

Faculty of Information And Communication Technology

ESTIMATION TECHNIQUE FOR SOFTWARE PROJECT PLANNING

Sobah A/P Periasamy

MSc. in Information & Communication Technology

2010

ESTIMATION TECHNIQUE FOR SOFTWARE PROJECT PLANNING

SOBAH A/P PERIASAMY

A thesis submitted in fulfillment of the requirements for the degree of Masters of Science in Information & Communication Technology

Faculty of Information And Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2010

RECOMMENDED READING MATERIALS

This thesis gives an account of the research undertaken by the author. Some of the material contained herein has been presented in the form of the following publications:

Periasamy S, Nanna S H (2007), Crystal Method for Accurate Software Duration Estimation, International Conference Electrical Engineering ICEI2007, Malacca, Malaysia pp. 563-569

Periasamy S, Nanna S H (2007), Competency Measurement System for software developers, Regional Conference on Computational Science and Technology, RCCST-2007, Sabah, Malaysia.

Periasamy S, Nanna S H (2007), Effective Human Resource Leveling Model for IT Projects, Regional Conference on Computational Science and Technology RCCST-2007, Sabah, Malaysia.

Periasamy S, Nasina J, Mohammad I.D., (2004), An Expert System for Human Resource Leveling in Information Technology Projects, *Journal of Technology Management and Enterpreneurship*, KUTKM-2004, Melaka.

DECLARATION

I declare that this thesis entitle "Estimation Technique for Software Project Planning" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature: Whello

Name: SOBAH AIP PERIASAMY

Date: 01-04-10

DEDICATION

To Mr. Rama Chendra, thank you for showing me the many facets of scholarship. You were the light at the end of a long, dark tunnel. I would also like to dedicate this work to Mr. Kugen and Mr. Reelen, for all your support, without you two I could not have completed this research.

PREFACE

An effective estimation and resource allocation is important for the timely completion of projects, because of the difficulty in reducing project duration without reducing its components. Managers can have a large effect on resource utilization even when the total quantity of resources (e.g., the number of developers) is fixed. Resource competency improvement, policies for allocating and leveling resources among specific development activities can be used to speed up projects. The current work focuses on software project estimation, human resource allocation, human resource leveling, and developer competency measurement, as a means of reducing project duration.

In general the resource allocation and leveling policies associated with the dynamics of product development delay and the rework. How should project managers accurately measure development time and allocate resources or level resources to shorten project duration?

I hope that the user will share my excitement on the subject of new methods in software project planning on project estimation, resource allocation resource leveling, and competency measurement.

ACKNOWLEDGEMENTS

I am deeply indebted to many individuals who, directly or indirectly, are responsible for this piece of work coming into being. I am most grateful to Dr. Abdul Samad Bin Shibghatulah, Prof. Dr. Shahrin Sahib, Prof. Dr. Mohammad Ishak Bin Desa, and Prof. Dr. Nanna Suryana Herman, for their continuous interaction with the result of the work and passing on comments and suggestions for further modifications and advancement in the work. I am also indebted to Dr. Vengatash for his constructive criticism of my research on project planning, and most of all for his friendship and support in all my endeavours.

I have derived considerable benefit and ideas from lecturers, students, consultants and practitioners willing to argue and discuss the application of software project planning, and in this regards, I convey my deep appreciation to them.

Last, but by no means least, I am truly grateful to Mr.Rama Chendra, Mr.Periasamy, Madam Muthmal, and thanks to Kugen and Reelen for their patience and understanding through many lost evenings and weekends.

