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Abstract 

Plant growth rate is significantly dependent on application of nitrogenous fertilizer which mainly contributed by urea fertilizer 
(UF). Nanotechnology advancements in nutrition strategies for plants have attempted to assist plant nutrition for efficient plant 
growth. The development of carbon nanomaterials (NMs) including Multi-walled carbon nanotubes (MWNTs) in conjunction 
with the advancement in biotechnology has expanded their application area of in the field of agriculture. The aim of the work is 
to identify the significant process parameters to attach urea fertilizer (UF) onto MWNTs. The UF-MWNTs was than 
characterized optically and chemically to confirm their bonding. Comparison study was also conducted between UF-MWNTs 
and UF-functionalized MWNTs on total N content bonding to the MWNTs. The surface functional groups produced from 
functionalization process are essential for further modification of MWNTs and facilitate the separation of nanotube bundles into 
individual tubes. Optical, vibrational spectroscopy and chemical characterization were conducted on the samples using TEM, FT-
IR and total N analysis confirmed the successful bonding of urea onto MWNTs. Plackett-Burman Experimental Design showed, 
two out of nine investigated parameters (amount of functionalized MWNTs and percentage of functionalization) were found 
significant in producing successful attachment of UF onto functionalized MWNTs (fMWNTs).   
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1. Introduction 

Nanotechnology advancements in nutrition strategies for plants attempt to solve Nitrogen (N) losses via fertilizer 
application by introducing Multi-wall carbon nanotubes (MWNTs) as a carrier to improve nutrient uptake by plant 
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cells (Torney et al., 2007; Gonzales-Melendi et al., 2008; Serag et al., 2011). Upon successful delivery into the cells,  
the absorption and utilization of N by the plant can be increased leading to enhanced plant growth. However, 
production of MWNTs to suit this purpose has to be optimized. Many process parameters have been identified to be 
important for the production suitable UF-MWNTs fertilizer complex. One of the parameter is functionalization of 
MWNTs. Functionalization of MWNTs have many advantages: it can overcome the toxicity of MWNTs and this is 
important to eliminate cross contamination in the food chain during crops agricultural activity. Sayes et al. (2006) 
reported a high degree of CNTs functionalization would lead to a significant reduction in toxic effects. Furthermore, 
functionalization is important for further modification of MWNTs. Thus, functionalization on MWNTs is essential 
in order to use them in agriculture field. The main aim of this work is to use Plackett-Burman design of experiment 
to screen the most important parameters for sproducing UF-MWNTs, by determining total N as the respond. Upon 
successful bonding between both, the product was analyzed physically and chemically.

2. Literature Review And Hypotheses  

Nitrogeneous Fertilizer 

Nitrogenous fertilizer is vital for efficient paddy growth. Referring to the International Fertilizer Industry 
Association’s (IFA) Fertilizer Outlook 2013-2017, global nitrogen (N) fertilizer demand would grow slightly to 
107.5 million metric tons of N. Urea fertilizer (UF) is a main source of N fertilizer, since it contain high amount of 
N (46%). However, it was reported that between 50 and 70% of the nitrogenous fertilizer is lost through leaching 
and gas emission of ammonia and nitrogen oxides to the atmosphere (Maene, 1995). These may contribute to 
unfavourable environmental impact and higher operational cost to farmers. Uncontrolled applications of UF also 
have adverse effect to aquatic life due to eutrophication causing excessive algae growth and decreasing level in 
water bodies.  

 
Nanomaterials Delivery System 

Nanotechnology uses NMs having one or more measurements in the range of 100 nm or less (Auffan et al., 
2009). Others refer to NMs as engineered NMs (ENMs) measuring <100 nm in at least one dimension and 
specifically engineered for an application. Generally, their key advantages include size-dependent qualities and a 
high surface-to-volume ratio (Miralles et al., 2012).The NMs delivery system is targeting the plant to take up 
nutrients efficiently and enhance the germination rate of plants by improving the intake of water as well as oxygen 
(Zheng et al., 2005 and Khot et al., 2012). Hence, leaching and losses of nutrients to unintended targets like soil are 
reduced.  

