where the precursor gas phase will

be decomposed [79]. Electro-explosion, laser ablation, high

temperature evaporation and plasma synthesis are also

included in the gas-phase processes [80].

2 Types of wet chemical routes

In order to synthesis particles from a solution, there are two

important stages involved which are nucleation and growth

stages. By governing these two stages, the particle size,

size distribution and morphology of the particles can be

controlled well. The nucleation stage can be indicated

when the precipitation is begins by numerous small crys-

talline initially formed. However, these small particles are
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not in a thermodynamically stable state. They are in the state

of ‘lonely’. Thus, they tend to make ‘friend’ with their

‘neighbors’. Then they started to agglomerate (growth stage).

Agglomeration is a process that is needed to be avoided since

it will affect the particles size and size distribution of the

products. Hence, single nucleation event is necessary to

prevent additional nucleation during the subsequent growth

so that highly uniform nanocrystals can be formed.

Since agglomeration is occurred when the nucleation

and growth stages is happened at the same time, thus, it is

possible to separate these two stages so that agglomeration

can be avoided. LaMer and his friends has utilized a pro-

cess called homogeneous nucleation to overcome this

problem; LaMer concept [81]. In the homogeneous

nucleation processes, nuclei appear in a homogeneous

solution without any seed for heterogeneous nucleation.

There exists a high energy barrier to nucleation because the

system spontaneously changes from homogeneous phase to

heterogeneous phase (liquid ? nanocrystals). The LaMer

diagram in Fig. 1 will show clearly how this energy barrier

works to separate nucleation and growth stages.

The LaMer plot can be divided into three phases:

A. Initiation phase:

i. The concentration of ‘monomer’ (the smallest

subunit of the bulk crystal) increases continu-

ously with time.

ii. The precipitation does not occur in phase I even

under supersaturated conditions because the

energy barrier for spontaneous homogenous

nucleation is very high.

B. Nucleation phase:

i. Nucleation occurs—the degree of supersaturation

is high enough to overcome the energy barrier,

thus resulting in the formation of stable nuclei.

ii. Since the rate of monomer consumption result-

ing from the nucleation and growth processes

exceeds the rate of monomer supply, the mono-

mer concentration decreases until it reaches the

level at which the net nucleation is zero.

iii. The ‘A’ label in the figure is indicated the

nucleation period.

C. Growth phase:

i. Below this level, the system enters the growth

stage.

ii. The nucleation is effectively stopped and the

particles keep growing as long as the solution is

supersaturated.

2.1 Metal and intermetallic

Metal can be defined as a solid material (an element,

compound, or alloy) that is hard, definite shape, shiny, and

has good electrical and thermal conductivity. Metals are

generally malleable, fusible and ductile. In the periodic

table, 91 materials are metals. Meanwhile, intermetallic is a

compound as solid phase consisting of two or more

metallic elements, with optionally one or more nonmetallic

elements has different structure form its constituents. The

general method in synthesis of metal colloidal dispersions

in order to obtained metal nanoparticles is reduction of

metal complexes in dilute solutions [82]. By combining a

low concentration of solute and polymeric monolayer

(stabilizer) adhered onto the growth surfaces, the formation

of metallic nanoparticles can be achieved. There are three

main ‘ingredients’ for this type of chemical route; (1)

precursors, (2) reduction reagents and (3) other chemicals

(polymeric stabilizer or surfactants) (Table 2; [83]).

Metal and intermetallic nanoparticles can be obtained by

two methods; (1) aqueous method and (2) non-aqueous

method. Both methods have quite similar chemical syn-

thesis set-up except the solvent. Glass reactor chamber is

usually used for the chemical reactions.

2.1.1 Aqueous method

Aqueous method is a method that used water as the solvent.

As known, water is a good solvent for polar or ionic

compounds and has been widely used as solvent system for

most of the chemical solution reaction. This is due to the

high permittivity of the water. Elemental metal nanoparti-

cles for catalytic and biomedical application such as Au,

Ag, Pt and Pd nanoparticles may be prepared by adding

liquid reducing agents to aqueous solutions of respective

salts in the presence of a stabilizer. For example, CdS

nanoparticles has been synthesised by rapid mixing of
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Fig. 1 The LaMer diagram illustrating variation of the monomer

concentration with time during the growth process to obtain

monodisperse of nanocrystals
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Na2S and Cd(NO3)2•4H2O flow streams within a silicon/

glass micromixer based on the principle of flow lamination

[84]. The stabilizer and reduction reagent used for this

reaction were sodium polyphosphate and Na2S, accordingly.

