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Abstract. Often in prominent literature, the appearance of external stiffness in wind turbine 

dynamical model has been neglected. The ignorance of external stiffness eliminates the presence of 

rotor-side angular deviation in the system dynamic. In order to give more practical look of the 

variable speed control system structure, we develop a linear observer to estimate the rotor angular 

deviation. We use Linear Quadratic Regulator (LQR) to design the observer gain, as well as the 

estimation error gain. To facilitate observer design, the system is linearized around its origin by using 

Jacobian matrix. By using the estimated rotor angular deviation, we design a variable speed control 

via Lyapunov and Arstein to enhance power output from the turbine. 

Introduction 

In recent research, a standard two-mass wind turbine model appeared to be a one-dimensional 

dynamical system [1-5]. Most of the research relax some fundamental aspect in the system dynamic. 

For instance, Beltran [1] and Boukhezzar [2] neglect the lumped external stiffness of the turbine rotor 

and generator. The reason of relaxing the external stiffness is for the ease of controller design. The 

appearance of external stiffness in wind turbine dynamical system increases the level of difficulty in 

term of control design and stabilization. This is because that the external stiffness incurs an integrator 

to the wind turbine dynamic, which is difficult to handle (see [1-2] for stiffness ignorance approach). 

The integrator comes from the rotor angular deviation in the system dynamic. As such, stabilizing 

wind turbine system with external stiffness require high mathematical complexity. The fact is that 

relaxing the external stiffness is not a valid assumption, at least, for the sack of practicality. In this 

paper, we design an observer in order to estimate the angular deviation of the rotor. We search the 

feedback gain as well as the estimation error gain by using LQR. By using the estimated angular 

deviation, the variable speed wind turbine structure can be realized. Motivated by Artstein [6], we 

design a variable speed control approach to obtain a maximum power generated by the turbine. To 

generalize the case, let an autonomous and affine nonlinear system �� = ���� + ����	  with � ∈ ℝ is 

the system state, ��∙� and ��∙� is analytic and smooth vector fields, and u is the control command. 

Thus, Definition 1, Lemma 2  and Theorem 3 are useful in the sequel. 

Definition 1: For nonlinear system �� = ���� + ����	, if there exists a feedback law 	 = ���� for �� , then the closed loop system �� = ���� + �������� is completely controllable linear system. 

Lemma 2: [7]:Let � = ���0�  be the Jacobian matrix of ��∙�  at the origin ,then � = ��0� . If 

nonlinear system �� = ���� + ����	 is linearizable, then ��, �� is completely controllable. 

Theorem 3: Lyapunov's linearization method [8]: ♦ If the linearized system is strictly stable, then the 

equilibrium point for the actual nonlinear system is asymptotically stable ♦ If the linearized system is 

unstable, then the equilibrium for the actual nonlinear system is unstable ♦ If the linearized system is 

marginally stable, then one cannot conclude anything from the linear approximation. 
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In wind turbine dynamical model, the appearance of aerodynamic power is necessary to 

functioning the turbine. The aerodynamic power is highly depends on the power coefficient of the 

turbine, air density of which the turbine to be installed, the blade radius, tip-speed-ratio and the wind 

speed profile. The power coefficient enlightens the optimum tip-speed-ratio the turbine should 

operate with, in order to guarantee a maximum power coefficient thorough out the operation. Often, 

the power coefficient curve can be obtained via the look-up table supplied by the wind turbine 

manufacturer. As such, obtaining maximum power coefficient and optimum tip-speed-ratio is a must 

for maximum power generation. Because of that reason, Ozbay in [4] assume the power coefficient 

expression as a constant positive value. For practicality purpose, in our model, we supersede Ozbay's 

approach by exploiting the empirical power coefficient expression proposed in [9-10]. 

In what follows, we present a derivation of a two-mass wind turbine system. Afterward, we realize 

the observer design and feedback control design for a variable speed wind turbine system. Next, we 

represent numerical analysis for the variable speed wind turbine control and tabulates the results. 

Lastly, we concluded the findings. 

Wind Turbine Model 

This research paper focuses on the mechanical power control side which deals with turbine 

dynamic up to generator front only. Table 1 tabulates wind turbine parameters. 