 
In agriculture, research on smart delivery systems reported on the delivery of pesticides encapsulated in NMs 

for UV-shielding (Li et al., 2007) and assisted delivery of genetic material for crop improvement (Vijayakumar et 
al., 2010). Ghormade et al. (2011) and Wilson et al. (2008) have shown potential applications of NMs in agriculture 
to reduce the use of fertilizers by assisting in the controlled-and slow-release of fertilizer. The NMs smart delivery 
system has led to the advancement of agriculture technology due to unique properties such as time control, specific 
targets, and multifunctional characteristics avoiding biological barriers for effective targeting (Nair et al., 2010). In 
addition, the application of NMs reduces fertilizer use and increases agriculture yields through an optimized nutrient 
management (Srilatha, 2011; Sharon et al., 2010; Bhattacharyya et al., 2010; Perez-de-Luque and Rubiales, 2009; 
Garcia et al., 2010; Rashidi and Khosravi-Darani, 2011). 

 
 

The developments of carbon NMs in conjunction with the advancement in biotechnology have expanded the 
application area of carbon NMs in the field of agriculture. Application of carbon NMs holds great promise for 
progress in the agricultural activity (Ghodake et al., 2010; Khodakovskaya et al., 2013; Canas et al., 2008). The 
most studied carbon based NMs are the single wall carbon nanotubes (SWCNTs), multi wall carbon nanotubes 
(MWCNTs), nano graphite colossal carbon (CC) and fullerol.  Carbon NMs with special physicochemical properties 
were reported to have a unique ability as molecular transporter for walled plant cells (Liu et al., 2009), which 
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stimulates crop growth, improves the soil environment and promotes crop growth metabolism (Lu et al., 2002; Xiao 
et al., 2008; Liu et al., 2007) . We examined the combination of MWNTs with UF to develop UF-MWNTs fertilizer 
and analyses the morphology of the samples as well as the chemical interaction occurred between them. 
 

Plackett-Burman Experimental Design 

Developing a UF-MWNTS fertilizer involved a lot of evaluated parameters that affect the total amount of N 
contain in the fertilizer. The Plackett–Burman experimental design is useful for screening of significant parameters 
from a large number of process variables.  

3. Methodology 

3.1. Research Goal 

The aim of this study is to screen significant variables that affect the development of UF-MWNTs fertilizer 
process by using Plackett Burman experimental design of experiment. Analyses were conducted using statistical 
software Design Expert. The identified factors were amount of MWNTs, percentage of functionalization, stirring 
time, stirring temperature, agitation, sonication frequency, sonication temperature, sonication time and amount of 
ammonium chloride with corresponding response Total N attached on the surface of MWNTs. 

3.2. Preparation of UF-MWNTs fertilizer 

Commercially available chemical vapour deposition grown MWNTs with purity >95% were used. FMWNTs 
with 4 wt% of functional groups were purchased from Cahaya Tech, Malaysia.  Various amounts of MWNTs and 
fMWNTs were sonicated before stir with urea fertilizer at various time, temperature and agitation. Samples were 
then dried in oven at 70°C for 280 minutes. 

3.3 Characterization 
 
 Fourier transform-IR spectra used to confirm the functional groups of UF-MWNTs fertilizer, obtained on a Jasco 
FTiR-6100 with attenuated total reflectance (ATR) method. Each sample was scanned with resolution, 4cm-1 within 
the range 400-4000 cm-1 to obtain the spectrum. A transmission electron microscope (H-7600, 120 kV, Hitachi) 
was used to observe the morphology of the MWNT and functionalized MWNTs before and after their reaction with 
UF. 
 
3.5 Statistical Analysis of the data from the Plackett-Burman design 
 

Plackett-Burman design of experiment was used to screen of the significant parameters with respect to their main 
effects and not the interaction effects between various parameters constituents (Plackett and Burman, 1944). The 
experimental design using Plackett–Burman design of experiment was produced using +1 and -1 for each variable as 
in Table 1 where twelve experiments have been conducted. Amara et al. (2014) reported that the main effect of both 
of +1 and -1 for each variable has been calculated from the following formula:  
 
Main effect = 1 11 / 1 /n n                                                                                                            (1) 
 
In the case of UF-MWNTs fertilizer, the values that appear upper to the x-axis in the main graphs as in Figure 1 
have positive effects on the UF-MWNTs fertilizer, while those that appear under the x-axis have negative effects on 
the UF-MWNTs. The variables whose con dence levels % were  90% were considered to signi cantly affect the 
UF-MWNTs. Variables with con dence level% less than 90% till 70% were considered as being effective (Stowe 
and Mayer, 1966). 
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Table 1. Plackett-Burman Experimental design. 
 
