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ABSTRACT 

 

 

Increasing demand for accuracy and precision in machine tools application has placed 

greater pressure on researchers and machine developers for better products performance. 

Several factors that have been identified in literature that could affect machine 

performance are the active presence of disturbance forces such as cutting forces and 

friction forces. This research focuses only on the effect of friction forces as disturbance in 

a positioning system. “Spikes” on milled surface are normally observed in computer 

numerical control machine based on recent research and analysis. These “spikes” are 

known as quadrant glitches and is mainly due to the friction forces, which is an undesirable 

and nonlinear phenomenon that cannot be avoided during positioning process. The main 

objective of this research is the compensation of these friction forces to improve tracking 

performance of system by utilizing two different approaches, namely; non-model based 

method and friction model-based feedforward method. Two controllers, namely, 

proportional-integral-derivative (PID) controller and nonlinear PID (N-PID) controller, 

were designed, implemented and validated as non-model based technique to compensate 

friction forces on a XYZ-Stage, which is a fundamental block of a milling machine. In 

friction model-based method, two friction models, namely; static friction model and 

Generalized Maxwell-slip (GMS) model, were identified, modeled and applied as friction 

model-based feedforward. The system frequency response function was identified using a 

data acquisition unit, dSPACE 1104 with MATLAB software and H1 estimator, a 

nonlinear least square frequency domain identification method. Parameters for static 

friction and GMS model were identified using heuristic method and virgin curve 

respectively. PID and N-PID controllers were designed based on traditional loop shaping 

frequency domain approach and Popov stability criterion respectively. Numerical 

simulation and experimental validation for non-model based method showed that N-PID 

controller provided 25.0% improved performance in terms of quadrant glitches magnitude 

reduction than the PID controller. This is due to its automatic gain adjustment based on the 

chosen nonlinear function. For friction model-based feedforward method, the static friction 

model produced 95.9% reduction in tracking errors using PID controller and 95.8% 

reduction using the N-PID controller. For GMS friction model feedforward, the quadrant 

glitches magnitude was reduced by 33.3% using PID controller and 30.0% while using the 

N-PID controller. Finally, a combined feedforward of static and GMS friction models with 

the N-PID controller has resulted in the best performance that was a 96.5% reduction in 

tracking errors, and a 50.0% reduction in quadrant glitches magnitude. It is concluded that 

this combined approach would benefits to machine tools manufacturers and users as it 

improves the tracking performance as well as precision especially during circular motion 

and low tracking velocity.  
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ABSTRAK 

 

 

Peningkatan permintaan terhadap ketepatan dan kepersisan dalam aplikasi perkakasan 

mesin sering membebankan para penyelidik dan pengeluar mesin untuk mendapatkan 

prestasi produk yang lebih baik. Antara faktor-faktor yang dikenalpastikan dapat 

mempengaruhi prestasi mesin dalam hasil-hasil kajian lepas ialah kewujudan daya-daya 

gangguan seperti daya pemotongan dan daya geseran. Penyelidikan ini hanya fokus 

terhadap kesan-kesan daya geseran sebagai gangguan dalam sistem keposisian. 

Berdasarkan kajian and analisa baru-baru ini,“spikes” atas permukaan kisaran hasil 

mesin kawalan berangka computer biasanya dapat diperhatikan. “Spikes” ini adalah 

dikenali sebagai “glic” sukuan dan diakibatkan oleh suatu situasi yang tidak sekata, tidak 

diinginkan dan tidak dapat dielakkan ketika proses keposisian, iaitu daya geseran. Objektif 

utama penyelidikan ini ialah pengurangan daya geseran ini untuk meningkatkan prestasi 

sistem melalui penggunaan dua pendekatan yang berbeza, iaitu kaedah bukan berasaskan 

model dan kaedah suap depan model geseran. Dua jenis pengawal, iaitu pengawal 

“proportional-integral-derivative” (PID) dan pengawal PID tidak linear (N-PID) direka, 

dilaksanakan dan disahkan sebagai teknik bukan berasaskan model untuk mengimbangi 

daya geseran di XYZ-Stage yang merupakan blok asas mesin pengisaran. Dua jenis model 

geseran, iaitu model geseran statik dan model “Generalized Maxwell-slip” (GMS) telah 

dikenalpastikan, dimodelkan dan digunakan sebagai teknik model geseran suap depan. 

Fungsi respon frekuensi sistem dikenalpastikan dengan menggunakan unit perolehan data, 

iaitu dSPACE 1104 bersama MATLAB dan anggaran H1, iaitu teknik “nonlinear least 

square frequency domain”. Parameter-parameter model geseran statik dan model GMS 

telah dikenalpastikan menggunakan kaedah heuristik manakala parameter-parameter 

model GMS dikenalpastikan melalui “virgin curve”. Pengawal PID telah direka 

berdasarkan “loop shaping” dalam domain frekuensi manakala pengawal N-PID telah 

direka berdassarkan kriteria kestabilan Popov. Simulasi dan pengesahan eksperimen 

menunjukkan bahawa kawalan N-PID memberi 25.0% prestasi yang lebih baik dari segi 

pengurangan sukuan glic kerana pelarasan gandaan secara automatik berdasarkan fungsi 

tidak linear yang terpilih. Untuk teknik suap depan model geseran pula, model geseran 

statik telah mengurangkan 95.9% ralat apabila menggunakan pengawal PID dan 95.8% 

ketika menggunakan pengawal N-PID. Dalam kes suap depan model GMS, sukuan “glic” 

dikurangkan sebanyak 33.3% dengnan menggunakan pengawal PID manakala 30.0% 

ketika menggunakan pengawal N-PID. Akhirnya, suap depan kombinasi kedua-dua model 

geseran bersama pengawal N-PID menghasilkan prestasi yang terbaik iaitu pengurangan 

ralat sebanyak 96.5% dan pengurangan sukuan “glic” sebanyak 50.0%. Kesimpulannya, 

kaedah kombinasi antara pengawal N-PID dan suap depan model-model geseran akan 

membawa faedah-faedah kepada para pembuat and pengguna perkakasan mesin kerana 

kemampuannya dalam meningkantkan prestasi dan kepersisan ketika pergerakan dalam 

bentuk bulatan dan halaju yang rendah. 
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