

Faculty of Electrical Engineering

STATE-DEPENDENT SLIDING MODE CONTROL FOR THREE-PHASE INDUCTION MOTOR DRIVES

Fizatul Aini binti Patakor

PhD

2014

C Universiti Teknikal Malaysia Melaka

STATE-DEPENDENT SLIDING MODE CONTROL FOR THREE-PHASE

INDUCTION MOTOR DRIVES

FIZATUL AINI BINTI PATAKOR

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "STATE-DEPENDENT SLIDING MODE CONTROL FOR THREE-PHASE INDUCTION MOTOR DRIVES" is the results of my own research except as cited in the references. The thesis has not been accepted for any degree and is not currently submitted in candidature of any other degree.

Signature	:	
C		
Name	:	
	•	
Date	•	
Date	•	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of Doctor of Philosophy (Electrical Engineering)

Signature	•
-	
Supervisor Name	•
-	
Date	•

ABSTRACT

This research focuses on investigation and evaluation of the robust speed control for threephase induction motor. A sliding mode control, which offers great potential to deal with uncertainties such as parameter variation and external load disturbances, is examined. The main obstacle of conventional sliding mode control is caused by discontinuous function of high control activity which is known as chattering phenomenon. In this research, this chattering phenomenon is significantly reduced by a newly developed algorithm. A fast sigmoid function with varying boundary layer algorithm is designed as a state-dependent to replace the discontinuous function in conventional sliding mode control as well as to avoid steady state error compare with the use of fixed boundary layer. It is known that the switching gain of sliding mode control is proportional to the chattering level, and normally a large switching gain is applied to handle the uncertainties. This research proposes a state-dependent sliding mode control which is the switching gain is proportional to the sigmoid function of the sliding mode controller. As a result, the boundary layer and the switching gain will change depending on uncertainties of the motor drives system. In this research, the induction motor is controlled by vector control strategy, using indirect field orientation and Space Vector Pulse Width Modulation technique. Simulation result have proved that the proposed state-dependent sliding mode control was able to deal with external load disturbances as well as effectively free from chattering phenomenon compared to conventional sliding mode control. Finally, experimental investigation is performed in order to confirm the theoretical and simulation findings. The proposed algorithm and the vector control strategy are developed in digital signal processing board. The experimental results have confirmed that the state-dependent sliding mode control is superior with regard to external load disturbances and variation in the reference speed setting when compared to PI speed control and conventional sliding mode control.

ABSTRAK

Kajian ini memberi tumpuan kepada penyiasatan dan penilaian kawalan kelajuan yang kukuh bagi motor aruhan tiga fasa. Kawalan mod gelongsor, yang menawarkan potensi yang baik untuk menangani ketidaktentuan seperti variasi parameter dan gangguan beban telah dikaji. Halangan utama kawalan mod gelongsor lazim adalah fungsi luaran, selanjar aktiviti kawalan yang tinggi yang dikenali sebagai fenomena gelugutan. Dalam kajian ini, fenomena gelugutan semakin berkurangan oleh algoritma yang baru dibangunkan. Satu fungsi algoritma sigmoid cepat dengan pelbagai lapisan sempadan direka bergantung kepada keadaan semasa untuk menggantikan fungsi selanjar pada kawalan mod gelongsor lazim untuk mengelakkan ralat keadaan mantap jika bandingkan dengan penggunaan lapisan sempadan tetap. Telah diketahui bahawa gandaan pensuisan kawalan mod gelongsor adalah berkadar langsung dengan tahap gelugutan, dan biasanya gandaan pensuisan besar digunakan untuk menangani ketidaktentuan. Kajian ini mencadangkan, kawalan mod gelongsor yang bergantung kepada keadaan semasa yang berkadar langsung dengan fungsi sigmoid pengawal mod gelongsor. Hasilnya, lapisan sempadan dan gandaan beralih akan berubah bergantung kepada ketidaktentuan sistem pemacu motor. Dalam kajian ini, motor aruhan dikawal oleh strategi kawalan vektor, menggunakan orientasi bidang tidak langsung dan Space Vector Pulse Width Modulation teknik. Hasil simulasi telah membuktikan bahawa kawalan mod gelongsor yang bergantung kepada keadaan semasa yang dicadangkan mampu untuk menangani gangguan beban luaran dengan berkesan dan bebas dari fenomena gelutan berbanding kawalan mod gelongsor yang lazim. Akhirnya, siasatan ujikaji dilakukan untuk mengesahkan penemuan teori dan simulasi. Algoritma yang dicadangkan dan strategi kawalan vektor dibangunkan dalam papan pemprosesan isyarat digital. Keputusan eksperimen telah mengesahkan bahawa kawalan mod gelongsor bergantung kepada keadaan semasa adalah lebih berkesan dengan mengambil kira gangguan beban luaran dan perubahan dalam persekitaran kelajuan rujukan jika dibandingkan dengan kawalan kelajuan PI dan kawalan mod gelongsor lazim.

