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Nowadays, natural fibres composites are widely investigated and acknowledged as materials which
minimise carbon dioxide produced in all phases of their interaction with environment compared to glass
fibres composites. However, the fibres selection is still based on economic factors and local availability
rather than dependency on a systematic approach. Therefore, this paper suggests a study on how kenaf
fibres is verified compared to other natural fibres that could potentially be used as an alternative source
of friction material (FMs) using the Weighted Decision Matrix (WDM) approach. The method of selection
is to consider the impact on the environment and human health. An exhaustive review of potential
natural fibres and friction materials is presented and suggested for future development direction. The
result shows that WDM method verifies the suggested suitability of kenaf fibres.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In order to reduce weight, there are two important methods.
One of these methods is to redesign the selected parts to optimise
their structure. The other method is to replace traditional materials
with lightweight materials such as aluminium alloy, polymer, or
composites [1,2]. Following the Life Cycle Analysis (LCA) in recent
years, natural fibres composites are widely investigated and
acknowledged as materials which minimise carbon dioxide
produced in all phases of their interaction with environment
(pre-production, production, service, end-of-life) compared to
glass fibres composites which minimise noise production [3–5].

The advantage of using natural fibres is the potential that it
could lead to a weight reduction of 10–30% [6] due to low density
that causes economical fuel consumption. This enhances the possi-
bility for manufacturers to consider to expanding the use of natural
fibres in their new products.

With regards to recycling concerns, manufacturers are driven
by European Union regulations (ELV) to consider the environmen-
tal impacts of their production and possibly shift from
petroleum-based to agro-based materials [7,8]. However, currently
conventional reinforcing materials used, such as glass fibres, car-
bon fibres, and aramid fibres, are not biodegradable, possess poor
recycling properties, are health risks if inhaled, are of high density
and effect high energy consumption in the preparation of its prod-
ucts, and cost more to be manufactured [9].

Recycling automotive interior parts is the most challenging
phase due to the current petro-based polymer composite struc-
tures which leave only two disposal options of either landfills or
burning. A possible solution for this problem is to make interior
parts using one single polymer or biodegradable materials which
are less harmful to the environment versus petro-based polymer
composites that are found to improve the mechanical properties
of biodegradable plastics while reducing the overall costs of the
prepared materials [10].

Research demonstrates that the use of natural fibres, such as
kenaf, ramie, flax, hemp, and cotton for automotive composite
applications, has many advantages both technically and economi-
cally [11]. These bio-based composites enhance mechanical
strength and acoustic performance, possess less weight, lower
production cost, their auto interior parts are biodegradable, but
currently information on actual performance using natural fibres
is limited with respect to FMs (lining shoes).

Natural plant-based lignocelluloses fibres are very attractive
reinforcing materials [12]. The major drawbacks of natural fibres
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compared to synthetic fibres are their non-uniformity, variety of
dimensions, and their mechanical properties [13]. High moisture
absorption that could cause instability in mechanical properties
and loss of dimensional stability is another disadvantage [14].
Most composites based on polymeric fibres swell due to moisture
absorption that leads to alterations in weights and dimensions of
the composite produced, as well as in strengths and stiffness.

Another limitation of natural (plant) fibres is the limited
research conducted on thermal stability. They undergo degrada-
tion when processed beyond 200 �C when the choice of using poly-
mer matrix is included [15]. Disadvantages of natural fibres
reinforcement generally solved by fibres surface alkaline treatment
or matrix modifications by the removal of the carboxyl group
[14,16–20]. The result finds alkaline treatment improves the
mechanical properties of natural fibres, especially in relation to
their strength and stiffness [21–23].

In spite of the growing interest for these materials, fibres selec-
tion is still based on economic factors and local availability rather
than dependency on a systematic approach. This study shows the
potential selection of natural fibres using data collected and verifi-
cation via the Weighted Decision Matrix (WDM) approach with
respect to FM properties and design specifications.