vii

TABLE OF CONTENT

RECOMMENDED READING MATERIALS	PAGE
DECLARATION	
DEDICATION	
PREFACE	
ACKNOWLEDGEMENTS	VI
TABLE OF CONTENT	V11
LIST OF TABLES	
LIST OF FIGURES	
LIST OF ABBREVIATIONS	XIII
ABSTRACT	
ABSTRAK	
CHAPTER 1: INTRODUCTION	XVIII
1.1 Background of Research Problem	3
1.2 Statement of Problem	8
1.3 Aim and Objectives	
1.4 Methodology/approach	
1.5 Organization of Thesis	
1.6 Summary	
CHAPTER 2: LITERATURE SURVEY	
2.1 Introduction	
2.1.1 Software Project Management Problems	
2.2 Software Project Estimation	23
2.2.1 Objectives of Estimation Process	23
2.2.2 Problems with Estimation	
2.2.3 Estimation Error	25
2.2.4 Drawback of Traditional Estimation Technique	
2.2.5 Software Estimation Process	
2.2.6 Types of Risk in Project Management	34
2.3 Existing Software Project Estimation Process	37
2.3.1 COCOMO Model	38
2.3.2 Basic COCOMO Model	
2.3.3 Intermediate COCOMO Model	40
2.3.4 Function Points Analysis	46
2.4 Software Project Resource Management	54
2.4.1 Resource Allocation Techniques	56
2.4.2 Factors that Affect Resource Allocation of Software Projects	59
2.4.3 Resource Leveling Technique	60
2.4.4 Human Resource Allocation and Leveling Challenges	
2.4.5 Skill and Skills level in Software Project Management	
2.4.6 Skill Management Strategy	
2.5 Techniques used in Proposed Method for Estimation	
2.5.1 Gamma Distribution Function in Lootsma Method	69

2.5.2 Lootsma Methods for Estimation	70
2.5.3 Fuzzy Logic and Expert System	
2.5.4 Comparison of Fuzzy Logic with other Techniques	74
2.6 Summary	75
CHAPTER 3: THE PROPOSED METHOD	77
3.1 Introduction	77
3.2 Scope and Limitations	79
3.2.1 Conceptual Framework	
3.3 Estimation Model	83
3.4 Application Size Calculation using COCOMO	85
3.4.1 Basic COCOMO Calculation	87
3.4.2 Estimation of Effort and Development duration using Basic COCOMO.	87
3.4.3 Intermediate COCOMO Calculation	90
3.4.4 Estimation of Effort and Duration using Intermediate COCOMO	
3.5 Function Points Estimation science	92
3.6 The Proposed EnhancedEste Method	
3.6.1 Gamma Distribution function	97
3.6.2 Resource Allocation	99
3.6.3 Engineers Expertise/Skill Level	101
3.6.4 Risk Value	
3.6.5 Interaction between Skill, Risk, Effort and the Resource Leveling	103
3.7 EnhancedEste Human Resource Leveling	105
3.8 Software Developers' Competency Measurement	114
3.9 Fuzzy Competency-Based framework	116
3.10 Development of the Hypotheses	122
3.11 Operationalization of the Variables	
3.11.1 Planning Factors and Project Performance Variables	128
3.11.2 Resource Allocation, Resources Leveling Variables	131
3.12 EnhancedEste and Planning Performance Variables	133
3.13 Statistical Methods	
3.14 Data Collection	136
3.14.1 Sample Sources	137
3.14.2 Questionnaire Design and Pre – test for the Exploratory Study	137
3.14.3 Questionnaire Design and Pre-test for the In – depth study	
3.14.4 Sample Size and Collection Method in the In – depth study	140
3.14.5 Sampling Errors	140
3.15 Summary	141
CHAPTER 4: STATISTIC	142
4.1 Introduction	
4.2 Sample	
4.3 The Current Status of Software Project Management	146
4.3.1 Team Management	147
4.3.2 Planning - time management and risk estimation	
4.3.3 Quality Management	153
4.4 Common problems of Software Project Management	155
4.5 Evaluation Criteria and Success Factors	157
4.6 Software Project Characteristics	150

4.6.1 Project types	158
4.7 People Factors in Planning	159
4.7.1 Project manager	159
4.7.2 Project Team Members	160
4.8 Technical Factors in Planning	161
4.8.1 Project Management Methods	
4.8.2 Resource management	163
4.9 Management Approach	172
4.9.1 Communication Methods	172
4.9.2 Resource Availability	
4.10 Data Analysis and Results	176
4.10.1 Content Validity	
4.10.2 Construct Validity	177
4.11 Correlation Analysis	
4.12 Multiple Regression Analysis	181
4.13 Logistic Regression Analysis	186
4.14 Summary	206
CHAPTER 5: CONCLUSION AND FUTURE WORK	208
5.1 Common Problems in Software Projects	208
5.1.1 Planning In Software Projects	210
5.2 Limitations of the Research	213
5.3 Suggestions for Further Study	213
REFERENCES	217
APPENDIX A	234
APPENDIX A1	272
APPENDIX A2	
APPENDIX A3	
APPENDIX B	287

