

CORRELATED SURVIVABILITY ANALYSIS MODEL FOR MANETS

AZNI HASLIZAN BINTI AB HALIM

DOCTOR OF PHILOSOPHY

2014

Faculty of Information and Communication Technology

CORRELATED SURVIVABILITY ANALYSIS MODEL FOR MANETS

Azni Haslizan binti Ab Halim

Doctor of Philosophy

2014

CORRELATED SURVIVABILITY ANALYSIS MODEL FOR MANETS

AZNI HASLIZAN BINTI AB HALIM

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

DECLARATION

I declare that this thesis entitled "Correlated Survivability Analysis Model for MANETS" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	AZNI HASLIZAN BT AB HALIM
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:
Supervisor Name	PROF MADYA DR RABIAH BT AHMAD
Date	:

DEDICATION

To my beloved husband and sons

ABSTRACT

Mobile ad hoc networks (MANETs) rely on collective nodes effort which requires node to be in cooperative behavior to continuously offer network services. Furthermore, node in MANETs shows correlated node behavior due to topology changes, node misbehavior or security attacks in which poses a significant impact on network survivability. However, correlated node behavior is not reflected as one of the metric in analyzing network survivability with current survivability models. The models did not represent real life scenario with the assumption made on individual node behavior. This limitation resulted inaccuracy when analyzing network survivability. To overcome the limitation of current research, this thesis presents a new network survivability analysis model which captures correlated node behavior to depict node behavior in MANETs and proposed a way to minimize the impact of correlated node behavior. Firstly, before network survivability analysis is modeled, a better understanding of dynamic characteristics of node behavior and its correlated behavior need to be studied and modeled. In this thesis, a merging of semi Markov process and Susceptible-Infection-Remove (SIR) epidemic theory is proposed to stochastically model correlated node behavior. To capture correlated node behavior, correlated degree is proposed in the model as a new metric to measure the impact of network survivability under correlated node behavior. Correlated node behavior model leads to a better understanding and prediction of the critical condition and the speed of spreading correlated node behavior to entire network. Network survivability under correlated node behavior is analyzed based on statistical method of multivariate survival analysis in medical research. The modification of Cox Proportional Hazard regression model in particular correlated hazard function is proposed to analyze the probability of correlated node behavior and to determine variables that significantly influence network survivability. The result on regression analysis shows energy consumption and correlated degree are the most significant variables that influence network survivability. Furthermore, probability of network survivability also can be determined. A new algorithm of topology formation is proposed with correlated degree metric to mitigate the impact of correlated node behavior on network performances. The simulation result shows that, with the new algorithm, energy consumption in MANETs can be balance which prolong node life time and increase network survivability. In addition, new algorithm also prevents network topology from partitioning. With new survivability analysis model, the status of network can be precisely measured and countermeasure can be done earlier to prevent network disruption.