The selection of reduction reagents for the process is

crucial and it may affect the nucleation rate and particle

growth which in turn influences the particle size and size

distribution of the nanoparticles. Strong reduction reagents

may lead to fast reaction rate and produce small particles.

Meanwhile, for the selection of weak reduction reagents

may induce a slow reaction rate and thus favors larger

particles. In addition, slow reaction will tend to give two

kinds of results which are wider and narrower size distri-

bution of particles. For the wider size distribution, it leads

to a continuous formation of new nuclei while for the

narrower one; it will lead to diffusion-limited growth.

Based on the comparison of average sizes of Au nano-

particles in Table 3, the reduction ability of citric acid is

higher than sodium citrate. Since citric acid is a strong

reduction reagent, thus the obtained particle size of Au

nanoparticles is smaller than sodium citrate with the SEM

result of 12.5 nm compared to 17.6 nm.

The suitable selection of polymer stabilizer or surfactant

also should be made. It is employed to the reaction to form

a monolayer on the surface of the nanoparticles. The

addition of the stabilizer may help to prevent agglomera-

tion of nanoparticles. Particle with smaller size has higher

surface area and more reactive compared to the large one.

Thus agglomeration is usually happened to these nano-

particles. Hence, stabilizer is really needed. However, the

presence of such polymer stabilizers during the formation

of nanoparticle can have various influences on the growth

process of nanoparticles. Interaction between the surface of

a solid particle and polymer stabilizer may vary signifi-

cantly depending on the surface chemistry of the solid,

polymer, solvent and temperature. A strong adsorption of

polymer stabilizers would occupy the growth sites and thus

reduce the growth rate of nanoparticles while a full cov-

erage of polymer stabilizer would hinder the diffusion of

growth species from the surrounding solution to the surface

of growing particle.

2.1.2 Non-aqueous method

Non-aqueous method or can be called polyol method is a

method that needs no water as the solvent. Polyol is a short

form for polyalcohol (e.g. ethylene glycol (EG), diethyl-

eneglycol or 1,2 propanediol). The polyol will act as both

reduction reagent and solvent. This non-aqueous may

minimize the agglomeration and surface oxidation prob-

lems. It is an ideal method for the preparation of larger

nanoparticles with well-defined shapes (i.e. cubic, rod, etc.)

and controlled particle sizes (various shapes). Elemental

metal (Cu, Ni, Co, Pt, Co–Ni) and oxide particles can be

obtained by this method. Since the employment of non-

aqueous solvent only can minimize the agglomeration and

oxidation problems, thus suitable stabilizer is needed for

the reaction. Generally, PVP (Poly(vinylpyrrolidone) is

used as the capping or stabilizing reagent owing to its

excellent adsorption abilities [85]. In a typical polyol

synthesis, the reduction of a metal salt was carried out by

liquid polyol or diol in the presence of a stabilizing agent.

The polyol method is basically conducted by adding

precursor compound (oxides, nitrates and acetates) into a

mixture of stabilizer dissolved in polyalcohol. Then, the

mixture is heated (\200 �C) in a certain duration of time.

For example, to obtain zinc oxide nanoparticles, a mixture

of zinc(II) acetate with its polyalcohol and stabilizer was

heated at 170 �C for 30 min with constant stirring. When

the white suspension was obtained, then it was left over-

night and centrifuged at 8,000 rpm for 20 min to separate

the particles from the suspension [86]. The particles

obtained should be rinsed with ethanol several times to

remove the organic compounds and the stabilizer leftover.

Then, Ar atmosphere is needed to dry the particles.