LIST OF TABLES

Table 2.1: Rework percentage at each stage of the model	22
Table 2.2: Reasons for Software Estimation Error	25
Table 2.3: Software Development Effort Multipliers	42
Table 2.4: EI Complexity	49
Table 2.5: Shared EO and EQ Table	49
Table 2.6: Values for EO, EQ, EI Transaction	50
Table 2.7: ILF and EIF file complexity	50
Table 2.8: ILF and EIF complexity multiplier	51
Table 2.9: Unadjusted Function Points	52
Table 2.10: General system characteristics (GSC)	53
Table 2.11: Comparison of different techniques	74
Table 4.1: Experience of project manager	145
Table 4.2: Productivity Indicators used in Software Companies	148
Table 4.3: Training courses on project management	149
Table 4.4: Ability of project manager and team management.	150
Table 4.5: Forecast risk in projects	152
Table 4.6: Project estimation technique	153
Table 4.7: Technique for managing and controlling project time	153
Table 4.8: Project manager's opinion on quality	154
Table 4.9: The importance of following software quality attributes	155
Table 4.10: The project outcomes	158
Table 4.11: Project manager's experience in planning stage	160
Table 4.12: Software features used to support project management	162
Table 4.13: The result of software projects in the past	163
Table 4.14: Factors influence the success or failed level of a software project	164
Table 4.15: The completion of the project	
Table 4.16: Resource suitability determination for a particular task	
Table 4.17: Technique to measure resource competency	167
Table 4.18: Resources allocation for project activity	168
Table 4.19: Method used for resource allocation	169
Table 4.20: Technique used to level the resource	
Table 4.21: The factors influence resource leveling	171
Table 4.22: The aims direct communication within project team	174
Table 4.23: The level of resources available in the planning stage	175
Table 4.24: Correlations matrix	180
Table 4.25: Multiple regression result for model 1(independent variable)	182
Table 4.26: Model Summary	
Table 4.27: ANOVA Result	183

Table 4.28: Multiple regression result for model 2	184
Table 4.29: Multiple regression result for model 3	185
Table 4.30: Cross tabulation of project success and project managers experience	186
Table 4.31: The Chi-Square test for project success and project managers experience	186
Table 4.32: Cross-tabulation of project success and project managers effort	
Table 4.33: The Chi-Square test	
Table 4.34: Cross tabulation of project success and team member commitment and ability	189
Table 4.35: The Chi-Square tests project success and team member	189
Table 4.36: The Cross-tabulation of project success and EnhancedEste estimation model	190
Table 4.37: The Chi-square tests of project success and EnhancedEste estimation model	190
Table 4.38: The Cross-tabulation of project success and activity risk estimation	191
Table 4.39: The Chi-square tests of project success and activity risk estimation	
Table 4.40: The Cross-tabulation of project success and competency measurement model	192
Table 4.41: The Chi-square tests of project success and competency measurement model	193
Table 4.42: The Cross-tabulation of project success and Resource Allocation model	194
Table 4.43: The Chi-square tests of project success and Resource Allocation model	194
Table 4.44: The Cross-tabulation of project success and Resource Leveling model	195
Table 4.45: The Chi-square tests of project success and Resource Leveling model	195
Table 4.46: The Cross-tabulation of project success and Project objective 1	196
Table 4.47: The Chi-square tests project success and Project objective 1	196
Table 4.48: The Cross-tabulation of project success and Project objective 2	197
Table 4.49: The Chi-square tests project success and Project objective 2	197
Table 4.50: The Cross-tabulation project success and Availability of Resource	.198
Table 4.51: The Chi-square of project success and Availability of Resource	.199
Table 4.52: The Cross-tabulation of project success and availability of resource-Time	.200
Table 4.53: The Chi-square tests project success and availability of resource-Time	
Table 4.54: The Cross-tabulation of planning performance and project success	.201
Table 4.55: The Chi-square tests of planning performance and project success	
Table 4.56: The Cross-tabulation of performance and project Outcome 2	.202
Table 4.57: The Chi-square tests of planning performance and project Outcome 2	
Table 4.58: 2c-The Cross tabulation of planning performance and project Outcome 3	
Table 4.59: 2c-The Chi-square tests of planning performance and project Outcome 3	.204
Table 4.60: The Cross- tabulation planning performance and project Outcome 1	
Table 4.61: The Chi-square tests planning performance and project Outcome 1	
Table 4.62: Results of hypothesis testing	.207
Table A.1: PROPERTIES table	
Table A.2: ACTIVITY_ENTRY table	
Table A.3: RESOURCE_ENTRY table	
Table A 4: TASK FNTRY table	248