ACKNOWLEDGEMENT

First and foremost, grateful thanks to Allah S.W.T for guiding and helping me in completion of this thesis.

I would like to express gratitude to my supervisor Engr. Professor Dr. Marizan bin Sulaiman for his help, encouragement, patient and strong command throughout the period of this work. Also to my co-supervisor, Associate Professor Dr. Zulkifilie bin Ibrahim for giving invaluable assistance and guidance.

This thesis was made possible by *Hadiah Latihan Persekutuan* Scholarship. I gratefully acknowledge the funding received towards my PhD from Ministry of Higher Education of Malaysia.

Words cannot express my appreciation and gratefulness to the closest people to my heart, my parents Hj Patakor bin Hj Hussein, Hjh Siti Hafizah binti Rohani, father and mother inlaw Hj Salleh bin Ali, Hjh Zaharah binti Ahmad, my husband Zulhisyam bin Salleh, my daughter Irdina Zulhisyam and son Afiq Zulhisyam and all my family members for their love, support and encouragement as well as their perpetual support and blessing prayer.

Last but not least, I am very grateful to my peers and colleagues at the Electrical Machines and Drives laboratory at Universiti Teknikal Malaysia Melaka, thanks to all my friends and colleagues inside and outside of the research group for their friendship, assistance and support.

LIST OF TABLES

TITLE

PAGE

TABLE

3.1	Simulation Results, motor performance with PI controller	50
4.1	The correlation of K_p and K_i , to rise time, overshoot, settling time and steady-state error of speed response	68
4.2	Formulas for the controller parameters in the Ziegler-Nichols' closed loop method	69
4.3	Simulation Results, motor performance with PI controller	70
4.4	Switching vectors, phase voltages and output line to line voltages	73
5.1	Controller Parameter Used in the Experiment	99
5.2	Summary of experimental result step speed command under no-load condition	106
5.3	Summary of experimental result for speed reduction of the speed command	111
5.4	Summary of experimental result step speed command with increasing inertia	116
5.5	Summary of experimental result for speed reduction of the speed command with increasing inertia	121
5.6	Summary of experimental result step speed command with 2.5Nm load	126
5.7	Summary of experimental result for speed reduction of the speed command with load 2.5Nm	131
6.1	ITAE for PI, SMC and SDSMC in simulation in no-load condition	154
6.2	ITAE for PI, SMC and SDSMC in simulation in loaded condition	155
6.3	Integral time error for no-load condition for PI, SMC and SDSMC	156

controllers

6.4	Integral time error for double inertia value for PI, SMC and SDSMC controllers	157
6.5	Integral time error for 2.5Nm load in initial condition for PI, SMC and SDSMC controllers	158
6.6	Integral time error for loaded conditions for PI, SMC and SDSMC	159
	controllers	