The advantage of polyol method compared to aqueous

method is that this method results in the synthesis of metal

nanoparticles protected by surface-adsorbed glycol, thus

minimizing the problem of oxidation. Other than that, the

use of non-aqueous solvent may help in reducing the

problem of hydrolysis of fine metal particles that often

occurs in the aqueous case. The products from this method

have been widely used in several application such as the

Table 2 Summary of precursors, reduction reagents and polymer stabilizers [83]

Precursors Reduction reagents Polymer stabilizers

Metal anode: Pd, Ni, Co Hydrogen (H2) Polymer stabilizers

Palladium chloride (PdCl2) Sodium citrate (Na3C6H5O7) Poly(vinylpyrolidone), PVP

Hydrogen hexachloroplatinate IV (H2PtCl6) Hydroxylamine hydrochloride (NH4OH ? HCl) Polyvinylalcohol, PVA

Potassium tetrachloroplatinate II (K2PtCl4) Citric acid (C6H8O7) Polyethyleneimine

Silver nitrate (AgNO3) Carbon monoxide (CO) Sodium polyphosphate

Silver tetraoxylchlorate (AgClO4) Phosphorus in ether (P) Sodium polyacrylate

Chloroauric acid (HAuCl4) Methanol (CH3OH) Tetraalkylammoniumhalogenides
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use of Ag nanoaprticles in washing machine. It is called

‘Silver Wash’. Microscopic bits of electrolyzed silver

(about 400 billion silver particulates) are dispersed and

dissolved into the wash water, where they infiltrate fabrics

on an almost molecular level. The silver nanoparticles kill

99.9 % of bacteria and fungi, says the manufacturer.

Another example is in fresh box containers in which nat-

urally kill bacteria and limit mold growth without toxins.

2.2 Hydrothermal

Hydrothermal is an important method for the synthesis and

processing of advanced ceramics (structural and func-

tional), catalysts, composites, alloys, intermetallic and

nanomaterials from high temperatures aqueous solution at

high vapor pressures. It is a non-conventional method to

obtain nanocrystalline inorganic materials. Various inor-

ganic materials can be prepared at temperatures substan-

tially below those required traditional solid-state reactions.

Moreover, the products obtained from hydrothermal

method do not need post-annealing treatment and most of

the time they are in crystalline structure. Thus, this may

cut-off the cost of production.

As known, wet chemical route is involved in chemical

reaction and hydrothermal also is not excluded from this

reaction. The chemical reaction of hydrothermal is occur-

red in water system at above ambient temperatures

([100 �C) with pressure during the heating more than 1

atmosphere. The maximum limits of the process may reach

up to 1,000 �C and 500 MPa pressure [87]. Since the

required processing temperature and pressure is quite high,

thus an autoclave is needed to withstand the processing

condition for a long time. The autoclave also can provide a

sealed or closed system. Hydrothermal process has a spe-

cial type of chemical transport reaction because it depends

on liquid-phase transport of reactant for nucleus formation

of the desired final products. The presence of water at

elevated temperatures may help a lot for the precursor

material transformation. Water is a common solvent in

which will display different characteristics at different

temperatures. For this case of process, the water can be an

intermediate for the transformation of heat, pressure and

precursor of the materials. The added chemicals compound

also can be dissolved easily at the particular temperature.

For certain cases, water also serve as the precipitating

agent.

Hydrothermal method has five main parameters; (1)

initial pH of the medium, (2) duration of synthesis, (3)

temperatures of synthesis, (4) pressure of the system, and

(5) concentration of reactants and additives. Those

parameters may determine the processing space and thus

influence reaction and crystallization kinetics. This process

is occurred rapidly so that all precursors’ reaction will be

finished within several hours in order to avoid a significant

growth of the product particles. Moreover, high pressure is

required to increase the solubility in the aqueous medium

so that continuous crystal growth can be obtained. Thus, it

leads to the non-ideal and non-equilibrium state to the

reaction. By that, the solvent is always at its near-critical,

critical or supercritical state. All these conditions may help

for obtaining an effective reaction and hence produce a

good result of particles formation.

A wide range of chemical compositions can be used to

produce nanoparticles especially to produce ceramic

nanoparticles. Most of the materials synthesized by this

method are materials that cannot be obtained using clas-

sical synthesis at high pressure. The most common oxide

materials are ZrO2, TiO2, SiO2, ZnO, Fe2O3, Al2O3, CeO2,

SnO2, Sb2O5, Co3O4, HfO2, etc. The examples of complex

oxides are BaTiO3, SrTiO3, PZT, PbTiO3, KNbO3, KTaO3,

LiNbO3, tungstates, vanadates, molybdates, zeolites, etc.

[88]. Since the process needs simple equipment and low

energy, thus this may leads to cost effective process. Even

the autoclave is quite expensive, but with large scale of

production, the cost effective still can be obtained. How-

ever, it is agreed that it is impossible to observe the reac-

tion process (black box).