Run MWNTs 

(wt%)
Functionalization 
(%)

stirring 
time 
(h)

stirring 
temp 
( C)

Agitation 
(rpm)

frequency 
(Hz)

sonic 
temp 
( C)

sonic 
time 
(min)

NH4Cl 
(mg)

Total 
N 
(%)

1 0.6 4 6 65 250 high 0 5 0 1.4 

2 0.1 0 6 65 50 high 40 5 4 0.46 

3 0.6 0 18 65 250 low 0 5 4 0.24 

4 0.1 0 6 25 50 low 0 5 0 0.3 

5 0.1 4 6 65 250 low 40 30 4 1.41 

6 0.6 4 6 25 50 high 0 30 4 1.89 

7 0.1 4 18 65 50 low 0 30 0 1.27 

8 0.1 4 18 25 250 high 40 5 0 1.63 

9 0.6 0 18 65 50 high 40 30 0 0.36 

10 0.1 0 18 25 250 high 0 30 4 0.36 

11 0.6 0 6 25 250 low 40 30 0 0.28 

12 0.6 4 18 25 50 low 40 5 4 1.8 

 

4. Results and Discussion 

4.1 Screening of significant variables using Plackett Burman design 

A total of nine variables were analyzed with regard to their e ects on Total N analysis on UF-MWNTs fertilizer 
using a Plackett–Burman design (Table 1). The components were screened at the confidence level of 95% and 70-
95%.  Rafaat et al. (2012) reported that if the components showed significance at or above 95% confidence level, 
but the main effect is negative, it indicated that the component was effective in total N production on the surface of 
MWNTs but the amount required was lower than the lower value (-1) in Plackett-Burman design of experiment. 
However, if the main effect is positive, higher value of the parameters from the high (1) value was needed during 
further optimization studies.  

 
Referring to the Main effect on Total N graph in Figure 1, functionalization shows the most significant factor 

that give positive effects for Total N bonding on the surface of MWNTs. The other parameters that give positive 
main effect value were amount of MWNTs, frequency of sonication, sonication temperature and amount of 
ammonium chloride. Among these parameters that give positive main effect value, amount of MWNTs, frequency 
of sonication and amount of ammonium chloride give confidence level at 70-95%. Hence, they should be applied at 
higher than (+1) value during further optimization step. While parameters which give negative main effect value 
(stirring temperature, agitation and sonication time) but with high confidence level (>90%) should be applied at 
lower value.  

 
The adequacy of the model was calculated, and the variables evidencing statistically signi cant e ects were 

screened via Student’s t-test for ANOVA (Table 2). Factors evidencing P-values of less than 0.05 were considered 
to have signi cant e ects on the response, and were therefore selected for further optimization studies. 
Functionalization with probability value of 0.0008 and confidence level 99.92%, was determined to be the most 
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signi cant factor, followed by stirring temperature (0.033) with confidence level 96.7%. The lower probability 
values indicate the more signi cant factors affecting the nitrogen content binding onto the surface of MWNTs. 
However, stirring temperature exerted a negative e ect, functionalization and amount of MWNTs, exerted positive 
e ects on Total N content. Thus, both main effect analysis and ANOVA reveal functionalization and amount of 
MWNTs was included as the effective Total N production in UF-MWNTs fertilizer and selected to be further 
optimized. Amount of ammonium chloride as filler was kept at higher value. All other insigni cant variables were 
used at lower value. 

 
 

 
Fig. 1  Main effect on Total N. 

 
 

Table 2: Estimated E ect, Standard Error, Corresponding F and P Values and Confidence Level For Total N 
Content In Nine Variables Plackett–Burman Design Experiment. 

 
 
 
 
 
 

Parameter Estimate Standard 
Error 

F-value p-value Confidence 
level % 

MWNTs 0.045 0.017400511 6.688 0.1226 87.74 

Functionalization 0.617 0.017400511 1255.96 0.0008 99.92 

Stirring time -0.007 0.017400511 0.147 0.7385 26.15 
Stirring 
temperature -0.093 0.017400511 28.771 0.033 96.7 

Agitation -0.063 0.017400511 13.248 0.0679 93.21 

Sonication time 0.067 0.017400511 14.679 0.0619 93.81 

Frequency 0.04 0.017400511 5.284 0.1483 85.17 
Sonication 
temperature -0.022 0.017400511 1.55 0.3392 66.08 

Ammonium 
chloride 0.077 0.017400511 19.413 0.0478 95.22 
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4.2 Fourier Transform Infrared Spectroscopy (FTiR). 

