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ABSTRACT 

 

 

In many industrial Variable Speed Drives (VSD) applications require that the Voltage 
Source Pulse Width Modulation (PWM) Inverter and the motor be at separate locations, 
often resulting in long motor leads, high voltage oscillation at the motor terminal, increase 
harmonics content and affect the overall motor speed performance. To our knowledge, a 
detailed investigation of the impact of various cable lengths over speed response has not 
been reported in the literature. Therefore, the research focuses on investigation and 
evaluation of the performance of a Vector Controlled Sinusoidal Permanent Magnet 
Synchronous Motor (SPMSM) drive, controlled by PI speed controller and FL speed 
controller for different cable lengths conditions. Current control is performed in the 
stationary reference frame, using hysteresis current controllers. The scope of research is 
focusing on low speed operation based on simplified 9 rules Fuzzy Logic speed controller 
and tested for tested 100 meter maximum cable lengths and 1.1kW SPMSM. The drive is 
modeled, simulated and implemented using MATLAB, SIMULINK and FUZZY LOGIC 
Toolboxes. The experimental study is carried out based on dSPACE hardware platform for 
validating the simulation results. PI and Fuzzy Logic speed controllers are designed and 
tuned to obtain the best performance with criteria less than 0.72% overshoot and ±0.1 
steady state error are acceptable. All the controller parameters are fixed based on designed 
case study for overall simulation and experimental studies. The overshoot/undershoot, 
settling time and rise time of the speed response are used to evaluate the controller 
performance. The simulation and experimental results have showed that the speed response 
and load rejection are degraded due to variation in cable length and increase of motor 
inertia. The proposed Fuzzy Logic has demonstrated better performance in term of step 
speed command, load rejection capability and THD compare with the results obtained from 
PI speed controller for different cable length conditions. The THD of the three-phase stator 
current is increased when motor is connected with longer cable. Fuzzy Logic speed 
controller shows better THD of stator currents as compare to PI speed controller where the 
THD was remain constant even cable length was increasing. When switching frequency of 
the Hysteresis PWM is increased, the stator currents will be closer to sinusoidal and 
indirectly reduced the %THD of the drives. Study on variable speed drive performance 
versus different cable length can be further investigated for medium and high motor speed 
commands operation.  
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ABSTRAK 

 

 

Didalam kebanyakan aplikasi pemacu bolehubah kelajuan (VSD) memerlukan 
Penyongsang Modulasi Lebar Denyut dan motor berada pada lokasi yang terpisah, 
selalunya menyebabkan kabel motor yang panjang, ayunan voltan tinggi pada punca 
motor, kenaikan kandungan harmonic dan memberi kesan prestasi keseluruhan kelajuan 
motor. Berdasarkan pengalaman kami, penyiasatan yang terperinci bagi kesan pelbagai 
panjang kabel keatas sambutan kelajuan tidak pernah dilaporkan dalam kajian. Oleh itu, 
penyelidikan ini tertumpu pada kajian dan penilaian bagi pemacu Kawalan Vektor Motor 
Segerak Magnet Kekal (SPMSM) yang dikawal oleh pengawal kelajuan PI dan pengawal 
kelajuan Logik Kabur FL terhadap untuk keadaan panjang kabel yang berbeza. Kawalan 
arus dilakukan dalam kerangka rujukan pegun, menggunakan pengawal arus hysteresis. 
Skop penyelidikan tertumpu pada operasi kelajuan rendah berdasarkan kepada pengawal 
kelajuan Logik Kabur dimudahkan 9 aturan dan diuji untuk panjang maksima 100 meter 
dan 1.1kW SPMSM. Pemacu motor dimodel, disimulasi dan dilaksanakan menggunakan 
MATLAB, SIMULINK dan FUZZY LOGIC Kotakalat. Kajian ujikaji dijalankan 
berdasarkan pelantar perkakasan dSPACE untuk mengesahkan keputusan simulasi. 
Pengawal kelajuan PI dan Logik Kabur yang telah direkabentuk dan tertala untuk 
mendapatkan prestasi yang terbaik dengan kriteria lebih kecil dari 0.72% lanjak dan 
±0.1  ralat keadaan mantap yang diterima. Kesemua parameter pengawal ditetapkan 
berdasarkan kepada kes rekabentuk bagi keseluruhan kajian simulasi dan ujikaji. Lajakan 
naik/lajakan turun, masa pengenapan dan masa naik bagi sambutan kelajuan digunakan 
untuk penilai prestasi pengawal. Keputusan simulasi dan ujikaji telah menunjukkan 
bahawa sambutan kelajuan dan penolakan beban adalah menyusut disebabkan perubahan 
panjang kabel dan pertambahan inersia motor. Logik Kabur yang dicadangkan telah 
menunjukkan prestasi lebih baik dari segi rujukan kelajuan langkah, kebolehan penolakan 
beban dan THD berbanding dengan keputusan yang diperolehi dari pengawal kelajuan PI 
untuk keadaan panjang kabel yang berbeza. THD bagi arus stator tiga-fasa adalah menaik 
apabila motor disambung kepada kabel panjang. Pengawal Logik Kabur menunjukkan 
THD lebih baik bagi arus stator berbanding kepada pengawal kelajuan PI dimana THD 
tetap malar walaupun panjang kabel ditambah. Apabila frekuensi pensuisan bagi PWM 
Histeresis dinaikkan, arus stator lebih mirip sinusoid dan secara tidak langsung akan 
mengurang %THD bagi pemacu. Kajian prestasi keatas pemacu bolehubah kelajuan 
melawan panjang kabel yang berbeza boleh dilanjukkan kajiannya pada rujukan kelajuan 
motor yang sederhana dan tinggi.   
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 Background of High Performance AC Drives 