2.3 Sol–gel

Sol–gel or chemical solution deposition is one of the wet

chemical routes. Recently, this process has been widely

used in the fields of materials science and ceramic engi-

neering. Sol can be defined as a colloidal suspension of

solid or macromolecular particles (1–1,000 nm in size) in a

liquid. It has an unfixed shape in which the particles in the

solid phase can move freely. Besides, gel is a porous

3-dimensionally interconnected solid network surrounding

Table 3 Comparison of average sizes of Au nanoparticles synthe-

sized using various reduction reagents, all in nanometer [83]

Reduction reagents SEM

Sodium citrate 17.6 ± 0.6

Hydrogen peroxide 15.7 ± 1.1

19.7 ± 2.6

Hydroxylamine hydrochloride 22.8 ± 4.2

Citric acid 12.5 ± 0.6

Carbon monoxide 5.0 ± 0.5

7.5 ± 0.4

12.2 ± 0.5

Phosphorus 8.1 ± 0.5

15.5 ± 1.7

25.6 ± 2.6

35.8 ± 9.7
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by a continuous liquid medium (phase). It has a fixed

shape. The particles in the solid phase are fixed in accor-

dance with certain network structure and the movement is

limited.

There are five steps in sol–gel process; (1) solution

preparation, (2) sol stage (3) gel stage, (4) deposition

technique and (5) heat treatment. In this process, there are

two main ingredients should be presented which are pre-

cursors and solvents. The suitable precursors and solvents

for the desired product should be determined properly. The

typical precursors for this process is from metal alkoxides

and metal chlorides. However, metal alkoxides are much

more favored because they readily undergo hydrolysis. The

general chemical formula for metal alkoxides is [M(OR)n],

where R is an alkyl group, inorganic or organic salts. Metal

alkoxides require low processing temperature for fabrica-

tion of nanomaterial with required phase selection with

correct stoichiometric ratio.

At the stage of preparing the precursor solution, the solid

precursor will be dissolved in an organic solvent miscible with

water or the reagent. Once the homogeneous solution is

obtained, the solution will be converted to sol by the treatment

with a suitable reagent. Hydrolysis reaction is occurred at this

stage. It is a reaction in which metal alkoxide (M–OR) react

with water to form metal hydroxide (M–OH). Normally, it

takes several minutes to complete the reaction but it still

depends on the types of metal precursors employed for this

process. At the sol stage, the sol can be used to be transformed

into thin films, powders, fibers and patterns. Thin films can be

produced from sol by spin-coating, dip-coating, flow-coating

and electro-deposition. While for the powder, it can be formed

by spray-drying technique. Furthermore, fibers can be formed

by electro-spinning, blow spinning, pulling-down and pull-

ing-up techniques. For the patterns, many techniques can be

used to fabricate the patterns such as UV patterning, electron-

beam lithography, X-ray direct writing techniques and etc.

By allowing the sol to change into gel through polycon-

densation, dense product, powders, monoliths, other forms

can be produced. Condensation is a reaction which occurs

when two metals hyroxides (M–OH ? HO–M) combine to

give a metal oxide species (M–O–M). The reaction forms one

molecule of water. It is a process to induce the formation of

small solids particles or cluster in a liquid (1–1,000 nm).

Then, when the gel has been shaped to the finally desired

shapes, the semi-products are going to heat treatment process

in which to create a strong bonding between the particles and

remove the solvent left in between particles.

2.4 Combustion

Besides hydrothermal method, combustion method also

an important technique for the synthesis and processing

of advanced ceramics, catalysts, composites, alloys,

intermetallic and nanomaterial. Combustion synthesis in

solid-state chemistry is also known as metathesis reactions

or self-propagating high-temperature synthesis (SHS) [89].

Generally, the high temperature is achieved not by placing

the samples in a furnace but rather by using the heat

generated by the exothermic chemical reaction itself.

Combustion synthesis or combustion method can be char-

acterized by fast-heating rates, high temperatures and short

reaction times. Those indicators are quite similar to the

hydrothermal except pressure used in hydrothermal

method. There are two methods of combustion; (1) solid

state combustion and (2) solution combustion.