ABSTRAK

Rangkaian ad hoc bergerak (MANETs) bergantung kepada kerjasama sekumpulan nod untuk menawarkan perkhidmatan rangkaian. Nod MANETs juga menunjukkan berlakunya korelasi tingkah laku nod disebabkan oleh perubahan topologi, salah laku nod atau serangan keselamatan di mana ia memberi impak yang sangat besar kepada kemandirian rangkaian. Walaubagaimanapun, korelasi tingkah laku nod tidak diambil kira sebagai salah satu metrik di dalam model menganalisa kemandirian rangkaian yang sedia ada. Model ini tidak menunjukan keadaan sebenar dengan hanya mengandaikan tingkah laku nod berlaku secara individu sahaja. Kekurangan ini menyebabkan kemandirian rangkaian tidak dapat dianalisa dengan tepat. Untuk mengatasi masalah ini, tesis ini menghasilkan model menganalisa kemandirian rangkaian dengan mengambil kira korelasi tingkah laku nod dan cara untuk meminimumkan impak korelasi tersebut. Pertama, sebelum kemandirian rangkaian dimodel, pemahaman terhadap tingkah laku nod dan cara terjadinya korelasi amatlah penting untuk diketahui. Di dalam tesis ini, penggabungangan di antara konsep semi Markov dan model epidemik "Susceptible Infection dan Remove" (SIR) dicadangkan di dalam model stokastik tingkah laku berkorelasi. Darjah korelasi (correlated degree) dicadangkan di dalam model untuk menunjukkan berlakunya korelasi sebagai metrik baru untuk mengukur kesan kepada kemandirian rangkaian. Model ini juga dapat memberi petunjuk tentang pemahaman dan ramalan pada keadaan genting. Ia juga dapat menentukan kepantasan tingkah laku korelasi ini tersebar ke seluruh rangkaian. Kemandirian rangkaian MANETs semasa situasi korelasi dianalisa menggunakan statistik kemandirian multivariate yang dipakai di dalam bidang perubatan. Berdasarkan model Cox Proportional Hazard regression, fungsi bahaya berkorelasi (correlated hazard function) diperkenalkan untuk menganalisa kebarangkalian berlakunya situasi korelasi dan untuk menentukan pembolehubah yang mempengaruhi kemandirian rangkaian. Keputusan analisa kemandirian rangkaian menunjukkan penggunaan tenaga dan darjah korelasi adalah pembolehubah yang paling penting dalam mempengaruhi kemandirian rangkaian. Satu algoritma baru untuk pembentukan topologi dicadangkan dengan menggunakan metrik darjah korelasi bagi memperbaiki kemandirian rangkaian MANETs apabila berlakunya tingkah laku korelasi. Ini penting untuk mengenal pasti nod genting dan berpotensi untuk berlakunya situasi korelasi. Penggunaan algoritma yang baru menunjukkan penggunaan tenaga di MANET dapat diselaraskan di mana ini akan memanjangkan jangka hayat nod dan meningkatkan kemandirian rangkaian. Algoritma ini juga dapat mencegah rangkaian dari berlakunya pecahan. Dengan adanya model analisa kemandirian rangkaian ini, status rangkaian dapat diketahui dengan tepat dan langkah balas dapat dilakukan untuk menghalang berlakunya perpecahan rangkaian.

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my supervisor, Associate Professor Dr Rabiah Ahmad, for her inspirational encouragements, supports and positive advices along the research, and to Dr. Zul Azri, for his continuous guidance. Both of them have contributed their invaluable time, knowledge and stimulating ideas to this research and have guided me in producing better academic publications. Also, thank you to my colleagues who shared their technical knowledge and gave friendly supports, namely, Dr. Siti Rahayu, Dr. Robiah, Azuwa, Feresa, Naqliyah and Hasrina.

This thesis will not be realized without the continuous love and support from my husband, my parents and my sons. You are the source of inspirations with the word of wisdoms who have always been there with me, supported my ups and downs along this journey; thank you for your love and sacrifices, for which I will always be grateful. I dedicate this thesis to all of you.

Finally, I would like to thank the Faculty of Information Technology and Communication, all the helpful administration staff for their friendly and warm support, and all of my new friends along this wonderful journey in Universiti Teknikal Malaysia Melaka (UTeM). This work will not be possible without the scholarship from the Ministry of Higher Education and from my employer, Universiti Sains Islam Malaysia (USIM). Thank you to all of you, and I hope I can return the favor in the future. My sincere apologies to anyone inadvertently omitted.

TABLE OF CONTENTS

PAGE

DEC	LAR	TION		
DED	ICAT	ION		
ABS	TRAC	СТ		i
ABS	TRAK	C C		ii
ACK	NOW	'LEDGI	EMENTS	iii
TAB	LE O	F CONT	TENTS	ix
LIST	r of 1	TABLES	5	vii
LIST	r of f	FIGURE	ES	ix
LIST	COF	PPENI	DICES	xi
LIST	r of s	SYMBO	LS	xii
LIST	COF A	BBRE	VIATIONS	xiv
LIST	r of f	UBLIC	CATIONS	XV
CHA	PTE	R		
1.	INTE	RODUC	TION	1
	1.1	Introd	uction	1
	1.2	Mobil	e Ad Hoc Network Characteristics	2
		1.2.1	Application of MANETs	4
		1.2.2	Research in MANETs	5
	1.3	Motiv	ation and Problem Description	6
		1.3.1	Research Questions	10
		1.3.2	Research Objectives	11
	1.4	Contri	butions	11
	1.5	Thesis	organization	12
2.	SYST	ГЕМАТ	TIC LITERATURE REVIEW	15
	2.1	Introd	uction	15
	2.2	Review	w Methods	17
		2.2.1	Formulating Research Questions	17
		2.2.2	Search Process	19
		2.2.3	Inclusion-Exclusion Criteria	20
		2.2.4	Data Extraction and Quality Assessment	21
	2.3	Result	S	22
		2.3.1	Selected Studies	22
		2.3.2	Network Survivability Research	23
		2.3.3	Network Survivability Modeling	27
		2.3.4	Research Limitations	37
	2.4	Analy	sis and Discussion	39
		2.4.1	Correlated Node Behavior	39
		2.4.2	Survival Analysis in Ad Hoc Networks	43
	2.5	Summ	ary	45