v

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Structure of rotor flux orientation using conventional PI controller (a) current fed RFOC (b) voltage-fed FROC	20
2.2	Field oriented drives technique (a) IFOC; (b) DFOC	21
2.3	Chattering phenomenon encountered using the discontinuous control law	28
2.4	Sliding plant of smooth controller	30
2.5	Boundary layer technique of sliding mode control	31
2.6	Comparison of signum, saturate and sigmoid function of sliding mode control.	32
2.7	Bipolar sigmoid function	33
2.8	Basic hysteresis current control	38
3.1	Sliding-mode mechanism in phase plane	42
3.2	Block diagram of basic sliding mode control for a plant	44
3.3	Block diagram for sliding mode speed control	47
3.4	Speed response and stator q-axis current reference of SMC speed controller with β =3 (a-b) <i>K</i> =-1.5; (c-d) <i>K</i> =-0.8; (e-f)) <i>K</i> =-0.2	48
3.5	Speed response and stator q-axis current reference of SMC speed controller with $K=0.2$ (a-b) $\beta=4.0$; (c-d) $\beta=2.5$; (e-f) $\beta=0.5$	49
3.6	Speed response of SMC speed controller when load 5.0Nm is applied at <i>t</i> =4 with parameter <i>K</i> =0.2 (a) β =4.0; (b) β =2.5; (c)) β =0.5	50
3.7	Variable sigmoid function	55
3.8	Absolute sigmoid function versus sliding variable	57

3.9	Speed response and stator q-axis current reference of state- dependent SMC speed controller	59
3.10	Response of state-dependent SMC speed controller when load 5.0Nm is applied at <i>t</i> =7Speed response; (b) parameter β ' and ρ '	59
4.1	Three-phase of equivalent phasor diagram	62
4.2	Two-phase of equivalent phasor diagram	62
4.3	Dynamic or d - q equivalent circuit of induction machine;(a) q -axis circuit (b) d -axis circuit	65
4.4	Block diagram of Indirect Field Oriented Control (IFOC)	67
4.5	The response of the controller (a) with P controller (b) with PI controller	70
4.6	Speed response and stator q-axis current reference of PI speed controller	70
4.7	Speed response of PI speed controller when load 5.0Nm is applied at t=4	71
4.8	Three-phase voltage source PWM inverter	71
4.9	The eight voltage vector (V0 to V7)	73
4.10	Basic switching vectors and sectors	74
4.11	Voltage space vector and its components in (α, β)	75
4.12	Rotor flux oriented induction motor in MATLAB/SIMULINK environment	77
4.13	Speed response and control effort, (a-b) PI controller (c-d) Sliding mode control (e-f) State-dependent Sliding Mode Control	79
4.14	Zoomed of the speed response for the three controllers at no-load condition	79
4.15	Speed response and control effort during speed reduction from 900rpm to 450rpm, (a-b) PI controller (c-d) Sliding mode control (e-f) State-dependent Sliding Mode Control	80
4.16	Zoomed of the speed response during speed reduction from 900rpm to 450rpm	80
4.17	Speed response and control effort during load disturbances 5.0 Nm (a-b) PI controller (c-d) Sliding mode control (e-f) State-	81

dependent Sliding Mode Control

4.18	Zoomed of the speed response for the three controllers at 5.0Nm load disturbance	81
4.19	Speed response and control effort during load disturbances 7.5 Nm (a-b) PI controller (c-d) Sliding mode control (e-f) State- dependent Sliding Mode Control	82
4.20	Zoomed of the speed response for the three controllers at 7.5Nm load disturbance	82
4.21	Speed response for inertia 50 percent higher than rated value at 900 rpm	83
4.22	Speed response and control effort during load disturbances (a-b) with 5.0 Nm (c-d) with 2.5Nm	84
4.23	The effect of speed and load changes to parameter ρ' and β' in state- dependent sliding mode control (a) speed response (b) control effort (c) parameter ρ' (d) parameter β'	85
5.1	Hardware configuration	88
5.2	Current sensing interface block diagram	91
5.3	Signal flow block diagram one-to-one mapping to software of field oriented control of three-phase induction motor with PI speed controller	94
5.4	GUI of Code Composer Studio V3.1	95
5.5	Incremental system build block diagram for Phase 1	96
5.6	Response of each tested software module in incremental build (a)PWM waveform Ta, Tb; (b) Ta-Tb; (c) Ia and Ib; (d) I α and I β (e) Id, Iq current; (f) Rotor flux angle	97
5.7	Speed response to step speed command from standstill in DSP emulated drive (a) PI controller; (b) SMC; (c) State-dependent SMC	101
5.8	Speed response to step speed command from standstill in hardware implementation (a) PI controller; (b) SMC; (c) State-dependent SMC	101
5.9	Experimental results, speed response, stator q-axis current reference and stator phase 'a' current reference, 900 rpm, no-load (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	103