Solution and solid state combustion has slightly differ-

ent in terms of the initial form of precursors only. Solution

state combustion is combustion of a mixture of solvent and

precursor in a chamber. Generally, the mixture is brought

to boils until it ignites. Once the self-sustaining and rather

fast combustion reaction occurs, a dry, crystalline and fine

oxide powder will be produced. The common metal pre-

cursor used is metal nitrate due to its high oxidization

ability. The source to ignite the combustion process is

organic fuel (glycine, urea, carbohydrazide or citric acid);

reducing agents). A strong exothermic reaction is occurred

during the process in which leads to the formation of

nanopowder at substantially lower temperature than

otherwise required. Usually, the flames produced from the

combustion can reach temperatures that exceed 1,500 �C

due to the large amount of gases formed at initial [90].

Frequently, nitrates are chosen as metal precursors. This

is because the NO3- groups are oxidizing agents. This

group also has high solubility in water, thus allows a suf-

ficiently high solution concentration. Furthermore, organic

compound has been favored as fuel for combustion. It is

due to the high availability of the sources in the market and

cheap. The most convenient fuel is urea. The organic fuel is

the source of C and H which in combustion the CO2 and

H2O will be formed for heat releasing. They are also

formed complexes with metal ions facilitating homoge-

neous mixing of the cations in solution.

2.5 Nanoparticles via organized membranes

As mentioned in the previous section, surfactants or poly-

meric surfactants are used to stabilize the colloidal particles

by controlling the interface force. Utilization of self-

assembled membranes such as micelle or microemulsion

can be an alternative approach to synthesis stabilized and

size controlled nanoscale particles. Microemulsion is a

thermodynamically stable dispersion of two immiscible

liquids with the assistance of an emulsifier or surfactant. It

is formed from many unimers. The unimer has amphipathic

property in which the head is hydrophobic; like water,

while the tail is hydrophilic; dislike water (Fig. 2).
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Basically, there are three types of micelles; (1) normal

micelle, (2) reverse micelle and (3) bilayer lamella

(Table 4). The hydrophobic hydrocarbon chains of normal

micelle are towards the interior of the micelle and leaving

the hydrophilic groups in contact with aqueous medium.

While for the reversed micelle, it is formed in non-aqueous

medium in which the hydrophilic groups faced towards the

interior of micelle. Normally, most of the precursors used

are easily dissolved in water medium compared to oil

medium. Thus, reversed micelle has been used widely

rather than normal micelle. Surfactants as self-assembled

structures can act as reactor chambers to synthesis nano-

particles by controlling particle nucleation, growth, size

and shape of the particles (in a confine space). In this

synthesis, the reaction is done only inside the micelle in

which the available reactant is in the desired amount. When

the reactants are completely consumed, the process will be

automatically terminated.

As shown in Fig. 2, the amphipathic or surfactant

structure consists of two parts; (1) head: hydrophilic and

(2) tail: hydrophobic. They are usually self-assemble at air/

aqueous solution or hydrocarbon/aqueous solution inter-

face when the surfactants are dissolved into a solvent

(water or oil). Then the hydrophilic part is turned towards

the aqueous solution. Micelle will be formed when the

concentration of the surfactants or block polymers exceeds

a critical level. The surfactant will reside at the interface

separating hydrocarbon and aqueous solution. These

interactions allow the molecules to self-assemble into

membrane structure with minimum energy configuration.

The micelle or microemulsion can be formed in two ways;

(1) direct and (2) reverse. Direct reaction is happened when

oil is dispersed in water, (o/w) colloidal system while the

reverse reaction is vice versa. Direct reaction is a cost

effective process and environmental friendly but limited

precursor can react in oil core. However, reverse reaction

has been intensively studied because various metal salts

and organometallic compound can stay in aqueous solution

through hydrolysis.

In order to prepare the nanoparticles, two microemul-

sions are prepared separately by mixing each precursor

with surfactant, oil and water until the systems become

homogeneous (transparent liquid). Then both microemul-

sions are mixed together. During vigorous stirring, the

micelles or reverse micelles collide with each other as a

result of Brownian motion, which lead to the formation of

transient dimers with oily or aqueous channel between two

micelles or reverse micelles. The channels provide

exchange opportunities of precursors in different micro-

emulsions in which the exchange process determines the

particle growth rate. After the breakup of dimers, the

micelles or reverse micelles containing both precursors

become independent nanoreactors in which the chemical

reactions take place rapidly, thus leading to the nucleation

of nanoparticles when reactants supersaturate the nanore-

actors. The particles are either filtered or centrifuged and

then washed with acetone and water to remove any residual

oil and surfactant molecules adsorbed on the surface of

nanoparticles. Subsequently, the powders are calcined to

form the final product.