 FTiR aims to study spectral changes in position or shape occurred in the distribution of frequencies which use 
to identify the presence of functional group (Queiroz et al., 2003 and Yu et al., 2004). Figure 2 shows the FTiR 
spectra of fMWNTs, UF-MWNTs with 0.6wt% of fMWNTs (FMU 1), UF-MWNTs with 0.1wt% of functionalized 
MWNTs (FMU 2), and UF-MWNTs with 0.6wt% of MWNTs (MU). The outer walls of MWNTs are chemically 
inactive. Functionalization process will activate the sidewalls. Chemical functionalization is based on the production 
of covalent bond between the functional groups with the carbon of MWNTs (Jeon et al., 2011). It can be performed 
at the end caps of nanotubes or at their sidewalls which may have many defects. Hence, upon reactions between urea 
and fMWNTs, it is strongly suggested that covalent bondings occurred between NH2 groups of UF and carboxyl 
groups of fMWNTs. 
 
 The spectra mainly characterized by bands at 3300-2500 (O-H stretching vibration), 1700-1725 cm-1 (C=O 
stretching vibration) and 1210-1320 cm-1 (C-O stretching vibration) correspond to the vibration of the carboxylic 
acid groups (Wei et al., 2010). In the IR spectra of UF-MWNTs, the bands around 1640-1690 cm-1, 1510-1600 cm-1, 
1376-1388 cm-1  and 1120-1290 cm-1 could be assigned to C=O stretching vibration, N-H bending, CH2 bending and 
C-N stretching. These characteristic spectral are attributed to amide (Wei et al., 2010).  
 

Any changes in peak position or shape reveal a change has happened in the distribution of frequencies included 
in that particular vibration mode. By comparing the FTiR spectra of fMWNTs and UF-MWNTs, it could be seen 
that the transmission peak of O-H stretching vibration at 3018 in the IR spectrum of fMWNTs (Figure 2 (A)) 
disappeared in the IR spectrum of UF-MWNTs [Figure 2 (B and C)], indicating that the O-H groups in fMWNTs 
might react with the amino groups in the urea fertilizer during the functionalization process. Also, C=O (1739 cm-1) 
and C-O (1219 cm-1) stretching vibration attributed to fMWNTs were observed replaced with new shape of 
transmission peak that appears, corresponding to N-H bending and C-N stretching vibration at 1519 and 1219 cm-1 
respectively after fMWNTs was further functionalized with UF. The NH2 groups from UF can react with the 
carboxyl groups (COOH) on the surface of fMWNTs and produce amide groups (Gao et al., 2005). Thus the results 
from the FTiR spectra confirm that chemical functionalization has occurred between fMWNTs and UF instead of 
physical functionalization  (non covalent) only.  

Fig. 2. FTiR spectra of (A) fMWNTs, (B) UF-fMWNTs with 0.6 wt% fMWCNTs, (C) UF-fMWNTs with 0.1 wt% fMWCNTs and (D) UF-
MWNTs. 

 

A 

B 

C 

D 
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4.3 Transmission Electron Microscopy (TEM) 

 Figure 4 shows the TEM images of MWNTs, fMWNTs, UF-fMWNTs and UF-MWNTs. The morphology of 
MWNTs (Figure 4a) is clearly shown. The MWNTs have multiwall along the tubular structure with hollow structure 
at the centre. Compared with fMWNTs (Figure b), even the hollow and tubular structure are still retained, but a few 
multiwall structure have broken and open. Functionalization process was found to cause defects to the sidewall 
while most of the sidewall still preserves their basic multiwall structure. These defects are important to MWNTs 
intended for further modification. Figure 4c shows the MWNTs after interaction with UF. It is clearly observed that 
MWNTs are still in the multiwall tubular structure which implies only physical interaction occurs between them. 
However, further modification of fMWNTs with UF (Figure 4d) reveal most of the tubular multiwall structure have 
been ruptured as a result of chemical interactions. These TEM results are in agreement with FTiR spectra that 
demonstrated chemical reaction occurred between UF and fMWNTs, discussed earlier. Hence, functionalization 
leads to significant further modification of MWNTs with UF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. TEM micrographs of the (a) MWNTs, (b) fMWNTs, (c) UF-MWNTs and (d) UF-fMWNTs. 
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5. Conclusion 

In conclusion, Plackett Burman design and analysis is effective for statistically screening of significant parameters 
from a large number of process variables. Functionalization and amount of MWNTs used were the most significant 
factors that affect Total N content in UF-MWNTs fertilizer. As reveal by FTiR spectra and TEM micrographs, 
MWNTs only implies physical reaction with UF, while fMWNTs shows significant chemical reaction with UF. The 
results suggest the importance of functionalization and amount of MWNTs for further optimization step in 
developing novel urea-MWNTs fertilizer for plant growth. 
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