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ABSTRACT 

 

 

Sitting position is an important feature in a humanoid robotic system as it is more 

stable when compared to standing position, resulting in less energy consumption since no 

actuator is needed to stabilize the robot. Sitting is crucial especially for humanoid robot in 

security and domestic robotics field where the robots are used for a long period. In order to 

return to standing position, sit to stand (STS) motion is needed. One of the main challenges 

in STS is during the lift-off; i.e. the moment when the robot’s thigh is lifted from the 

chair’s surface. During lift-off, a sudden change of the position of centre of mass (CoM) 

causes instability to the STS motion. Furthermore, the limitation of body and joint will 

exacerbate the problem by limiting the ability to move the CoM to appropriate position. 

Due to this issue, the first objective of this research is to develop and validate a system that 

autonomously able to identify a trajectory to transfer the CoM to an appropriate position 

before lift-off from any chair height. The method works by autonomously calculate the 

horizontal distance between the CoM and the support polygon. With the estimated 

distance, flexion of hip and ankle joints is made to bring the CoM into the support polygon. 

The arrangement of the motion is based on Alexander STS technique. Second objective is 

to develop and validate a control system to balance the robot from tumbling down during 

STS motion due to stability issue. The proposed control system employs the IF-THEN 

rules as the action selector. The rules are set based on CoP position and feedback from 

body’s angular direction in y-axis on sagittal plane. The rules set three variable i.e. HAT 

(Head-Arm-Torso) direction, HAT velocity, and proportional controller gain. To determine 

the gain for the proportional controller, the gain identification method implements the 

partitioning of CoP position into a number of regions. The coefficient at each region is set 

differently to increase the sensitivity of the controller. To verify the effectiveness of the 

proposed method, experiments using NAO robot were conducted. The stability of the robot 

was measured based on the position of Centre of pressure (CoP) within the feet area and 

the angle y reading. Results show that the robot was able to perform the STS motion when 

height of chair is varied from 9.95cm to 16.25cm. The CoP position also shows that the 

pressure point is always within the feet area. However, the system failed to perform the 

task when the height of chair is lower than 96.60% of the robot’s shank length due to the 

robot’s body limitation.  
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ABSTRAK 

 

 

 Posisi duduk merupakan ciri penting bagi robot humanoid kerana ia lebih stabil 

berbanding dengan posisi berdiri, dan ini menyebabkan penggunan tenaga yang kurang 

kerana tiada unit penggerak diperlukan untuk mengekalkan kestabilan. Kriteria ini penting 

untuk robot yang digunakan bagi tujuan keselamatan dan domestik yang beroperasi dalam 

jangka masa yang lama.Untuk kembali ke posisi berdiri, pergerakan bangun atau ‘sit to 

stand’ (STS) diperlukan. Salah satu cabaran dalam pergerakan ini adalah ketika proses 

mengangkat iaitu ketika peha robot terangkat dan tidak lagi bersentuh dengan permukaan 

kerusi. Perubahan mendadak pada kedudukan pusat jisim menyebabkan ketidakstabilan 

pada pergerakan.Selain itu, had pada tubuh dan sendi robot akan memburukkan lagi 

masalah dengan menghadkan pergerakan pusat jisim.Oleh sebab itu, objektif pertama 

kajian ini adalah membangunkan satu sistem yang mampu mengenalpasti pergerakan 

pusat jisim yang sesuai secara automatik sebelum mengangkat dari sebarang ketinggian 

kerusi.Sistem ini beroperasi dengan mengira jarak lurus antara pusat jisim dengan 

kawasan sokongan secara automatik. Hasil dari jarak yang telah dikira, sistem akan 

menggerakkan pinggang dan pergelangan kaki untuk memindahkan pusat jisim ke dalam 

kawasan sokongan. Tatacara pergerakan ini berdasarkan dari pergerakan STS 

Alexander.Objektif kedua adalah membangunkan sistem kawalan yang mampu mengawal 

kestabilan pergerakan. Sistem kawalan ini menggunakan peraturan JIKA-MAKA sebagai 

pemilih tindakan.Penetapan peraturan ini berdasarkan bacaan pusat tekanan yang berada 

di tapak kaki (CoP) dan ralat yang berlaku pada sudut arah badan dalam satah saggital 