From the earlier studies of Mustafa et al. [24], selection of pos-
sible alternative friction materials is developed using CES Edupack.
The present study shows how to verify kenaf fibres that could
potentially be used as an alternative friction material using the
WDM approach. This paper is structured according to the relation
of potential natural fibres selection; requirements for automotive
materials; collected material properties data; justification and
verification by the WDM method [25].
2. Kenaf fibres

Kenaf, as shown in Fig. 1 [26], is the stems of plants, genus
hibiscus, and the family of malvaceae called hibiscus cannabinus.
Advantages of kenaf is less water required to grow due to matured
cycle of kenaf about 150–180 days with an average yield of
1700 kg/ha [27]. Kenaf are cultivated in some countries such as
Bangladesh, Australia, Thailand, parts of Africa, Indonesia and
Malaysia. Kenaf is a plant that can be grown under a wide range
of weather conditions, for example, it grows to more than 3 m
within 3 months, even in moderate ambient conditions with stem
diameters of 25–51 mm [28].

Kenaf plant is composed of many useful components (e.g.,
stalks, leaves, and seeds) and within each of these, there are vari-
ous usable portions (e.g., fibres and fibres strands, proteins, oils,
and allelopathic chemicals) [29]. Recently, there are increasing
new crop of kenaf fibres in the United States which shows good
Fig. 1. Kenaf (Hibiscus cannabinus) [26].
potential for usage as reinforcement in composite products. The
latest innovation in decortications which separates core from the
bast fibres combined fibres shortages, have gained the interest of
utilising kenaf as a fibres source [30].

Kenaf fibres also have a potential as reinforced fibres in thermo-
sets and thermoplastic composites which resulted low density,
non-abrasiveness during processing, high specific mechanical
properties and biodegradability [31]. So, combining kenaf fibres
with the thermoset material provides a strategy for producing
advanced thermoset composites that take advantage of the
properties of the types of material [32]. Kenaf fibres categorized
as natural fibres which are biodegradable, an environmentally
friendly crop and have been found to be important source fibres
for composites and other industrial applications [31,33].
3. Automotive friction materials

Friction materials in an automotive brake system function by
converting the vehicle’s kinetic energy into heat energy. Currently
two types of automotive brake friction that available for use for
lightweight car materials that are semi-metallic and non-asbestos
organic [34,35]. Generally, an automotive brake FM (i.e. for brake
shoes and brake pads) is fabricated with a combination of several
materials of unique complex compositions that are known as bind-
ers, reinforcing fibres, fillers, and friction modifiers [36,37]. Several
studies indicate and suggest desirable performance for automotive
brake friction materials includes stability and a high friction coef-
ficient (l), reduced vibration (judder) and noise, being environ-
mentally friendly, resistant to heat, wear, fade, oxidisation,
thermal properties, cracking, water, oil, and does not damage the
brake disc, with the capability of being manufactured at reasonable
cost [34–36,38].

Asbestos is known as a major constituent used in the composi-
tion of FMs, but is a proven human carcinogenic. Therefore, asbes-
tos is banned by the Environmental Protection Agency (EPA) since
1992 [39], and drives researchers’ increasing interest in developing
of potential NAO materials with safer alternatives [34,40–44].
Based on the collected data, many researchers chose natural fibres
[45] as alternatives to overcoming sustainable issues of being envi-
ronment friendly, fully biodegradable, abundantly available,
renewable, cheap and have low density but become disadvanta-
geous in wet conditions due to high hydroxyl content of cellulose
that potentially absorbs water that generally effects mechanical
properties of the composite in wet conditions [46] so modification
needs to be performed to overcome this problem for effectiveness
and functional NOA produced [47].
4. Materials selection

Referring to Fig. 2, performance and effectiveness of a designed
product are affected by selecting the best option of capability to
provide the necessary performance in service and processing
method. Therefore caution must be exercised when selecting
potential materials selected to prevent leading to excessive life-
cycle cost and failure to produce. Generally, materials that are
selected based on performance characteristics with yields to bear
the given load or force applied with minimum or better properties
and better characteristics such as less cost and business consider-
ation, result in less impact on the environment and a better life
cycle [36].