Variable-speed drives are continuously innovated. Their development is 

characterized by the progress made in various areas including power and microelectronics, 

control systems, magnetic materials, modern communication technologies (e.g. for ultra-

fast bus communications), etc. The DC drives became an absolute selection in motion 

industry since their flux and torque can be controlled easily by the field and armature currents. 

The torque of the DC drives is controlled via the armature current while maintaining the field 

component constant, thus fast torque can be achieved easily. As the consequence, the DC 

drives extensively used in wide-ranging of applications which require speed and position 

control with high dynamic performance and high precision characteristics. The disadvantage of 

the DC drives mainly due to existence of the commutator and brushes in the DC motor which 

used to obtain the flux and torque components to be always perpendicular to one another, 

which require periodic maintenance. However, these problems can be overcome by the 

application of ac motors, which can have simple and rugged structure, high maintainability 

and economy. AC motors are more robust and immune to heavy overloading compare to 

DC motor (Rashid, 2001). Among the various ac drive systems, those which contain the 

squirrel cage induction motor have a particular cost advantage. At present the cage 

induction motor is the most frequently used motor in industry. This is due to the fact that it 

is simple, rugged, requires only low maintenance and is one of the cheapest machines 

available at all power ratings. However, permanent magnet synchronous motor (PMSM) 

drives are used in many applications and receiving increased attention because of their 
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high torque density, high efficiency, and small size. The PMSM is preferable in industrial 

servo applications compare to the DC motor due to considerations of the cost, low 

maintenance, maximum speed capability, size and simplicity of design (Patil, Chile, & 

Waghmare, 2010). 

With the rapid development in microprocessor, the high performance DSP chip 

becomes a popular research on digital control for ac drives due to their high-speed 

performance, simple circuitry, on-chip peripherals of a micro-controller into a single chip 

solution (Kung & Huang, 2004). The experimental results demonstrate that in step 

command response and frequency command response, the rotor position of SPMSM can 

fast track the prescribed dynamic response well. However, the whole system required a 

complicated operation of the proposed control algorithm, programming and difficulty on 

control design modification. However, in (Amamra, Barazane, Boucherit, & Cherifi, 2010) 

has shown the practical feasibility of the proposed approach that allows robust control of 

the induction. The control algorithm is built within Simulink environment combined with 

the Real- Time Interface (RTI) provided by dSPACE and is implemented by the main 

processor of the DS-1103 board in real-time. The combination of dSPACE DS1103 DSP 

and MATLAB/Simulink effectively created a rapid control prototype environment, in 

which the designer focused on control design rather than programming details or 

debugging control languages.  

In recent years various speed and position sensorless control schemes have been 

developed for variable-speed ac drives. The main reasons for the development of these 

‘‘sensorless’’ drives are : reduction of hardware complexity and cost, increased mechanical 

robustness and overall ruggedness, operation in hostile environments, higher reliability; 

decreased maintenance requirements, increased noise immunity, unaffected machine 
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inertia, improvement of the vibration behaviour, elimination of sensor cables etc (Rashid, 

2001).  

Basic principles of vector control (field orientation), introduced in the early 

Seventies (Blaschke, 1972), showed that decoupled control of flux and torque was 

theoretically possible in three-phase AC machine. Since there are three flux vectors in an 

induction machine, three method of vector control can be distinguished: the stator-flux-

oriented control, the air-gap-flux-oriented control and rotor-flux oriented control (Vas P. , 

1990). The rotor-flux oriented control is the most popular method because of simple 

control system structure. All the vector controllers require accurate information about the 

instantaneous spatial position. The most popular alternative control method was direct 

torque control (DTC), was introduced by (Takahashi & Noguchi, 1986). The main feature 

of DTC is the absence of co-ordinate transformation and current controllers. DTC same as 

vector control require flux and torque estimates. However, the overall complexity of the 

control system is substantially reduced, compared with vector controlled drives.  