3.	RES	EARCH METHODOLOGY	46
	3.1	Introduction	46
	3.2	Research Design	46
	3.3	Research Process	50
		3.3.1 Phase 1: Problem Formulation	51
		3.3.2 Phase 2: Modeling and Analysis	52
		3.3.3 Phase 3: Survivability Design	53
		3.3.4 Phase 4: Survivability Evaluation and Validation	54
		3.3.5 Phase 5: Discussion and Conclusion	54
	3.4	Simulation Design	55
	3.5	Summary	58
4.	COF	RRELATED NODE BEHAVIOR MODELING	59
	4.1	Introduction	59
	4.2	Node Behavior	60
		4.2.1 Node Behavior Characteristics	61
	4.3	SIR-Correlated Node Behavior Model	62
		4.3.1 Stochastic Properties of Endogenous Node Behavior	63
		4.3.2 Model Parameters	65
		4.3.3 SIR Epidemic Model	67
		4.3.4 Node Critical Condition	71
	4.4	Performance Evaluation	72
		4.4.1 Simulation Setup	72
		4.4.2 Correlated Node Behavior Analysis	73
		4.4.3 Critical Condition Analysis	79
		4.4.4 Network Parameters Analysis	81
	4.5	Model Validation	85
	4.6	Summary	87
5.	SUR	VIVABILITY ANALYSIS FOR CORRELATED NODE	89
	SEH	LAVIOR Introduction	20
	5.1 5.2	Introduction	09 00
	5.2	Survivability Analysis	90
	5 2	5.2.1 Multivariate Survival Analysis	91
	5.5	Proposed K-Correlated Survivability Model	94
		5.3.1 Correlated Events Process	94
	- 4	5.3.2 Correlated Hazard Function	95
	5.4	Simulation Setup	99
	5.5	Result and Analysis	102
		5.5.1 Covariate Analysis	102
	5 (5.5.2 Bland-Altman Model Validation	109
	5.6	Summary	112
6.	COF	RRELATED TOPOLOGY CONTROL ALGORITHM FOR	
	SUR	VIVAL NETWORK	113
	6.1	Introduction	113

	6.2	Propos	sed Correlated Topology Control Algorithm	114
		6.2.1	Overview	114
		6.2.2	Stage 1: Neighborhood Discovery	115
		6.2.3	Stage 2: Node Topology Update	118
	6.3	Simula	ation Setup	121
	6.4	CTC P	Performance Evaluation	122
		6.4.1	Energy Consumption	126
		6.4.2	Load Distribution	128
		6.4.3	Packet Forwarding Ratio	129
	6.5	Netwo	rk Survivability Evaluation	130
		6.5.1	K-correlated Survivability Analysis	130
		6.5.2	The Effect of Correlated Degree	132
	6.6	Summ	ary	133
7.	CON	ICLUSI	ON AND FUTURE WORKS	134
	7.1	Introdu	uction	134
	7.2	Conclu	uding Remarks	134
	7.3	Future	Works	138
		7.3.1	Extending Correlated Node Behavior Model	138
		7.3.2	Survival Analysis in Heterogenous Networks	138
		7.3.3	CTC Application in Differnet Protocols and Real	139
			Environment	
RE	FERE	NCES		140
AP	PEND	ICES		161