4.1. Requirement of the materials in automotive

Ghassemieh [48] suggested that materials applied in the auto-
motive industry must pass several criteria before being approved.
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Fig. 2. Relationship between materials selection and design.
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The criteria suggest alignment with regulations and legislation for
the environment, safety concerns and meet some of customers’
requirements. There are many conflicting factors that require con-
sideration, therefore optimising a balanced solution that meet
before the design is proven successful for service.

a. Lightweight

Minimises greenhouse gas production and improves fuel
efficiency for vehicles. For every 10% of weight reduced from
a vehicle, total weight of improved fuel economy is recorded
at 7%, leading to a kilogram of weight reduction in a vehicle
per 20 kg of carbon dioxide reduced [49].

b. Cost

Cost is one of the most important variables which analyses
and determines whether any new material selected can be
included in vehicle components. Cost consists of three vari-
ables that are cost of raw material, manufacturing cost, and
cost to design and test.

c. Safety and crashworthiness

The ‘‘crashworthiness’’ of the structure in vehicle is the abil-
ity to withstand and survive impact energy applied for the
crash test [50].

d. Recycling and life-cycle considerations
Eco -Aware Lighweight Automotive Friction 
Materials

Enviromental 
Friendly

Safe to disposal

Non -toxic

Produce less Energy 
and CO2

Cost Performance

Strength

Stiffness

Functional even at 
high temperature

Durability on wet 
condition

Lightweight

Fig. 3. Objective tree.
Protecting the environment increases awareness of pollution
and reduced impact of CO2 emissions’, with ‘recycling’ being
considerations before inclusion into the vehicle components.

5. Natural fibres selection requirements

Automotive brake friction materials are a favourable function
on various crucial roles such as safety performance, including stop-
ping distance and time, resistance to wear between disc and lining
pad, and vibration with minimised noise production when operat-
ing [51]. It is strong enough to absorb and withstand brake torque
even at high temperatures and various environmental conditions
[52]. Effective performances with high resistance follow life-cycles
as desirable characteristics for prolonged periods of maintenance
to reduce cost and change more frequently. Heat produced during
braking and for normal operation record temperature on the rotor
range from 200 �C to �250 �C, and 370 �C for the front wheel disc
pads [53–55] of passenger cars. Several studies show typical pres-
sure applied, ranging from 0 to 4 MPa and where safety modern
brake systems are designed with the capability to withstand up
to 10 MPa [56].

Literature reviews indicate that to develop an effective and
functional friction material, a balance of key factors is necessary
to satisfy yield of acceptable performance, cost and environmental
friendliness. It is also proven that the right composition of friction
material formulation and weight percentages of elements or mate-
rials included per total weight can significantly affect changes on
physical, mechanical and chemical properties of friction materials
developed [57,58]. Earlier researchers conclude that there is no
simple correlation between friction and wear properties of friction
material, with the physical and mechanical properties [59–61].

With the same objective, Chan and Stachpwiak [34] found
numerical studies for friction materials developed through trial
and error, coupled with previous experiences of the manufacturer
for optimisation and evaluation performance of friction materials
investigated using mathematical methods, such as grey relational
analysis [62] and the single-criterion extension evaluation method
[63]. The relationship between correct combination and composi-
tion of materials and particle sizes proves to enhance the tribolog-
ical performance of the braking interface [64,65]. All the criterion
and specifications are detailed by Mustafa et al. [24] following all
the consideration when CES Edupack selection material approach
is suggested by Ashby and Cebon [66].
6. Justification and verification natural fibres with WDM

A direct example is used for the WDM selection approach to
choose alternative materials that demonstrate data found by Mus-
tafa et al., [24], including collected materials data from CES univer-
sal material properties database and collected reviews. WDM
method is where all the matrix decision is summed to ‘1’ by Eq.
(1) shown below and suggested by George and Schmit [25]. n is
the number of evaluations and W is the weighting factor. WDM
methods are approached by determining: the weighting factor
with respect to performance and specifications of FMs; objective
tree; and matrix decision table to select the most suited natural
fibres.