5.10	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, 600rpm, no-load (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response.	104
5.11	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, 450rpm, no-load (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	105
5.12	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, at 900 rpm (a-b) PI controller; (c-d) SMC; (e-f) SMC state-dependent SMC; (g) zoomed overlapping speed response.	107
5.13	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, at 600 rpm (a-b) PI controller; (c-d) SMC; (e-f) SMC state-dependent SMC; (g) zoomed overlapping speed response	108
5.14	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, at 450rpm (a-b) PI controller; (c-d) SMC; (e-f) SMC state-dependent SMC; (g) zoomed overlapping speed response	109
5.15	Experimental results, response to 50% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, at 900 rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	110
5.16	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in double inertia value at 900 rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	113
5.17	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in double inertia value at 600 rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	114
5.18	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in double inertia value at 450 rpm (a-b) PI controller; (c-d)SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	115
5.19	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in double inertia value at 900rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC (g) zoomed overlapping speed response	117
	iv	

ix

5.20	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in double inertia value at 600rpm (a-b) PI controller; (c-d) SMC; (e-f) State-dependent SMC; (g) zoomed overlapping speed response	118
5.21	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in double inertia value at 450rpm (a-b) PI controller; (c-d) SMC; (e-f) State-dependent SMC; (g) zoomed overlapping speed response	119
5.22	Experimental results, response to 50% step reduction of speed, stator q -axis current reference and stator phase 'a' current reference, in double inertia value (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC	120
5.23	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in 2.5Nm load at 900rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	123
5. 24	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in 2.5Nm load at 600rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	124
5. 25	25 Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, in 2.5Nm load at 450rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	125
5.26	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, with 2.5Nm torque at 900rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	127
5.27	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, with 2.5Nm torque at 600rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	128
5.28	Experimental results, response to 10% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, with 2.5Nm torque at 450rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	129

5.29	Experimental results, response to 50% step reduction of speed, stator <i>q</i> -axis current reference and stator phase 'a' current reference, with 2.5Nm torque at 450rpm (a-b) PI controller; (c-d) SMC; (e-f) state-dependent SMC; (g) zoomed overlapping speed response	130
5.30	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, when load 2.5Nm is applied (a-b) PI controller; (c-d) conventional SMC; (e-f) State-dependent SMC	132
5.31	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, when load 5.0Nm is applied (a-b) PI controller; (c-d) conventional SMC; (e-f) State-dependent SMC	133
5.32	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, when load 7.5Nm is applied (a-b) PI controller; (c-d) State-dependent SMC	134
5.33	Experimental results, speed response, stator q -axis current reference and stator phase 'a' current reference, for beta 0.3 (a-b) boundary layer 0.05; (c-d) boundary layer 0.005; (e-f) boundary layer 0.0005	136
5.34	Experimental results, speed response, stator <i>q</i> -axis current reference and stator phase 'a' current reference, for beta 0.35 (a- b) boundary layer 0.05; (c-d) boundary layer 0.005; (e-f) boundary layer 0.0005	137
5.35	Experimental results, speed response, stator q -axis current reference and stator phase 'a' current reference, for beta 0.43 (a- b) boundary layer 0.05; (c-d) boundary layer 0.005; (e-f) boundary layer 0.0005	138
5.36	Experimental results for load rejection transient, speed response, stator q -axis current reference and stator phase 'a' current reference, for beta 0.3. (a-b) boundary layer 0.05; (c-d) boundary layer 0.005	139
5.37	Experimental results for load rejection transient, speed response, stator q -axis current reference and stator phase 'a' current reference, for beta 0.35(a-b) boundary layer 0.05; (c-d) boundary layer 0.005	140
5.38	Experimental results for load rejection transient, speed response, stator q -axis current reference and stator phase 'a' current reference, for beta 0.43(a-b) boundary layer 0.05; (c-d) boundary layer 0.005	140

