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ABSTRACT

Statistical Energy Analysis (SEA) is a well-known method to analyze the flow of acoustic
and vibration energy in a complex structure. The method is based on the power balance equa-
tion where energy in the divided subsystems must be reverberant. This study investigates the
application of SEA model in a non-reverberant acoustic space where the direct field compo-
nent dominates the total sound field rather than a diffuse field in a reverberant space. Here, a
corrected SEA model is proposed where the direct field component in the energy is removed
and the power injected in the subsystem considers only the remaining power after the loss at
first reflection. To validate the model, a measurement was first conducted in a box divided
into two rooms where the condition of reverberant and non-reverberant can conveniently be
controlled. In the case of a non-reverberant space where acoustic material was installed in-
side the wall of the experimental box, the signals are corrected by eliminating the direct field
component in the measured impulse response. Using the corrected SEA model, comparison
of the coupling loss factor (CLF) with the theory shows good agreement. Secondly, a test
was conducted in a car cabin where the front and rear cabins act as two separate subsystems.
A loudspeaker was first used to inject the sound energy into the subsystems and several mi-
crophones were located to measure the transfer function. The CLF and the damping loss
factor (DLF) were obtained using the classical SEA model. The corrected CLF and DLF
are then calculated using corrected SEA model after eliminating the direct field components.
The engine was then turned on to provide the input energy into the cabin. The sound power
transmitted into the cabin was measured and from here the sound pressure level (SPL) can
be obtained, either using the uncorrected CLF and DLF or using the corrected CLF and DLF.
The results were compared with the directly measured SPL showing that good agreement is
obtained from those using the corrected SEA model.
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ABSTRAK

Analisis Statistik Tenaga (SEA) merupakan satu kaedah yang terkenal untuk menganali-

sis aliran akustik dan getaran tenaga dalam struktur yang kompleks. Kaedah ini adalah

berdasarkan persamaan keseimbangan tenaga di mana tenaga dalam subsistem dibahagikan

mestilah yg bergema. Kajian ini menyiasat penggunaan model SEA di dalam ruang akustik

tanpa gema di mana komponen ’direct field’ dari sumber bunyi mendominasi jumlah medan

bunyi berbanding dengan medan resapan di dalam ruang yang bergema. Di sini, pem-

betulan terhadap model SEA dicadangkan di mana komponen ’direct field’ dalam tenaga

dikeluarkan dan kuasa disalurkan ke dalam subsistem hanya mempertimbangkan kuasa yang

tinggal selepas kehilangan pada pantulan pertama. Untuk megesahkan model tersebut, uku-

ran pertama dilaksanakan di dalam kotak yang mempunyai dua bilik di mana keadaan yg

bergema dan bukan yg bergema supaya mudah dikawal. Di dalam kes ruang yang tidak

bergema di mana bahan akustik telah dipasang di dalam dinding kotak eksperimen, isyarat

diperbetulkan dengan menghapuskan komponen ’direct field’ sebagai tindak balas impuls

yang diukur. Dengan menggunakan model SEA yang telah diperbetulkan, perbandingan ter-

hadap faktor kehilangan gandingan (CLF) menunjukkan persamaan yang sepadan dengan

teori. Kedua, pengukuran dijalankan di dalam kabin kereta dimana kabin depan dan kabin

belakang bertindak sebagai dua subsistem yang terpisah. Pembesar suara digunakan un-

tuk menyalurkan tenaga bunyi ke dalam subsistem dan beberapa mikrofon diletakkan untuk

mengukur fungsi pindah. Kemudian CLF dan faktor redaman kehilangan (DLF) diperoleh

daripada model SEA terdahulu. Seterusnya model SEA yang telah diperbetulkan digunakan

untuk memperbaharui CLF dan DLF yang diperoleh setelah komponen ’direct field’ diha-

puskan. Enjin dihidupkan untuk memberi input tenaga ke dalam kabin. Kuasa bunyi yang

dihantar ke dalam kabin diukur dan tahap tekanan bunyi (SPL) boleh diperoleh, sama ada

menggunakan kesemua CLF dan DLF yang diperbetulkan ataupun tidak. Perbandingan

dibuat dengan SPL yang diukur secara lansung menunjukkan bahawa keputusan tersebut

sepadan dengan model SEA yang diperbetulkan. Ini menunjukkan model SEA yang diper-

betulkan memberi ramalan yang lebih baik terhadap tahan tekanan bunyi (SPL) di dalam

kabin kereta.
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CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, noise and vibration performance is always a major issue for manufac-

turers around the world. Vibration is a phenomenon existing in a machine, such as vibrating

pumps, motors and washing machines as well as in a flexible structure of a car or an air-

plane body. The level of noise and vibration has become one of the subjective performance

indicators of a system. The problem of noise and vibration in vehicles for example, requires

more attention due to competitive marker and increasing customer awareness on low noise

emission either for quality comfort inside the vehicle or noise pollution to the environment.

Therefore, reduction of noise and vibration becomes important.