LIST OF FIGURES

Figure 1.1: Research phases and their relationship.	13
Figure 2.2: Software estimation process	30
Figure 2.3: Software Engineering Estimation Model	
Figure 2.4: A simple view of software development and required skill at each phase	66
Figure 3.1: Conceptual framework	
Figure 3.2: EnhancedEste Model	83
Figure 3.3: Various estimation techniques	
Figure 3.4: Basic COCOMO Calculation	
Figure 3.5: Intermediate Cocomo Calculation	
Figure 3.6: Function Point Calculation	
Figure 3.7: Estimation Process	96
Figure 3.8: Assigning staff to activities	
Figure 3.9: Resource Allocation Model	
Figure 3.10: Risk Calculation	
Figure 3.11: The intersection of fuzzy set E, R and S	106
Figure 3.12: The EnhancedEste Resource Leveling Model	
Figure 3.13: Membership functions of the three input and one output variables	
Figure 3.14: Three-dimensional plots between two input variables and RL	
Figure 3.15: The link between Skills, Attitude, Technology, Knowledge,	115
Figure 3.16: Competency tree node of knowledge, technology, skill and traits	121
Figure 3.17: Model 1: The importance of planning factors	135
Figure 3.18: Model 2: The importance of planning	135
Figure 4.1: The main activities of respondents	143
Figure 4.2: Company size	
Figure 4.3: Project managers' education level	
Figure 4.4: Project managers' experience	145
Figure 4.5: Project duration	146
Figure 4.6: Productivity Indicator	148
Figure 4.7: Training courses on Project Management	
Figure 4.8: Ability of project manager and team management.	150
Figure 4.9: Types of risk in project	152
Figure 4.10: Respondents opinion on quality	154
Figure 4.11: The factors influences the success or failure of a software project	156
Figure 4.12: Project manager's opinions	157
Figure 4.13: Project type	159
Figure 4.14: Team member ability and attitude	161
Figure 4.15: The result of software projects in the past	164
Figure 4.16: Factors influence the success or failed level of a software project	165

Figure 4.17: The completion of the project	
Figure 4.18: Resource suitability determination	167
Figure 4.19: Technique to measure resource competency	168
Figure 4.20: Method to allocate resources for particular activities	169
Figure 4.21: Mode of resource allocation	170
Figure 4.22: Resource leveling techniques.	171
Figure 4.23: The factors influence resource leveling	
Figure 4.24: Communication methods with customers	
Figure 4.25: Communication methods within the project team	173
Figure A.1: EnhancedEste Prototype DFD	236
Figure A.2: Different components of software project planning process	
Figure A.3: Login to system using username and password	238
Figure A.4: The menu form of this prototype	239
Figure A.5: DFD for Project Registration Module	241
Figure A.6: Project registration form	
Figure A.7: DFD for Activity_skills module	
Figure A.8: Form to create activity database	244
Figure A.9: DFD for staff-skills module	246
Figure A.10: Resource data entry form	
Figure A.11: DFD of Task break down module	249
Figure A.12: Break project activity into task	
Figure A.13: DFD for knowledge competency sub-module	
Figure A.14: Knowledge Competency assessment module	252
Figure A.15: DFD for technology competency sub-module	253
Figure A.16: Technology Competency determination form	253
Figure A.17: DFD for skills competency sub-module	254
Figure A.18: Skills Competency determination form	254
Figure A.19: DFD for behavior assessment competency sub-module	
Figure A.20: Positive behavior determination form	
Figure A.21: DFD competency graph sub-module	
Figure A.22: Graphical representation of all above competency form	
Figure A.23: Data Flow Diagram for productivity measurement sub-module	
Figure A.24: Programming competency determination form	
Figure A.25: DFD of resource allocation module	
Figure A.26: Resource Allocation and Gamma estimation form	
Figure A.27: DFD of Gamma estimation and risk calculation module	
Figure A.28: DFD on Function Point Calculation	
Figure A.29: Function Point calculation for effort estimation	
Figure A.30: DFD of basic COCOMO calculation	
Figure A.31: Basic COCOMO calculation for effort and duration estimation	
Figure A.32: DFD of Intermediate COCOMO calculation	
Figure A.33: Intermediate COCOMO calculation for effort and duration estimation	
Figure A.34: DFD of resource leveling module	
Figure A.35: Resource Leveling	
Figure A.36: DFD expertise-duration trade off	
Figure A 37: Expertise-Duration trade off form	271