 

Table 1: Nomenclature 

Symbols Definition Symbols Definition � Rotor blade radius ��� �� Generator external damping ��.�. �����.  ���  ! Wind speed ��.  ��� �"  Generator external damping ��.�. �����.  ��� # Air density ���.��$� �"  Rotor stiffness ��.�. ������ %&�', (� Power coefficient �� Generator stiffness ��.�. ������ ' Tip speed ratio )* Aerodynamic torque ��.�� ( Pitch angle ��+�� )� Generator torque/Electromagnetic torque ��.�� , Gearing ratio )
ℎ- High-speed shaft torque ��.�� 

." Rotor speed ����.  ��� )/- Low-speed shaft torque ��.�� .� Generator speed ����.  ��� 0� Generator-side angular deviation ����� �" Rotor inertia ���.�1� 0" Rotor-side angular deviation ����� �� Generator inertia ���.�1�   

 

Fig.1   Two-mass wind turbine structure 

Consider a two-mass wind turbine system in Fig. 1. The torque produced by the turbine can be 

represented as )* − )/- = �".� " + �"." + �"0". The transmission output torque can be represented 
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as )
ℎ- − )� = ��.�� + ��.� + ��0� . With gearing ratio , = 3435 = 6786

ℎ8, the dynamic of the turbine 

system can be represented as: 

�.� " + �." + �0" = )* − ,)�																																																								�1� 
where the lumped inertia is defined as � = �" + ,1�� , the lumped external stiffness � = �" + ,1�� 

and the lumped external damping � = �" + ,1��. The aerodynamic power produced by the turbine 

can be expressed as ;* = ;<=>?%&�', (� (see [1-5, 11-12]). ;<=>? = �
1 #@�1!$ is the instantaneous 

power produced by the wind, and ' = A35B  is the tip-speed-ratio. Power coefficient %& is a nonlinear 

function where it values can be obtained from look-up table provided by turbine manufacturers. Other 

than look-up table, the empirical expression for power coefficient can be found in [9-10]. Knowing 

that ;* = )*.", the wind turbine dynamic can be written as: 

.� " = −�� ." − �� 0" + #@�C%D2'$ ."1 − ,� )�																																															�2� 
Estimator and Variable Speed Control Design 

Note that ."1-term is the only nonlinearity for the wind turbine dynamic in Eq. (2). In [1-2], the 

external damping � has been neglected. In our case, we consider � in order to gain practical validity. 

Although Eq. (2) approximates the dynamical of the wind turbine more accurately than the one 

proposed in [1-2], it is however more difficult to determine its stabilizing function for the turbine 

speed error. The appearance of 0" replenishes an integrator in the system model when the mapping of 0" towards ." is being considered. Moreover, the exact value for 0" is immeasurable. Therefore, in 

this research paper, we develop observer for 0". The so-called rotor-side angular deviation observer 

estimates the real time value for 0" such that the variable speed control for the turbine can be realized. 

Lets map the system Eq. (2) into two-dimensional nonlinear system: 

F0�".� "G = H�I5�0" , ."��35�0" , ."�J + K 0
−,/�� M )�																																													�3�	

where �I5�0" , ."� = ." and  �35�0" , ."� = − O
P ." − Q

P 0" + RSATUV1WX ."1. By Lemma 2, we prove the 

controllability of a two-dimensional wind turbine system in Eq. (3). By observing the gradient of the 

system Eq. (2) with respect to Y0" ."Z6 , we obtain the Jacobian matrix at origin � =
H[I5�I5 [35�I5[I5�35 [35�35

J, implies �|�],]� = H 0 1− Q
P − O

PJ. This yields the linearized wind turbine system: 

F0�".� "G = K 0 1
−�� −�� M F

0"."G + K 0
−,�M )�

^ = Y1 0Z F0"."G
	≜ �̀ = a` + ℬc

d = e` 																													�4� 

where a = H 0 1− Q
P − O

PJ is the system matrix, ℬ = g0 − h
Pi6, is the input matrix, e = Y1 0Z is the 

output matrix, c ≡ )� is the control input and ` = Y0" ."Z6 is the system states. Let LQR-based 

observer for the wind turbine system Eq. (4) be in the form: 
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k̀� �l� = a k̀ + ℬc + mnd −dop
do = e k̀ q																																																	�5� 

where do ∶= 0"�t-u� is the estimated rotor angular deviation, and m ∈ ℛ>w& is the gain for estimation 

error. Further, we prove that the observer fulfill the minimization of the linear quadratic performance 

index in Eq. (6): 

� = x� k̀6y k̀ + c6ℛc
z

]
��l			,			∀	` ≠ 0																																									�6� 

with k̀ is the estimated states, y and ℛ are square positive definite matrices. Term k̀6y k̀ solves the 

state regulation problem. Term c6ℛc minimizes the energy of the control signal c�l� so that the 

control input is bounded between c*=> ≤ c�l� ≤ c*�w . Via c6ℛc -term and symmetric � ∈ℝ1w1, we can prove that a feedback gain � = ℛ��ℬ6� produces minimum energy c = −� k̀ in 

order to drive the estimated states toward origin. Hence reducing estimation error and fulfill the 

output regulation of the actual system in Eq. (4). We can further write Eq. (6) as: 

� = x� k̀6y k̀ + n−� k̀p6ℛ�−� k̀�
z

]
��l = x k̀6�y +�6ℛ�

z

]
� k̀�l															�7�	 

Proposition 1. Linear quadratic performance index in (7) quadratically stabilize the observer (5) for 

a linearized wind turbine system in (4). ). To prove the Proposition 1, let consider a candidate 