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Application of MANETs	4
2.1	Research questions in SLR	18
2.2	Inclusion criteria	21
2.3	Exclusion criteria	21
2.4	Quality assessment checklists	22
2.5	List of publications by quality assessment score	25
2.6	Qualitative survivability methods	29
2.7	Quantitative survivability methods	29
2.8	Index vs. Metrics/Parameters	34
2.9	The relationship of factors effecting survivability metrics	37
2.10	Survival analysis vs. Survivability analysis	44
3.1	Network simulation setup	57
4.1	Node behavior and its characteristic	61
4.2	Correlated event mapped with node behavior state and SIR	
	rate	68
4.3	Network simulation setup	72
4.4	Comparison of standard deviation for selfish node behavior	87
4.5	Comparison of standard deviation for malicious node	
	behavior	87
5.1	Covariates and variables of infection events	97
5.2	Covariate estimation for Semi Markov node behavior	
	transition	101
5.3	Correlated degree estimation	101
5.4	Coefficients, standard error, p values and 95% confidence	
	interval	107
5.5	Correlated hazard ratio Vs. Uncorrelated hazard ratio	108

5.6	Mean and standard deviation: k-correlated survivability	
	model vs. k-connectivity model	109
5.7	t-test for two paired sample/two tail-test : Correlated hazard	
	model	110
6.1	Eigenvalue λ_2 for Laplacian matrix from CTC Algorithm	125
6.2	Percentage of the load distribution in standard AODV and	
	CTC algorithm	129

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Classifications of wireless networks	2
1.2	MANETs topology	- 3
2.1	The steps in SLR method.	17
2.2	Search process for SLR	20
2.3	Search process with number of articles	23
2.4	Articles publications (Year 2000-2013)	24
2.5	Survivability model distribution	28
2.6	Taxonomy of survivability model	32
2.7	Correlated node behavior	41
3.1	Steps in mathematical modeling	47
3.2	Steps in simulation study	49
3.3	Research methodology	50
4.1	Node behavior transition	62
4.2	Semi-Markov process for node behavior	64
4.3	Ad hoc network model with SIR	68
4.4	Susceptible event (<i>t</i> =0)	74
4.5	Infection (selfish) event ($t=10$)	76
4.6	Selfish event with $\beta_s = 0.5$, $\gamma_s = 0.2$ and $d = 5$	78
4.7	Malicious event with $\beta_m = 0.6, \gamma_m = 0.1$ and $d = 5$	78
4.8	Critical condition $\theta = 3.3$ with $\beta_s = 0.5$, $\gamma_s = 0.2$ and $d = 5$	80
4.9	Critical condition $\theta = 0.2$ with $\beta_s = 0.2$, $\gamma_s = 0.2$ and $d = 5$	80
4.10	Selfish node $\beta_s = 0.5$, $\gamma_s = 0.2$ vs. d	81
4.11	Malicious node $\beta_m = 0.6, \gamma_m = 0.1$ vs. d	82
4.12	Selfish and malicious node vs mobility	83
4.13	The effect of energy to susceptible event	84