There are many methods to analyze the noise and vibration problem. The choice of the

right method is important to find a required result with minimum attempt and cost. Energy-

based methods can be considered as an effective method due to their techniques of using

energy quantities that is energy and power rather than quantities such as force and displace-

ment used by the classical analysis of vibration (Sarradj, 2004). Energy-based methods have

some advantages:

(a) The power-energy relation is not so sensitive to small parameter changes.

(b) Energy quantities can be averaged more easily.

Apart from the energy-based methods, Finite Element Analysis (FEA) and Boundary

Element Analysis (BEA) are very well known and are usually implemented for analysis of



noise and vibration at low frequency range. However, at high frequency range these methods

are not efficient for several reasons:

(a) Finer discretization in the model to cope with very small wavelength requires long com-

putational time.

(b) Require more details of structural pattern for a more complex structure.

One possible solution to solve the noise and vibration problems at mid to high fre-

quency is Statistical Energy Analysis (SEA). It describes a complex system in terms of a

network of connected subsystem, each of which has a resonant multi-modal response or,

equivalently, reverberant wave field. In SEA, no attempt is made to recover the detail dis-

placement pattern of the structure like FEA or BEA, but rather the structure is modelled as

an assembly of subsystems. The aim is to predict the ’average’ vibrational energy level of

each subsystem. This is done by establishing a set of power balance equations which are

based on the key assumption that the energy flow between two connected subsystems is pro-

portional to the difference in the subsystem modal energies (Fahy, 1994). Such ’average’ can

be achieved when the structural or acoustic wavelength is much smaller than the dimensions

of the corresponding structure or cavity.

Subsystems in SEA is defined as part of a system separated by boundaries across which

distinct discontinuities in physical properties exist, e.g thickness, mass density or volume.

Figure 1.1 shows division of car structure into three subsystems to predict the sound pressure

level in the cabin due to force applied on the bulkhead. The subsystems can be divided into

car cavity, windshield, and bulkhead. The noise in the cabin is expected to directly radiate

from the vibration of the bulkhead. Meanwhile, there is also propagating vibration wave

2



from the bulkhead to the windscreen causing the screen to vibrate and eventually radiate

noise into the cabin.

�
Figure 1.1 Illustration of subsystem division in the SEA model.

Because SEA is based on the statistical behaviour of the responses, therefore several

assumptions apply:

(a) Behaviour of the subsystem is dominated by resonances

A larger number of resonant modes in a frequency band smoothes the response spectra

and the spatial variation in the responses (provided that the damping in the subsystems

is not too large).

(b) Weak coupling between subsystems

This is to allow ’control’ of energy flow among the subsystems. In this case, the damping

in both subsystems should be much larger than the coupling between subsystems. This

means that almost all power dissipates in the excited subsystem and one subsystem does

not affect the other subsystems.

Figure 1.2 shows example of a frequency response function (FRF) compared with the

SEA prediction. At low frequency, the SEA can be seen to have large discrepancy with the

FRF. This is because at low frequency, the FRF has very low modal density noted by the

3
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Figure 1.2 Comparison between FRF and SEA predictions.

distinct peaks in the graph (in this example below 15 Hz). The FRF can be seen to approach

the SEA prediction at mid to high frequency as the modal density grows rapidly at higher

frequency.

Figure 1.3 shows the typical frequency response of a structural-acoustic system, indi-

cating frequency range of applicability for Finite Element Analysis (FEA), Boundary Ele-

ment Method (BEM) and Statistical Energy Analysis (SEA). The SEA is best to predict the

ensemble average at mid to high frequencies (Kenny, 2002).
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Figure 1.3 Frequency range response of FEA and SEA (ESI Group, 2010).

4



1.2 Past researches on the SEA model development and its application

Statistical Energy Analysis (SEA) was developed in 1960 by Lyon (1967) to predict the

response of launch vehicles to rocket noise and to overcome the limitations of computational

methods. He found that the power flow was proportional to the difference in uncoupled

energies of the resonators and that it always flow from the resonator of higher to lower

resonator energy. A complex structure was breached into subsystems and then stored and

exchanged vibrational energy between these subsystems were analyzed.

The coupling loss factor (CLF) is the most important SEA parameter to be obtained

from the SEA method. It represents how the energy flows from one subsystem to other sub-

systems. Good predictions of CLF is therefore critically important to obtain good estimation

of the noise and vibration in a system. Price and Crocker (1969) formulated the CLF be-

tween room and cavity, assuming that transmission from room to cavity is the same as trans-

mission from room to room. Cushieri and Sun (1994) presented a method for determinating

the dissipation and CLF from SEA model of a fully assembled machinery structure. The

method is based on the experimental measurements of the total loss factors and the energy

ratios between the subsystems of the machine structure when they are fully assembled. Yap

and Woodhouse (1996) investigated the effects of damping on energy sharing in coupled

systems. The approach taken is to compute the forced response patterns of various idealised

systems, and from these the parameters of the SEA model for the systems are calculated.

Mace (1998) predicted the coupling loss factor using SEA theory for systems consist-

ing of rectangular plates. It is found that if the damping is large enough (weak coupling)

the response is independent of the shape of the plates and for lighter damping (strong cou-

pling) the response depends significantly on the specific geometry of each plate. Skeen and

5
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