Xn

i¼1

Wi ¼ 1:0 and 0 6Wi 6 1 ð1Þ

There are steps recommended when following this method. Starting
with identifying which criteria is the most important to be achieved
based on the design requirements to determine which weighting
factor is used. The details illustrated in Fig. 3 include environmental
effects, cost, performance and lightweight material selected. Sub-
categories for environmental impacts include safe disposal, and
non-toxic materials with less impact on the environment. Sub-cat-
egories for performances are followed by strength, including stiff-
ness, and functionality at various temperatures and conditions.
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Fig. 4 shows the completed objective tree after applying the
weighting factor for each criterion. Total sum of matrix values at
each level follows Eq. (1) with the higher matrix showing the most
considerable change. For example, O11 + O12 + O13 + O14 = 1.0 and
O111 + O112 + O113 = 1.0, repeated for each level. For this study,
the environmental, cost, performance and lightweight properties
are all of equal standing, so the same weight factor are suggested
for these categories. For sub-categories such as performance, these
characteristics are desired performances for automotive FMs to be
functional when produced and applied to the brake system. It is
also environmentally friendly by producing less energy and CO2

with respect to eco-aware properties.
After step 1 and 2 are finalised, the decision matrix table can be

constructed as shown in Table 1 where all the criteria are being
analysed and calculated in order to identify which material per-
forms the best. The weight factors of 11-point scales are used to
solve this selection. Weight factor is derived through the objective
tree which shows an example of strength: O131 = 0.25 �
0.25 � 1.0 = 0.0625, while scores indicate the desired outcome for
this study suggests automotive FMs [38]. The rating for each
concept of each design criterion is obtained by multiplying the
score and weight factor. Thus, the rating for strength is
0.0625 � 7 = 0.4375.

Based in Table 1, the WDM indicates that the most suitable
material is kenaf fibres which can be used on eco-aware light-
weight automotive friction materials. According to the result, the
Table 1
Weighted Decision Matrix for eco-aware lightweight automotive friction materials.

Design criterion Weight
Factor

Units Kenaf fibres Jute fi

Value Score Rating Value

Strength 0.0625 MPa 361 7 0.4375 277
Stiffness 0.0625 GPa 27.2 7 0.4375 27.9
Density 0.25 kg m�3 1190 10 2.5 1400
Maximum service

temperature
0.0625 �C 410 5 0.3125 410

Durability with water 0.0625 Acceptable 8 0.5 Accep
Toxicity 0.05 Non-toxic 10 0.5 Non-t
Price 0.25 MYR (kg) 1.15 9 2.25 2.26
Energy and CO2 footprint 0.15 % change �39, �44 9 1.35 �31,
Safe for disposal 0.05 Yes 9 0.45 Yes

Total 8.7375

Indicator: totally useless solution 0, very inadequate solution 1, weak solution 2, poor
drawbacks 6, good solution 7, very good solution 8, excellent 9, ideal solution 10. (Sourc
value.
material also exhibit promising properties of being the lightest,
cheapest and highest reduction percentage of embodied energy
and CO2 compared to asbestos and other natural fibres.

In Malaysia, kenaf is a new type of agriculture crop which can
produce fibres of excellent strength and has great potential to be
used as a raw component for non-woven material [67]. Advantages
of kenaf are that they are easy to grow within a short time, have
high productivity, possess pest control, and have high adaptability
to weather and soil.