3 Flow of sol–gel (thin films formation)

3.1 Types of functional solutions

Thin film can be deposited on the selected substrates

through sol–gel process [92]. As mentioned in Sect. 2.3,

thin films can be produced by spin-coating, dip-coating and

etc. These techniques require catalyst solution to achieve

the desired deposition products. Alcoholic solution con-

taining metal salts is the most common catalyst solution

[25, 93, 94]. Alcohol is one type of solvent that can dilute

the metal salts well (i.e. methanol, ethanol). It is also has

high volatility in which very helpful in the formation of

thin film during the deposition process. Among the avail-

able metal catalyst solution, metal nitrate and metal acetate

Head : 
hydrophilic

Tail: 
hydrophobic

Fig. 2 Schematic diagram of

amphipathic structure

Table 4 Types of micelles [91]

Types Structures Sizes

Spherical/normal

micelle

3–6 nm

Reverse micelle 3–6 nm

Bilayer lamella 30–60 nm in

diameter
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have been favored as the catalyst precursors due to their

high solubility in alcohol (Table 5).

3.2 Thin film preparation

3.2.1 Spin coating

Spin coating has been widely used in microelectronics

industry to produce photoresists; the thickness typically in

micron range. This process is one of the famous processes

for thin film deposition such as electrodeposition [107],

spray pyrolysis [108], chemical bath deposition and dip

coating technique [59]. However, the thin film production

in nano range which is less than 100 nm is still remained

largely unexplored. Thin films (\100 nm) is favored for

catalyst thin films for the purpose of CNT growth. It is

expected that if that thickness of film is achieved, the

particles will be formed in the size of several nano-meter. It

is also expected that the CNT grown on the particles will

have the same or less diameter as the catalyst particles.

Since spin coating has a potential to control the thickness

of thin films by controlling the spin speed, spin duration

and angular acceleration, thus, this method has been started

to be explored [109, 110].

The principle of spin coating method is basically the

solution precursor (metal precursors dissolved into solvent)

is deposited on the cleaned substrate. According to a group

of researchers, the substrate is rapidly accelerated accord-

ing to the desired spinning rate [111]. During the spinning

process, due to the centrifugal force, the deposited solution

flows radially and it cause the excess is executed of the

edge of substrate. This phenomenon will cause the depos-

ited solution to form thin film when the equilibrium

thickness is obtained due to solvent evaporation [111, 112].

The mathematical modeling also can be used to explain the

principle of spin coating process and modify the controlled

parameter in order to obtain the desired thickness of thin

films. However, it is not covered in this area of discussion.

The spin coating process is basically consists of four steps,

as illustrated in Fig. 3.

a. Solution dropping: The catalyst precursor dissolved in

solvent is dropped on the center of the cleaned

substrate, initially at rest.

b. Spin-up: The centrifugal force allows the deposited

solution to flow radially on the substrates.

c. Spin-off: The excess solution at the edge of the

substrate is executed in drops and leads to thin the film

layer. The execution of the excess solution is decreas-

ing throughout this step because as the thickness of the

layer is decreased, the viscosity of the solution will be

increased due to the high flow resistance.

d. Evaporation: It occurs along the spinning process to

remove the solvent and thinning the film especially

during the spin-off step till the end.

By depositing a colloidal solution (a mixture of PEG-

400-ethanol-iron nitrate) dissolved in 50 % ethanol on a

15 mm2 of silicon wafer (1,000 Å thermal oxide layer)

with the spinning condition of 8,000 rpm spin speed, 30 s

spin duration and 300 rpm/s angular acceleration, a group

of researchers was able to obtain a uniform size distribution

of iron particles with the average particle size of 5.08 nm

[57, 95]. They were also able to confirm the SWCNT

growth on the thin film from the obtained intensity ratio of

the G- to D-band (IG/ID) of Raman spectrum with the

average ratio of over 10. Meanwhile, when the spin speed

used was 5,000 rpm, the size of cobalt catalyst particles

obtained was 14 nm [113]. It shows that the selection of

spin speed will affect the size of particles formation. It is

also found that the spin duration of 30 s has been used

frequently in this area of research [57, 95, 114]. Hence,

proper selection of the parameter is very crucial to deter-

mine the size of catalyst particles.