4.15 Probability of nodes become selfish nodes 4.16 Probability of nodes become malicious nodes 5.1 Survival time interval for correlated event 5.2 The correlated hazard function in extended Cox model 5.3 A plot of correlated event for ad hoc network data set 1 5.4 Survival distribution function: Correlated malicious node vs. Correlated selfish node 1 5.5 Estimated correlated hazard function vs hazard function 1 5.6 Scatter plot k-correlated survivability model 1 5.7 Pearson correlation coefficient 1 6.1 MANETs with standard AODV 1 6.2 MANETs generated by CTC algorithm 1 6.3 Graph cut and Laplacian matrix from CTC algorithm 1 6.4 Energy consumption 1 6.5 Numbers of cooperative nodes 1 6.6 Energy distributions with different node degree 1 6.7 Packet forwarding ratio vs. misbehave node ratio 1 6.8 <i>K</i> -correlated survivability 1 6.9 The probabilistic of <i>k</i> -correlated survivability vs correlated	4.14	The effect of energy to infective event (malicious node)	84	
4.16 Probability of nodes become malicious nodes 5.1 Survival time interval for correlated event 5.2 The correlated hazard function in extended Cox model 5.3 A plot of correlated event for ad hoc network data set 1 5.4 Survival distribution function: Correlated malicious node vs. 1 5.4 Survival distribution function: Correlated malicious node vs. 1 5.5 Estimated correlated hazard function vs hazard function 1 5.6 Scatter plot k-correlated survivability model 1 5.7 Pearson correlation coefficient 1 6.1 MANETs with standard AODV 1 6.2 MANETs generated by CTC algorithm 1 6.3 Graph cut and Laplacian matrix from CTC algorithm 1 6.4 Energy consumption 1 6.5 Numbers of cooperative nodes 1 6.6 Energy distributions with different node degree 1 6.7 Packet forwarding ratio vs. misbehave node ratio 1 6.8 K-correlated survivability 1 6.9 The probabilistic of k-correlated survivability vs correlated	4.15	Probability of nodes become selfish nodes 8		
5.1 Survival time interval for correlated event 5.2 The correlated hazard function in extended Cox model 5.3 A plot of correlated event for ad hoc network data set 1 5.4 Survival distribution function: Correlated malicious node vs. Correlated selfish node 1 5.5 Estimated correlated hazard function vs hazard function 1 5.6 Scatter plot k-correlated survivability model 1 5.7 Pearson correlation coefficient 1 6.1 MANETs with standard AODV 1 6.2 MANETs generated by CTC algorithm 1 6.3 Graph cut and Laplacian matrix from CTC algorithm 1 6.4 Energy consumption 1 6.5 Numbers of cooperative nodes 1 6.6 Energy distributions with different node degree 1 6.7 Packet forwarding ratio vs. misbehave node ratio 1 6.8 K-correlated survivability 1 6.9 The probabilistic of k-correlated survivability vs correlated 1	4.16	Probability of nodes become malicious nodes	86	
5.2The correlated hazard function in extended Cox model5.3A plot of correlated event for ad hoc network data set15.4Survival distribution function: Correlated malicious node vs. Correlated selfish node15.5Estimated correlated hazard function vs hazard function15.6Scatter plot k-correlated survivability model15.7Pearson correlation coefficient16.1MANETs with standard AODV16.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	5.1	Survival time interval for correlated event	95	
5.3A plot of correlated event for ad hoc network data set15.4Survival distribution function: Correlated malicious node vs. Correlated selfish node15.5Estimated correlated hazard function vs hazard function15.6Scatter plot k-correlated survivability model15.7Pearson correlation coefficient16.1MANETs with standard AODV16.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	5.2	The correlated hazard function in extended Cox model	99	
5.4Survival distribution function: Correlated malicious node vs. Correlated selfish node15.5Estimated correlated hazard function vs hazard function15.6Scatter plot k-correlated survivability model15.7Pearson correlation coefficient16.1MANETs with standard AODV16.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	5.3	A plot of correlated event for ad hoc network data set	103	
Correlated selfish node15.5Estimated correlated hazard function vs hazard function15.6Scatter plot k-correlated survivability model15.7Pearson correlation coefficient16.1MANETs with standard AODV16.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	5.4	Survival distribution function: Correlated malicious node vs.		
5.5Estimated correlated hazard function vs hazard function15.6Scatter plot k-correlated survivability model15.7Pearson correlation coefficient16.1MANETs with standard AODV16.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1		Correlated selfish node	104	
5.6Scatter plot k-correlated survivability model15.7Pearson correlation coefficient16.1MANETs with standard AODV16.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	5.5	Estimated correlated hazard function vs hazard function	106	
5.7Pearson correlation coefficient16.1MANETs with standard AODV16.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	5.6	Scatter plot k-correlated survivability model	111	
6.1MANETs with standard AODV16.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	5.7	Pearson correlation coefficient	111	
6.2MANETs generated by CTC algorithm16.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	6.1	MANETs with standard AODV	112	
6.3Graph cut and Laplacian matrix from CTC algorithm16.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	6.2	MANETs generated by CTC algorithm	123	
6.4Energy consumption16.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated	6.3	Graph cut and Laplacian matrix from CTC algorithm	123	
6.5Numbers of cooperative nodes16.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated1	6.4	Energy consumption	126	
6.6Energy distributions with different node degree16.7Packet forwarding ratio vs. misbehave node ratio16.8K-correlated survivability16.9The probabilistic of k-correlated survivability vs correlated	6.5	Numbers of cooperative nodes	127	
 6.7 Packet forwarding ratio vs. misbehave node ratio 6.8 <i>K</i>-correlated survivability 6.9 The probabilistic of <i>k</i>-correlated survivability vs correlated 	6.6	Energy distributions with different node degree 12		
 6.8 <i>K</i>-correlated survivability 6.9 The probabilistic of <i>k</i>-correlated survivability vs correlated 	6.7	Packet forwarding ratio vs. misbehave node ratio	130	
6.9 The probabilistic of <i>k</i> -correlated survivability vs correlated	6.8	K-correlated survivability	131	
	6.9	The probabilistic of k-correlated survivability vs correlated		
degree		degree	132	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Initial network configuration in ns2	161
В	Gawk code run on the trace file	165
С	Statistical data on hazard ratio for malicious node	173
D	Statistical data on correlated hazard ratio for	
	malicious node	175
Е	Statistical data on hazard ratio for selfish node	177
F	Statistical data on correlated hazard ratio for	
	selfish node	179
G	Statistical Data for Bland Altman	181