 

1.2 Problem Statement 

In many industrial VSD applications require that the Voltage Source Pulse Width 

Modulation (PWM) inverter and the motor be at separate locations, often resulting in long 

motor leads of 15 – 150 meter (Matheson, Von Jouanne, & Wallace, 1999). Drive system 

used in oil exploitation, offshore platform drilling and mining industries usually required 

longer motor feeders longer than 1 km. Variable speed drive performance encounter 

significant overvoltage issue at motor terminal when apply on long cable application. This 

is due to the relative different between characteristic impedance of the cable and output 

impedance of the drive. The drive side voltage can have large amplitude oscillations, over 
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twice its mean value and high THD content, mainly at the harmonic of the PWM signal, 

depending on the cable length and characteristic. 

As reported in the literature review, overall motor drives performance degraded due 

to variation in voltage supply to the motor as well as the THD of the voltage and current 

(Buddingh, Dabic, & Groten, 2008). Variation in applied voltages and large oscillation in 

motor currents leads to variation in the operating point, result in increased Total Harmonics 

Distortion (THD) and degradation of the motor speed responses in term of oscillation, 

overshoot, settling time, steady state error else well as torque responses during motor 

acceleration and load disturbance operation.   

 

1.3 Research Objectives 

The research project investigates the effects of the cable length and the motor 

terminal voltage variation over speed response behaviour of the vector controlled variable 

speed drives with Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) which is 

controlled by PI and Fuzzy Logic Speed controllers. The main objectives of the research 

can be summarised as follows: 

i. To investigate the overall performances of the vector controlled SPMSM drives in 

terms of speed responses behaviour and load rejection capabilities controlled by PI 

and FL speed controllers for different cable length. 

ii. To study the effect of overvoltage on THD of the motor current for different cable 

length.  

iii. To compare the robustness of the Fuzzy Logic and PI speed controllers for different 

cable length and variation in motor inertia.  

iv. To implement the developed Fuzzy Logic and PI speed controllers in an 

experimental rig for different cable length 
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1.4 Scope of Work 

The work undertaken in this research consists of five stages.  

1. To model three-phase Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) 

into d-q motor model, three-phase Voltage Source Inverter (VSI), hysteresis current 

controllers, long cable, PI speed controller, FL speed controller and rotor flux 

oriented control of a voltage-fed SPMSM drives. 

2. To investigate the SPMSM drives behaviour which is controlled by PI speed 

controller for different cable length. A detailed study of speed response 

characteristics between a motor drive connected with standard cable length (2 

meter) and a motor drive connected with long cable length (200 meter and 400 

meter) for standstill to rated speed application, load disturbance and robustness to 

the motor inertia change is carried out.  

3. To investigate the SPMSM drives behaviour which is controlled by Fuzzy Logic 

speed controller for different cable length. The Fuzzy logic controller used in the 

research is based on the simplified Fuzzy Logic controller proposed in paper (Isa, 

Ibrahim, & Patkar, 2009). A detailed comparative analysis of speed response 

characteristics between a motor drive connected with standard cable length (2 

meter) and a motor drive connected with long cable length (200 meter and 400 

meter) for standstill to rated speed application, load disturbance and robustness to 

the motor inertia change is carried out.  

4. To develop an experimental rig consists of PC installed with 

MATLAB/SIMULINK, DS1103 DSP of dSPACE, IGBT drivers and modules, 

Resolver Digital Converter (RDC), 300VDC power supply, 1.1kW SPMSM, DC 

generator and 4 conductors symmetric cable PVC insulated with maximum 100 

meter.  
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5. In this research only focuses on the low speed drive (500rpm) due to low accuracy 

at the Resolver Digital Converter (RDC). A detailed comparative analysis between 

standard cable length (2 meter) and long cable length (36 meter and 100 meter) of 

speed response from standstill to below rated speed application (500rpm). This 

study also takes into consideration the effects of Total Harmonic Distortion (THD) 

of three-phase stator currents and overvoltage at motor terminal over speed 

response transient in term of rise time, load disturbance and robustness to the motor 

inertia change.  

 

1.5 Contribution of the Research 

The contribution of the research consists of: 

1. A detailed investigation on the overall motor drives behaviour controlled by Fuzzy 

Logic and PI speed controllers under motor terminal voltage variation due to 

overvoltage reflection based on different cable length 

2. A detailed simulation and hardware experimental investigation of the SPMSM drive 

which is controlled by PI and Fuzzy Logic under inertia variation condition for 

different cable length application. Also the correlation between THD, cable length 

and speed responses. 

 

1.6 Thesis Outline 

A brief overview of background high performance AC drives and its applications in 

industry such as aerospace actuators, robotics and industrial applications has been given in 

this chapter. High performance SPMSM drives and the concept of vector control are 

review in Chapter 2. This includes a detailed literature survey of long cable drive 
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