(bacaan sudut y). Peraturan ini mengawal tiga pembolehubah iaitu arah, halaju, dan 

pekali. Untuk mendapatkan pekali bagi pengawal halaju berkadar, pelaksanaan 

pembahagian kawasan tapak kaki yang diwakili oleh bacaan CoP kepada beberapa 

kawasan yang lebih kecil dibuat. Pada setiap kawasan ini, pemalar yang berbeza-beza di 

tetapkan untuk meningkatkan kepekaan pengawal. Untuk mengesahkan keberkesanan 

kaedah yang dicadangkan, ujikaji menggunakan robot NAO telah dijalankan.Kestabilan 

robot diukur derdasarkan kedudukan pusat tekanan yang berada di kawasan tapak kaki 

dan bacaan sudut y. Keputusan menunjukkan robot mampu bangun pada ketinggian kerusi 

dari 9.95cm hingga ke 16.25cm. Kedudukan pusat tekanan juga menunjukkan ia sentiasa 

berada di dalam lingkungan kawasan tapak kaki. Walau bagaimanapun, sistem ini gagal 

untuk menjalankan tugas apabila ketinggian kerusi lebih rendah daripada96.60% panjang 

keting robot kerana kekangan pada tubuh robot.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Research Background 

The purpose of this thesis is to develop a method to perform sit to stand (STS) 

motion using humanoid robot. STS motion is defined as the standing up motion of human 

or humanoid robot from a chair (Huanghuan et al., 2007, Banerjee et al., 2010, Mughal and 

Iqbal, 2008c, Mughal and Iqbal, 2008a) i.e. motion in between the sitting position to 

standing position where all joints from hip to ankle are parallel to each others. This motion 

is also called the chair rise motion (Marcello et al., 1994). 

The study of sit to stand motion (STS) gives high impact to the robotics field 

particularly in rehabilitation in order to understand the motion behaviour (Chuy et al., 

2006, Guangming et al., 2007, Saint-Bauzel et al., 2009a), exoskeleton (Strausser and 

Kazerooni, 2011, Dellon and Matsuoka, 2007, Hasegawa et al., 2010, Chu et al., 2005) as 

well as humanoid robotics in order to implement the STS motion in the  exoskeleton and 

humanoid system. In humanoid robotics field, the STS study has not been given emphasis 

until year 2010. 

Several groups have been identified to study STS using humanoids. They are M. 

Mistry who studied STS based on vision feedback from the human volunteer (Mistry et al., 

2010) with discuss on virtual holonomic constraints in (Mettin et al., 2007), K. Qi analysed 

the state transition with generalized function set (Kaicheng et al., 2009), S. Pchelkin 

discussed a constructive procedure for planning human-like motions of humanoid robots 

on finite-time intervals (Pchelkin et al., 2010), M. Sakai et al, compare the MTBDDs and 
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MDDs through simulations to acquire robot action rules (Sakai et al., 2010), X.Gu et al. 

proposed biologically inspired control model with three different ways of motor synergies 

over multiple motor routines to perform the STS motion (Xue and Ballard, 2006), and 

P.Faloutsos proposed an explicit model of the "pre-conditions" where it was based from 

the learning theory by Support Vector Machine (SVM) (Faloutsos et al., 2003). 

There are also STS motion research that implemented learning process, such as the 

research done by K. Kuwayama using HOAP-1 (Kuwayama et al., 2003), and adaptive 

allocation method of basic functions for reinforcement learning (Iida et al., 2004a). M. 

Sugisaka studied STS control system using different humanoid robot that were equipped 

with artificial muscles (Sugisaka, 2007, Sugisaka, 2009). Apart from using simulation of 

humanoid robot or actual robot, the research was also done by using a 3D biped simulation 

model, that was develop by these authors (Andani et al., 2007, Mughal and Iqbal, 2006a, 

Prinz et al., 2007, Konstantin Kondak, 2003, Fu-Cheng et al., 2007, Riener and Fuhr, 

1998). 

 

1.1.1 STS Problem. 

The main challenge in STS is addressing the robot’s lift-off from chair. The lift-off 

is a state when the hip that touches the chair’s surface starts to lift. System’s support 

polygon area becomes smaller since the feet are the only surface that is still in contact with 

the ground when the robot hips lift from the chair surface. The illustration of the lift-off is 

shown in Figure  1.1. The top part of the figure described the transition of the support 

polygon from the top view starting from the robot at sit position to standing. The period 

between 𝑡1 and 𝑡2 is nearly to zero where fast transition happened. The bottom part of the 

figure shows image of the robot posture seen from the side view during the lift off. 
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Figure  1.1: Lift-off from chair occur between 𝑡1and 𝑡2. 

 

In solving the problem, two main components of the humanoid STS motion system 

were observed; the (1) phase and trajectory planning and (2) control scheme. Both 

components have to be considered to ensure stable motions which in turn allow the robot 

to stand successfully. 