xi

LIST OF SYMBOLS

т	-	Malicious
С	-	Cooperative
S	-	Selfish
f	-	Fail
r	-	Radius
d	-	Node degree
А	-	Probability of dropping
В	-	Probability of forwarding
С	-	Probability of injecting
D	-	Probability of loss
t	-	Time
S	-	Susceptible
Ι	-	Infection
R	-	Removed
P_{ij}	-	Transition probabilities from state <i>i</i> to <i>j</i>
CDF	7 _	Cumulative Distribution Function
CTM	1-	Correlated Transmission Matrix
T_{ij}	-	Sojourn time from state <i>i</i> to <i>j</i>
\mathbb{F}	-	Transition time distribution matrix
$\tilde{\pi}$	-	Steady-state transition probability distribution
$E[T_i]$	_j]-	Expected sojourn time from state i to j
δ	-	Susceptible rate

β -	Infection rate
λ -	Remove rate
N -	Number of node
$\omega(e)$ -	Weight function
Ω -	Set of node behavior
Z(t) -	Stochastic process
X_n -	Embedded Markov chain
a_{uv} -	Adjacent matrix
ψ -	Correlated degree
θ -	Critical condition threshold
$S_{uv}(t)$ -	Survival function
$h_{ij}(t)$ -	Hazard function
$H_{ij}(t)$ -	Cumulative hazard function
$h_C(t)$ -	Hazard function for node in cooperative state
$h_M(t)$ -	Hazard function for misbehave node
$h_w(t)$ -	Correlated hazard function
Dst_u -	Euclidian distance node u
ψw -	Diagonal matrix of $W(t)$
D(t) -	Node degree matrix
W(t) -	Weighted matrix
$W_cSet(u)$ -	Correlated cooperative set
$\omega_{uv}(t)$ -	Correlated node cooperativity
λ_2 -	Eigenvalue

LIST OF ABBREVIATIONS

ACM	-	Association for Computing Machinery
AODV	-	Ad hoc On-Demand Distance Vector
CTC	-	Correlated Topology Control
DoS	-	Denial of Service
ICT	-	Information and Communication Technology
IEEE	-	Institute of Electrical and Electronics Engineers
MANETS	-	Mobile Ad hoc Networks
MOSTI	-	Ministry of Science, Technology and Innovation
MTTF	-	Mean Time to Failure
QoS	-	Quality of Services
RFID	-	Radio-frequency identification
SAODV	-	Secure Ad hoc On-Demand Distance Vector
SIR	-	Susceptible-Infected-Removed
SLR	-	Systematic Literature Review
SRP	-	Secure Routing Protocol
TPM	-	Transition Probability Matrix
VANETS	-	Vehicular Ad Hoc Networks
WSN	_	Wireless Sensor Networks

LIST OF PUBLICATIONS

Azni, A. H., Ahmad, R., & Noh, Z. A. M., Resilience and Survivability in MANETS: Discipline, Issues and Challenges, *3rd International Conference on Computing and Informatics, ICOCI 2011*, 8-9 June, 2011 Bandung, Indonesia.

Azni, A. H., Ahmad, R., Noh, Z. A. M., Basari, A. S. H., & Hussin, B., Correlated Node Behavior Model Based on Semi Markov Process for MANETS, *International Journal of Computer Science Issues (IJCSI)*, Volume 9, Issue 1, January 2012.

Azni, A. H., Ahmad, R., & Noh, Z. A. M., Correlated Node Behavior in Wireless Ad Hoc Networks: An Epidemic Model, *IEEE The 7th International Conference for Internet Technology and Secured Transactions (ICITST-2012)*, 10-12 December 2012, London, UK, IEEE.