Lyapunov function � = k̀6� k̀. Taking the derivative of � along k̀ yields the embedded Reduced 

Riccati Equation in the negative definite function of  �� , as follows: 

�� = 2 k̀6�na k̀ + ℬcp = k̀6��a − ℬ�� k̀ + k̀6�a − ℬ��6� k̀									 ⟹ k̀6Ya6� + �a − y − �ℛ��ℬ6��6ℛ�ℛ��ℬ6�� ≡ 0Z k̀																										⟹ k̀6Ya6� + �a −�ℬℛ��ℬ6� − yZ k̀ < 0						�;���+��														�8�	
Proposition 2. For � ∈ ℝ*w>, the control feedback law c = −� k̀ and observer gain m ∈ ℝ>w& 

retain the stability of the closed loop system (4) and (5) with � = � = 1 and � = 2. To prove 

Proposition 2, let consider the estimation error dynamics  ℯ� = k̀� − �� .  Then the closed loop system: 

ℯ� �l� = �a − me�ℯℯ�� = eℯ� 		�																																																								�9�	
With c = −� k̀ , the closed loop system can be written in Y� +Z coordinate as: 

g��+� i = Fa − ℬ� −ℬ�0 a − meG g�+i																																										�10�  

By judicious choice of m and � , the stability of the closed loop wind turbine with observer is 

guaranteed by the stability of both matrices Ya − ℬ�Z and Ya − meZ. This complete the proof.    

Motivated by Arstein [6], and by using the knowledge of estimated rotor angular deviation do ∶= 0"�t-u�, we design a variable speed controller. Let consider speed tracking error +3 = ." − ."∗, 
where ."∗ is the demanded rotor speed for a particular wind speed profile. For a maximum power 

generation, the demanded rotor speed must be ."∗ = W���BA . Let consider a smooth positive definite 

function �t� = �
1 +31 , then its derivative along speed tracking error yields ��t� = +n��." + �10" +

�$."1 + ��)� −.� "∗p. For there exists % > 0, then the variable speed control law in Eq. (11) renders 
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the derivative of �t negative definite (i.e. ��t� = −%+31 ), in order to satisfy the asymptotic tracking of 

the rotor speed. 

 )� = �
�� Y−%+3 − ��." − �10" − �$."1 + ."∗Z																														�11� 

Numerical Analysis 

To observe the linearized and nonlinear system, let define wind turbine parameters � =5.2	�.�. ����� , � = 37.65	��.�1 , � = 27.56	�.�. ����� �� , � = 21.65�  and , = 43.165 . 

With 5	� �� wind speed, the rotor deviate anti-counterclockwise around 0.018 radian (see Fig. 2). 

The initial rotor speed to deviate the rotor by 0.018 radian is shown in Fig. 3. 

  

Fig.2   Rotor angular deviation Fig.3   Rotor speed 

Results 

Linear observer is designed to estimate 0"�t-u� which normally ignored due to the neglection of 

external stiffness (see [1-2]). With LQR, we obtain the estimation error gain m = Y48.5349 686.0653Z6 and the observer feedback gain � = Y−0.8868 −1.0804Z. Fig.4 and 

Fig.5 show the observer performance. Fig.6 and Fig.7 show the variable speed control performance 

for 5	� �� wind speed. Fig.6 and Fig.7 show that the actual rotor speed asymptotically track the 

demanded rotor speed with decaying tracking error at 0.06 sec. The power output and its distribution 

are shown in	Fig.8 and Fig.9 respectively. 

   

Fig.4   Testing the observer 

performance - rotor angular 

deviation 

Fig.5   Testing the observer 

performance - The estimation 

error 

Fig.6   Comparison between the 

actual rotor speed and the 

demanded rotor speed 

 
 

 

Fig.7   A speed tracking error Fig.8   Generated power output Fig.9  Power output distribution 
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Conclusion 

In this paper, a linear observer has been designed to estimate the rotor angular deviation of a 

nonlinear wind turbine model. The observer is designed based on the Jacobian matrix at the system 

equilibrium. The estimated rotor angular deviation is then utilized by the variable speed control 

design, where the asymptotic tracking of the rotor speed is guaranteed by a Lyapunov stability 

criteria. However, there is a shortcoming of the proposed approach, that is the linearization is valid 

only for a small neighborhood about the fixed equilibrium point. As such, the initial rotor angular 

deviation should starts inside the linear range such that the observer estimation error is kept small. 

Otherwise, the variable speed control approach is only marginally stable. This phenomena give some 

idea for further research in variable speed wind turbine with consideration of an external stiffness and 

rotor angular deviation. In the future, when dealing with inevitable dynamic such as rotor angular 

deviation, we highly recommend the use of a direct nonlinear control approaches such as 

backstepping, Lyapunov redesign and variable structure control. 
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