Phase planning is a proper plan to separate the whole movement into several 

phases. The phases are usually separated based on the task requirements at the particular 

time. With a number of phases set, the trajectory planning in each phase can be made with 

the need of each phase in consideration. During lift-off, the instantaneous change of 

support polygon, between 𝑡1 and 𝑡2 may cause the subject to collapse if centre of mass 

(CoM) is not in the support polygon (SP), or in the case of STS motion, the subject will fall 

back to the sit position or collapse to ground. This case is also known as sitback. Phase 

planning also reduces the load endured at each joints as the STS motion was claimed to be 

the most mechanically demanding task (Aissaoui and Dansereau, 1999). A single joint 

cannot handle all the body force at a time. Phase planning should solve this by 
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synchronizing all the joints so that only a small amount of force acts on each joints 

(Pchelkin et al., 2010). 

The second component is the control scheme which can be divided into two parts, 

(1) joint control and (2) stability control. The function of joint control is to reduce the error 

between the trajectory given to the robot and the actual trajectory produced by the robot on 

each joints. In stability control, the focus of the control scheme is to follow exactly the 

motion that has been planned while keeping the stability of the robot. A control scheme is 

also crucial in managing when and how a system should react to keep a stable motion. 

The study will benefit many, not only those in the field of humanoid robot 

advancement but also its immediate applications such as experimental tool for medical 

STS studies in joint motion analysis, body trajectory, and chair design analysis.  

 

1.2 Problem statement 

This section contains a detailed elaboration of the problem by using a NAO robot as 

the humanoid robot platform in the experiment. The robot is 0.573𝑚 high and has 25 

degree of freedom. Focusing on lower body system, all joints are designed to be aligned to 

each other and the maximum flexion of each joint as in Table  1.1. 

Table  1.1: Lower limb joint maximum flexion. 

Joint Flexion 

Hip, 𝜃  27.73° until − 101.63° 

Knee, 𝜃𝑘  121.04° until − 5.29° 

Ankle, 𝜃𝑎  52.86° until − 68.15° 
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In order for any humanoid robot to maintain a stable upright position, its Centre of 

Mass (CoM) needs to be within an area called the support polygon (SP). Generally a 

support polygon (SP) is an area where ground in touch with any limb of the robot. 

However, at sitting position another support is provided by the chair that in touch with the 

thigh. Figure  1.2 shows the support polygon when the NAO robot is in a sitting position on 

the left figure and on the right is the view from bottom of the robot. At this position, the SP 

is an area of foot and thigh that contact with the ground and the chair surface respectively. 

In the head-arm-torso system (HAT), CoM is located at the centre of the robot’s body, 

where 𝑙𝐶𝑜𝑀 = 15.0𝑐𝑚 as shown in Figure  1.2. 𝑙𝑡𝑖𝑔 = 10.0𝑐𝑚 is the length of the robot’s 

thigh and the shank length represented by 𝑙𝑠𝑎𝑛𝑘 = 10.3𝑐𝑚. 

 

Figure  1.2:  Position of Centre of Mass 

 

 When the robot thigh start to rise from the chair surface, the remaining SP is only 

area that support by the foot as mentioned in chapter  1.1.1 and illustrated in Figure  1.1. In 

order to ensure the HAT CoM always in the SP, proper trajectory planning is needed. The 

planning should consider on which joint and degree of flexion on each joint that should be 

controlled to prevent the robot from falling.    
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 Apart from that, the trajectory planning must also able to consider the limitation of 

each joint flexion as mentioned in Table  1.1 and should operate automatically when the 

chair height is varied. 

Thus, the research question is how to make a humanoid robot stand from a sitting position 

with its design limitations taken into consideration, with the assumption that there is no 

external force acting on the robot? 

Sit to stand motion also needs a control scheme after the lift-off to make sure CoM 

is always in the support polygon. Three joints (minimum) are needed for the NAO robot to 

stand but movements from these joints create disturbance that will disrupt the total velocity 

that is acting on the whole body. This disturbance is contributed by the change of direction 

in each joint during lift-off and causes imbalance by changing the CoM location from the 

SP. 

The lift-off situation can be explained with an example of all joint being initially at; 

𝜃𝑘 = 90° for the knee joint, 𝜃 = −75.6° for the hip joint and 𝜃𝑎 = −7° for the ankle 

joint, as shown in Figure  1.2. During lift-off state, the joints changed to 𝜃𝑘 = 90°, 

𝜃 = −89°, and 𝜃𝑎 = −10°. At this state, the body move forward to transfer the CoM into 

the support polygon. Then, the body needed to move backward to complete a standing 

position at which the joints may change to 𝜃𝑘 = 0°, 𝜃 = 8°, and 𝜃𝑎 = −2° respectively. 

The value of hip joint, 𝜃  showed that the joint moved clockwise and then changed the 

direction to anticlockwise. With all joint experiencing the same condition, an external 

momentum was generated. The momentum pushed the whole body of the subject to the 

front and may cause the subject to fall forward. The illustration of the lift-off problem is 

shown in Figure  1.1. 

Thus, the second research question is how to control the robot’s motion so that it performs 

STS motion without falling? 