Table 5 Summary of metal nitrates and metal acetates for CNT

growth

Functional solution Metals Type of CNT Ref

Nitrates (NO3
-) Fe SWNTs [95, 96]

Nitrates (NO3
-) Co SWNTs [97, 98]

Nitrates (NO3
-) Ni MWNTs [99, 100]

Acetates (C2H3O2
-) Fe MWNTs [101]

Acetates (C2H3O2
-) Co Aligned-SWNTs [102–105]

Acetates (C2H3O2
-) Ni MWNTs [106]

ω
ω

(dω/dt)≠0

(a) (b)

(c) (d) 

Fig. 3 Four steps of spin coating process
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3.2.2 Dip coating

Dip coating is an ideal technique for the translation sym-

metric substrates. The process is simply placed the sub-

strate in the solution and by controlling the velocity

(usually constant), the film is uniformly covered the

immerged surface during the withdrawn substrate from the

solution. This film is left drying for some minutes to allow

the sol–gel transition to take place. The available withdraw

velocities are from 1 up to 50 cm min-1. The film thick-

ness increases with increasing withdrawal rate and for a

given withdrawal speed the film thickness increases with

an increase in oxide content. The thickness coating by this

process is usually in range of 50–500 nm. The thickness

can be calculated by the Landau–Levich equation [115].

The steps involved in dip coating process are illustrated in

Fig. 4.

h ¼ g � tð Þ2=3

c1=6
LV q � gð Þ1=2

ð1Þ

h = coating thickness; v = viscosity; cLV = liquid–vapour

surface tension; q = density; g = gravity.

The uniformity of the thin film produced by this process

can be controlled. However, the process is quite slow

compared to spin coating process. A film layer with the

thickness of 96 nm has been obtained from the deposition

of solution (cobalt acetate tetrahydrate and ethanol) by dip

coating with speed of 4 cm/min [58]. In other paper, the

same drawing speed has been used and the coated substrate

has been successfully grown the SWCNTs with the diam-

eter range of 0.8–1.4 nm [59].

3.3 Heat treatment

Heat treatment is the final step for catalyst particles for-

mation. It is a heating and cooling process in which will

turn the thin film form into particles form. There are sev-

eral parameters that will affect the size of catalyst particles.

Since the small particle size is very important towards CNT

growth, thus every factor that will affect the value is taken

into concern. For the analysis purpose of the uniformity of

catalyst distribution along the substrate surface, it is helpful

to compare the roughness value with the average film

thickness. If the roughness is considerably smaller than the

thickness, the catalyst film is likely to be continuous. The

quality of the thin films by sol–gel spin coating process and

crystallization was influenced by heating temperature

[116]. Magnetic elements, such as iron, have a strong

tendency to combine at high temperatures because of their

magnetic properties and their high specific surface energy

[117]. The particles that were close to each other coalesced,

forming larger particles with an elliptical shape [57].

The stability and the uniformity of the cluster play an

important role in formation of CNTs and also their prop-

erties. Cluster combines at high temperature of reduction or

oxidation and reaction when salt are treated to obtain the

metal catalyst [118]. With the suitable temperature, the

large agglomeration of iron salt can be prevented. The

diameter of CNTs could be controlled directly by the size

of the catalytic nanoparticles [119]. During the particles

formation, the surface cracks opened up and expanded to a

larger size, meanwhile, the widths of cracks increased with

increased temperature. Then, after heat treatment, the sur-

faces of the splats became rougher with formation of new

tiny particles. The roughness of particles increased with

increased temperature. Cracks widening might be related to

the volume change associated with the transformation of

amorphous to crystalline, changing a loose packed amor-

phous structure to a close packed crystalline structure

[120]. The illustration of heat treatment process is shown in

Fig. 5.