LIST OF ABBREVIATIONS

ACAP Analyst Capability
AEXP Applications Experience
AI Artificial Intelligence

BOE Basis of Estimate

CMM Competency Measurement Model

COCOMO Constructive Cost Model
CPLX Product Complexity
CPM Critical Path Method
DAI Data Assimilation Initiative

DATA Database Size

DET Data Element Types
DFD Data Flow Diagram

DSI Delivered Source Instructions EAF Effort Adjustment Factor

EI External Inputs

EIF External Interface Files
EO External Outputs
EQ External Inquiry
FP Function Point

FPA Function Points Analysis FTR File Types Referenced

GSC General System Characteristics

ILF Internal Logical File
IT Information Technology
KLOC Kilos Line of Code

LEXP Programming Language Experience

LOC Line of Code MM Man-Months

MMRE Mean Magnitude of Relative Error
MODP Use of Modern Programming Practices

MRE Magnitude of Relative Error

OBS Organization Breakdown Structure

PCAP Programmer Capability
PDF Probability Density Function

PERT Program Evaluation and Review Techniques

PM Project Management

PMBOK Project Management Body of Knowledge

RA Resource Allocation

RAD Rapid Application Development

RELY Reliability Requirements
RET Record Element Types
RL Resource Leveling
RPN Risk Priority Number

SCED Required Development Schedule
SCTC Software Technology Support Center
SDLC Software Development Life Cycle

SLOC Source Lines of Code

SPSS Statistical Package for the Social Sciences

STOR Main Storage Constraints

TCA Technical Complexity Adjustment

TDEV Time (months) to Develop
TIME Execution Time Constraints
TOOL Use of Software Tools

TURN Computer Turnaround Time
UFC Unadjusted Function Point Count

VAF Value Adjustment Factor
VEXP Virtual Machine Experience
VIRT Virtual Machine Volatility
WBS Work Breakdown Structures

ABSTRACT

Inaccurate estimations in software projects lead to several problems and even challenge the success of a project. Estimation error of software projects is high; it exceeds 25% of its actual development period and cost. The author conducted surveys on software project estimation, human resource allocation and human resource leveling in different projects in different software organizations in Singapore, Malacca, Kuala Lumpur, Petaling Java and Selangor. Based on the survey reports and literature reports, this study is focused on developing an EnhancedEste model for accurate estimation to optimize workflow efficiencies by integrating some existing systematic and scientific methods for software project planning. In remark, a model is developed which supports and integrating many of the techniques and methods for software project planning. This model is presented with new techniques for software project estimation; human resource allocation, human resource leveling, and developers competency assessment, making them easily accessible to project managers. In order to verify the EnhancedEste model, the author developed the prototype after interviewed many software project managers/software project leaders/personnel in charge of software project management, based on their response, found the model is efficient. This study suggests that, these techniques enable software developers closely resemble the milestone proposed for speeding up other forms of product development.