Suggested from collected reviews regarding kenaf fibres; it
needs treatment before it is fabricated for surface treatment result-
ing in higher strength and flexibility compared to untreated natu-
ral fibres. Fig. 5 shows the untreated and treated kenaf fibres that
will be used in this study. Kenaf also acknowledges the capability
to absorb CO2 at a significantly high rate; exhibits low density; is
non-abrasiveness during processing; has high specific mechanical
properties (comparable to jute, ramie, and asbestos), and is biode-
gradability. Recently, kenaf uses raw material alternatives to the
wood in pulp and paper industries, in the textile industry [68–
72] could be utilised as reinforcement material for polymeric com-
posites as replacement for fibres glass. The disadvantage of these
natural fibres is a high moisture absorption which may be over-
come by imbedding the fibres in polyolefin matrices.

Based on Edeerozey et al. [73], the increase in tensile strength
using kenaf fibres treated with NaOH is due to the improvement
in the interfacial bonding and additional sites of mechanical inter-
locking which promotes more resin/fibres interpenetration at the
surface [74]. Surface adhesion characteristics are encouraged by
removing natural and artificial impurities, thereby producing a
rough surface topography [75]. It has been reported that alkali
treatment leads to fibres fibrillation, breaking down of fibres bun-
dles into smaller fibres, increasing the effective surface area avail-
able for contact within the matrix [76].

Magnificent results are recorded for treated composites, in
terms of interfacial adhesion between kenaf filler and the polymer
matrix. Recently, Maleic Anhydride (MA) grafted Polypropylene
(MAPP) used widely in kenaf–PP systems. Interestingly, Sanadi
et al. reported a significant improvement in terms of tensile and
flexural properties of kenaf–PP composite, when incorporating it
with MAPP as a coupling agent [77]. They found that coupled com-
posites, showing a superior tensile strength of up to 74 MPa, shows
a contrary trend where the uncoupled composites demonstrate
some very interesting behaviour, with tensile modulus higher than
that of any coupled systems at identical fibres loadings. The use of
kenaf fibres reinforces composites which can help to generate jobs
in both rural and urban areas in addition to helping reduce waste
for a healthier environment.
bres Ramie fibres Asbestos

Score Rating Value Score Rating Value Score Rating

7 0.4375 469 8 0.5 3140 10 0.625
7 0.4375 88.7 8 0.5 165 9 0.5625
8 2 1500 7 1.75 2500 4 1
5 0.3125 410 5 0.3125 914 9 0.5625

table 8 0.5 Excellent 9 0.5625 Excellent 9 0.5625
oxic 10 0.5 Non-toxic 10 0.5 Toxic 0 0

5 1.25 6.04 1 0.25 5.78 3 0.75
�37 9 1.35 �40, �40 9 1.35 Datum 1 0.15

9 0.45 Yes 9 0.45 No 1 0.05

7.2375 6.175 4.2625

solution 3, tolerable solution 4, satisfactory solution 5, good solution with a few
e: CES universal material properties database). The bold means the most significant



Fig. 5. Photo of untreated and treated kenaf bast fibres.

A. Mustafa et al. / Materials and Design 67 (2015) 577–582 581
7. Conclusions

Selection for an alternative material to asbestos is included as
an automotive friction material, performed using the WDM
method based on a formulated design and its requirements.
Through all of the criteria and the constraints, kenaf fibres are
identified as being the most suitable material, which pass all the
design requirements. The results show promising potential for
kenaf fibres by capability on eco-aware with lower impact to the
environment, is the lightest and the cheapest compared to other
natural fibres.

Statement of originality

In spite of the growing interest for the natural fibres, fibres
selection is still based on economic factors and local availability
rather than dependency on a systematic approach. Thus, this study
shows the potential selection of natural fibres using data collected
and verification via the Weighted Decision Matrix (WDM)
approach with respect to friction materials properties and design
specifications.
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