Dipping Wet layer formation Evaporation

Fig. 4 Stages of the dip coating process
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Pre-heating zone Particle formation zone Cooling zone

Fig. 5 Schematic diagram of heat treatment process
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Table 6 Summary of analysis on cobalt and iron catalyst

Methods Description Findings Ref

XRD Using Cu Ka radiation

(k = 1.5406 Å)

The average particle sizes of Co3O4 thin film were calculated

using the full width at half maximum (FWHM) of (311) peak

from the Scherrer’s method:

D ¼ Ck=b cos h

b: full width at half maximum

D: crystallite size,

k: wave-length

C: correction factor = 0.90

[103]

The phase purity of the samples is examined using Cu-Ka
radiation, 40 mA and 45 kV

XRD of SWNTs is characterized by a small relative intensity of

the peak located at 2h equal 26.097�
[58]

SEM Model: JSM-6380

High resolution SEM operated at 20 kV in KSU

The resolution of the used SEM is not high enough to show the

detailed features of the surfaces

[58]

Model: JEOL-JSM-6360, Japan, operated at 20 kV The surface morphology for all films was nearly the same with

slight increase in grain size

The film surface looks smooth and composed of very fine

elongated particles smaller than 80 nm in length connected by

two–three spherical grains of about 40–45 nm in diameters

Overgrowth of clusters is clearly seen

[103]

FESEM The study was performed using a Gemini LEO 1525

instrument operating at 15 kV

FESEM images of the CNTs grown on the wafer with five

different absolute ethanol to PEG ratios and only diluted

ethanol after 30 min of methane CVD

Dense CNT arrays were grown when colloidal solutions with 0,

25 and 50 % ethanol were applied

CNTs found were larger in diameter and carbon nanocapsules

were visible when colloidal solutions

[119]

FESEM (ZEISS SUPRA 40) High aspect ratio nanostructures are observed on the two

catalyst film surfaces

[121]

TEM TEM investigation was carried out using a JEOL 2010F

operated at 200 kV and equipped with a Gatan imaging

filter (GIF) system

Single-walled CNT was not found in the sample

Too large catalyst particle to form single-walled CNTs

Three kinds of multi-walled carbon morphologies were

observed:

Lengths from about 0.1 mm to a few microns,

Tipped with catalyst particles partially exposed to environment

[122]

20 kV Tecnai-G2 F-20 model of FEI.

Device resolution from 0.14 to 0.18 nm

maximum thermal current is greater than 100 nA

There is 0.5 nA or larger current in 1 nm probe.

The energy distribution is around 0.7 eV

CNT diameter is nearly 10 nm

The appearance is darker in the picture.

The CNTs have diameters between 1.5–5 nm and also are

transparent

[96]

AFM Scan size: 0.5, 1.0 and 2.0 mm.

Root mean square (rms) and peak-to-valley roughness

values

The oxide surface roughness was measured to be quite small,

not exceeding 0.1–0.2 nm

[123]

MPF3D Asylum Research with a cantilever (ArrowTM

NC, Nanoworld) operated in the tapping mode.

Scan rate: 1 Hz

Scan domains were varied from 2 9 2 to 1 9 1 lm,

while maintaining the resolution at 512 9 512

To evaluate the surface roughness

RMS value increases from 0.14 nm at 600 �C to 0.69 nm at

800 �C, indicating the presence of more nanoclusters on

surface after reduction at higher temperatures

[124]
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3.4 Characterization method

There are many characterization methods can be employed

to analyze the properties and morphology of the particles

obtained. Surface morphology can be studied by scanning

electron microscopy (SEM), field emission scanning elec-

tron microscopy (FESEM) and transmission electron

microscopy (TEM). Besides, the particle size can be mea-

sured either by the obtained morphology or X-ray diffraction

(XRD). Commonly, the important information that is needed

to measure and study is the particle size, particle distribution,

uniformity and thickness of the thin film. Table 6 summa-

rized the analysis for cobalt and iron catalysts.

4 Summary

The optional processes to produce nanoparticles have been

viewed. The available processes are wet chemical,

mechanical, form-in-place and gas-phase. Out of those

available processes, wet chemical process is the most

suitable process to deposit the selected metal catalysts on

the selected substrates for CNT growth purpose. Since the

thickness of the deposited catalyst thin film is the matter of

concern, thus spin coating is the most suitable method to

achieve the desired thickness of thin films. The thickness of

thin films is inversed to the spin speed, spin acceleration

and duration of spin. The particles are formed during the

heat treatment process. Hence, the pre-heating and heating

temperature must be taken into account. The particle size

and shape will be affected by the employed temperature.

Since it is a cost effective process, perhaps the spin coating

method can be used widely to deposit metal catalysts for

CNT growth purpose. In conclusion, solution process is a

good alternative technique for metal catalyst thin film

deposition and particles formation towards CNT growth

due to low cost of production, simple equipment, low

energy consumption and can be conducted in ambient

temperature.
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