xvii

ABSTRAK

Jangkaan tidak tepat dalam sesuatu projek perisian akan menyebabkan beberapa masalah malahan penyebab kepada kegagalan sesuatu projek. Kesilapan dalam menjangkakan projek perisian adalah tinggi iaitu melebihi 25 peratus daripada jumlah projek. Penulis telah menjalankan tinjauan tentang jangkaan projek perisian, pembahagian dan penyamarataan sumber manusia dalam beberapa projek di beberapa organisasi pembangunan perisian di Singapura, Melaka, Kuala Lumpur, Petaling Jaya dan Selangor. Berdasarkan kepada laporan tinjauan dan kajian literatur, penyelidikan ini memfokus kepada pembangunan model EnhancedEste untuk jangkaan yang lebih tepat dalam mengoptimumkan keberkesanan aliran kerja dengan mengintegrasikan cara sistematik dan saintifik untuk jangkaan projek perisian. Model ini di bangunkan dengan beberapa teknik baru untuk jangkaan, pembahagian sumber manusia, penyamarataan sumber, penilaian kompetensi pembangun, dan pembahagiaan tempoh kepakaran membuatkan ianya mudah di akses oleh pengurus-pengurus projek. Untuk menilai model EnhancedEste penulis telah membangunkan prototaip selepas menemuduga ramai pengurus projek perisian / pemimpin projek perisian / pekerja yang bertanggungjawab dalam pengurusan projek perisian. Berdasarkan kepada maklumbalas mereka mengatakan model tersebut adalah berkesan. Daripada kajian ini mencadangkan teknik ini memudahkan pembangun perisian kerana ianya menyerupai batu tanda yang dicadangkan untuk mempercepatkan lain-lain bentuk pembangunan produk.

xviii

CHAPTER 1: INTRODUCTION

1.0 Introduction

Project Management (PM) is a specialized management technique to plan and control projects under a strong single point of responsibility. A project is generally deemed successful if it meets pre-defined targets set by the client, performs the job it was intended to do, or solves on identified problem within predetermine time-cost and quality constraints. To meet these targets the project manager uses project management technique to effectively plan and control the project. The next paragraphs explain briefly components of a project.

A project is a sequence of unique, complex, and connected activities having one goal or purpose and that must be completed by a specific time, within budget, and according to specification (Robert *et. al.*, 2000). A project comprises a number of activities that must be completed in some specified order, or sequence. An activity is a defined chunk of work (all project activities follows a specific sequence). The sequence of activities is based on technical requirement, not on management prerogatives. The whole project is broken into small activity. Specifying sequence based on resource constraints or constraints (Robert *et. al.*, 2000).

Project activities usually are connected (Bob and Mike, 2002). Connectedness implies that there is a logical or technical relationship between pairs of activities. There is an order to the sequence in which the activities that make up the project must be completed. They are considered connected because the output from one activity is the input to another activity. During the estimation process assigning activity connectedness is very important. Projects have a specified completion date. This date can be self-imposed by management or externally specified by a customer or government agency. The deadline is beyond the control of anyone working on the project.

Projects also have resource limits, such as a limited amount of people, money, or machines that are dedicated to the project. While these resources can be adjusted up or down by management, they are considered fixed resources to the project manager. Motivation for this research is explained in detail in the next section.

Project management in the business and industry field is defined as managing and directing time, material, personnel, and costs to complete a particular project in an orderly, economical manner; and to meet established objectives in time, dollars, and technical results. All projects share one common characteristic that is the projection of ideas and activities into new endeavors. No project is same as previous project, therefore it has some kind of risk. The ever-present element of risk and uncertainty means that the events and tasks leading to completion can never be foretold with absolute accuracy (Blum, 1992)

1.1 Background of Research Problem

Project failure refers to inability to meet the target set at the beginning. In a paper by Robert et. al., (2000) reports a survey by Standish Group in 1995 involving 1000 IT (Information Technology) manager on reasons why a software project fails. They found ten top reasons. Those reasons are incomplete requirements, lack of user involvement, lack of resources, unrealistic expectations, lack of executive support, changing requirement and specification, lack of planning, elimination of need for the project, lack of IT management, and lastly technology illiteracy. The research work focuses on some of the ten top reasons, such as accurate estimation technique and good resource allocation based on engineer's expertise will overcome these drawbacks. The reasons for project failure is explained in the next paragraph.