Azni, A. H., Ahmad, R., & Noh, Z. A. M., Correlated Node Behavior Modeling Approach for Evaluating Survivability in Ad Hoc Networks, *3rd International Conference on Cryptology & Computer Security 2012 (cryptology2012),* 4-6 June 2012, Langkawi, Malaysia.

Azni, A. H., Ahmad, R., & Noh, Z. A. M., Survivability Modeling and Analysis of Mobile Ad Hoc Network with Correlated Node Behavior, *Procedia Engineering*, Volume 53, 2013, Pages 435-440, ISSN 1877-7058

Azni, A. H., Ahmad, R., & Noh, Z. A. M., Epidemic Modeling for Correlated Node Behavior in Ad Hoc Networks, *International Journal of Chaotic Computing (IJCC)*, Volume 1, 2013 Issues 1 and 2, ISSN 2046-3332. Azni, A. H., Ahmad, R., & Noh, Z. A. M., Modeling Stochastic Correlated Node Behavior for Survivability in Ad Hoc Networks, *International Journal of Cryptology Research*, UPM, Volume 4(1), Pages 1-16, 2013 ISSN 1985-5753.

Azni, A. H., Ahmad, R., & Noh, Z. A. M, Merging of Epidemic SIR Model and Semi Markov for Correlated Node Behavior in MANETs, *International Conference on Applied Mathematics and Computational Methods*, September 28-30, 2013, Venice, ITALY. ISBN: 978-1-61804-208-8

Azni, A. H., Ahmad, R., & Noh, Z. A. M, Multivariate Survival Analysis for Correlated Node Behavior in MANETS, *International Conference on Information Science & Applications*, May 6-9th 2014, SEOUL, KOREA, IEEE.

Azni, A. H., Ahmad, R., & Noh, Z. A. M, A 3-D Markov Chain Correlated Algorithm for MANETS. 2012 International Conference on Computer & Information Science (ICCIS), Vol. 2, pp. 649-653. IEEE.

CHAPTER 1

INTRODUCTION

1.1 Introduction

The usage of wireless technology has tremendously increased due to the rapid proliferation of wireless lightweight devices such as laptops, PDAs, wireless telephones, and wireless sensors. It started in the early 2000s when mobile devices converged with web services to deliver information at the fingertips (Kumar & Mishra 2012). Since then, the technology has changed the way people work, live and think. Now that wireless technology offers high-rate data transmission services provided by the current 4G networks, the usage and the dependence on mobile networks are becoming unpredictably high. There is no doubt that wireless devices offer convenient and flexible network access for the users to communicate anytime and anywhere in the areas covered by the networks. Thus, the dependency of wireless device claims for high level of reliability, survivability and security on transactions supported by wireless distributed systems.

Wireless networks infrastructures are formed by routers and hosts. The routers are responsible for forwarding packets in the network and the hosts may be the sources or the sinks of data flows (Nicholals & Lekkas 2002). In wireless networks, the routers may be static or mobile. Static routers use an access point to connect to the backbone networks. On the other hand, mobile routers use a device known as a mobile node as a router. The network with a static router is categorized as infrastructure-based and the network with a mobile router is categorized as infrastructureless. Nowadays, researchers are more interested in the infrastructureless network or better known as a wireless ad hoc network such as the Mobile Ad hoc Networks (MANETs), Wireless Sensor Networks (WSN), RFID and the Vehicular Ad Hoc Networks (VANETs). This is due to the demands on the frequently connected applications offered by these networks. A report by the Ministry of Science, Technology and Innovation (MOSTI) Malaysia under the Strategic ICT roadmap (2008) highlighted that the wireless ad hoc network is one of the Malaysian government's initiatives towards ubiquitous network society. Figure 1.1 below shows the classification of wireless network in detail. The focal point of this PhD research is in the area of MANETs. Hence, this section focuses on the discussions related to the issues of MANETs.

Figure 1.1 : Classifications of wireless networks

1.2 Mobile Ad Hoc Network Characteristics

The mobile ad hoc network (MANETs) is an example of a wireless distributed system. It composes of autonomous system of mobile routers and associated hosts connected by wireless links (Sharma & Ghose 2010). The objective of MANETs is to provide ubiquitous platform for user-friendly easy access connections in daily life for a knowledge society (*K*-society). Figure 1.2 shows MANETs topology for communication.