A study by Rakos (1990) has identified some of the problems that cause projects to failure. Many project fails at the start. Many projects fail to estimate what the extent of the effort will be required and without an idea of requiring staff to complete, which is a major cost factor in the project. Unrealistic deadlines and budgets are often foisted on a project team by 'authorities' who are unaware of the importance of an accurate estimate, and the project team is locked into an impossible commitment. Some projects can fail at the development stage. This is due to analysis and design results which are not documented properly, which causes misinterpretation. Required human resources need to plan and schedule them ahead of time else will not available when needed. The management also needs to plan on key personnel or

people leaving the team or organization (Tinnirello, 2002; Todd, 2004). Importance of planning is explained next.

A good planning is knowing ahead of time where the project will be after some time, how it will achieve its objective, how to prove the project is achieved target. Activity duration is a random variable. Therefore the factor will be operative when work is underway on an activity, and precise activity duration cannot be determined at an early stage. Therefore a loose date line for activity completion gives higher chances to achieve its target as Parkinson's approach carried out in this study (Boehm, 1981; Richard 2001). Many techniques used for activity/ task estimation are discussed next.

At present many different estimation techniques are used. Software project usually delivered late (if they are not cancelled). This is due to the most common reason, which is underestimation (i.e. too short a duration). Project managers are assisted by estimation techniques such as Work Breakdown Structures (WBS), Function Point (FP) Analysis, Delphi methods and COCOMO method. Most of the time, these methods are extremely difficult to use and confusing to interpret. They often require extensive amounts of data (such as the number of lines of code, or detailed system design documents) before producing even the most general estimates. In addition, these methods are so focused on being meticulous and precise that they often overlook the obvious advantage of intuitive reasoning. By being consumed in numbers and calculations (or boxes and charts, in the WBS technique), the obvious clues from the available documents are usually missed. Under estimation of a project leads to under staffing it

(resulting in staff burnout), under-scoping the quality assurance effort (running the risk of low quality deliverables), and setting too short a schedule (resulting in loss of credibility as deadlines are missed). The most obvious reason for underestimation is the software size in line of code. The size is often used in FP, COCOMO, and others (Boehm and Ross, 1989). Another root cause of failure is explained in the next paragraph.

The software size is the key input (i.e. cost driver) for most software parametric estimating models. However, software size is not always easy to determine, especially during the early stages of a project. According to Jones (1994) the severity of software sizing errors is extremely high. Its root of failure is to estimate the size of major software development components, such as specifications, source code, user documents, and test cases. The errors in estimating size for major software components, where the errors exceed 25 percent of the actual size (Moløkken-Østvold and Jorgensen, 2004). Estimation risk in developing environment (programming language) is explained in next paragraph.

A study by Pandian (2004) identified a few estimation risks. At present parametric models are used on estimation. The parametric models develop estimates through mathematical formulas that often use statistical relationships between the size and software characteristics that affect size (e.g., programming language). Some software requires many lines of code whereas others required a few lines of code only. The common estimation risks are inability to estimate size of the software project, inability to accurately specify a development environment that reflects reality would be another risk. Followed by improper assessment of staff skills, then lack of

well-defined objectives, requirements and specification during the software development life cycle (SDLC). Lastly the project management team needs tools or proven techniques to complete their project on time (Pandian, 2004). The effective estimation plan is explained in next paragraph.

For the project manager to effectively plan and control a project, accurate estimation is essential (Marchewka, 2003). The estimator's task is to predict the projects' parameters by building a model of the project on paper. The project manager estimate cost, development time, resource requirement, and development effort. The quality of the estimation should be seen as the best approximation based on available time, information available, techniques employed, expertise and experience of the estimation personnel. Therefore project estimation and resource allocation and leveling is treated as one process. The accuracy of the estimation will depend on the level of details it is based on (Milicic and Wohlin, 2004). This information will come from scope of work, the contract, the specification, and the extent of risk and uncertainty in the project. This information need to transfer to project management level for on time completion. The advantages of detail planning is explain in next paragraph.

Management of project is a method and a set of techniques based on the accepted principles of management used for planning, estimating, and controlling work activities to reach a desired end result on time within budget and according to specification. It is the interaction of time, resources and activity. Without a thorough understanding of this interaction, projects miss deadlines, run over budget or worse; fail altogether. The scope of project directly related to