5.39	Overlap speed response with switching gain 0.43 with boundary layer 0.05 and SDSMC	141
6.1	Experimental results, speed response of PI controller	148
6.2	Experimental results, speed response of SMC at rated speed	148
6.3	Experimental results, speed response of state-dependent SMC at rated speed	147
6.4	Overlap speed response with switching gain 0.3, different boundary layer and SDSMC	149
6.5	Overlap speed response with switching gain 0.35, different boundary layer and SDSMC	149
6.6	Overlap speed response with switching gain 0.43, different boundary layer and SDSMC	149
6.7	Effect of state-dependent switching gain β ' and boundary layer $\rho'(a)$ at different speed command (b) with 2.5Nm (c) with 5.0Nm	152
6.8	ITAE for simulation in no-load condition (a) during transient (b) steady-state condition	155
6.9	ITAE for simulation in loaded disturbances	156
6.10	Integral time error for hardware implementation in no-load condition for PI, SMC and SDSMC controllers for (a) during transient (b) steady-state condition	157
6.11	Integral time error for hardware implementation for double inertia condition for PI, SMC and SDSMC controllers for (a) during transient (b) steady-state condition	158
6.12	Integral time error for hardware implementation for initial 2.5Nm load condition for PI, SMC and SDSMC controllers for (a) during transient (b) steady-state condition	159
6.13	Integral time error for hardware implementation for load condition for PI, SMC and SDSMC controllers	159

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

B Simulation block diagram	187 196
	196
C Hardware specification	
D Parameter calculation of induction motor drives	198
E Hysteresis current brake data	203
F Source code for emulated drive	205
G Source code for experimental rig	217
H Photos of experimental setup	233

LIST OF ABBREVIATIONS

AC	Alternating Current
A/D	Analog to Digital
AFOC	Air-Gap-flux-Oriented Control
CCS	Code Composer Studio
CSI	Current Source Inverter
DC	Direct Current
DFOC	Direct Field Oriented Control
DM	Delta Modulation
DSMC	Discrete Sliding Mode Control
DMC	Digital Motor Control
DSP	Digital Signal Processor
DTC	Direct Torque Control
GA	Genetic Algorithm
IDE	Integrated Development Environment
IFOC	Indirect Field Oriented Control
IGBT	Insulated Gate Bipolar Transistor
JTAG	Joint Test Action Group
MRAC	Model Reference Adaptive Control
PI	Proportional plus Integral (controller)
PID	Proportional, Integral plus Derivative (controller)
PWM	Pulse Width Modulation
QEP	Quadrature Encoder Pulse
RFOC	Rotor-Flux-Oriented Control
SFOC	Stator-Flux-Oriented Control
SMC	Sliding Mode Control
SDSMC	State-Dependent Sliding Mode Control
SVPWM	Space Vector Pulse Width Modulation

TI	Texas Instrument
VSI	Voltage Source Inverter

XV

LIST OF SYMBOLS

В	Friction coefficient, Nm/(rad/sec)
e(t)	Speed error, rpm
d	lumped uncertainties
i_{ds} , i_{qs}	d and q axis stator currents, A
$i_{dr,} i_{qr}$	Rotor current in d and q axis, A
J	Inertia, kg-m ²
K_T	torque constant
L _{ls} ,	Stator-leakage inductance, H
L_{lr}	Stator-referred rotor-leakage inductance, H
L_m	Magnetizing inductance, H
L_s	Stator selfinductance,H
L_r	Stator-referred rotor selfinductance, H
K	Linear feedback gain of sliding mode control
K_p	Proportional gain
K_i	Integral gain
K_c	Critical gain
R_s	Stator resistance, Ω
R_r	Stator-referred rotor-phase resistance, Ω
S	Sliding surface
T_d	Derivative time constant
T_e	Electromagnetic torque
Ti	Integral time constant
T_L	Load torque
T_r	Rotor time constant
V_{dc}	DC link voltage
V_{ds} , V_{qs} ,	d and q axis stator voltage, V
ω_r	Rotor speed, rpm

ω_r^*	Rotor speed reference, rpm
$\varphi_{qs}, \varphi_{ds}$	Stator flux linkage in q and d axis, V-s
φ_{qr} , φ_{dr}	Rotor flux linkage in q and d axis, V-s
β	Switching gain

LIST OF PUBLICATIONS

Paper published

- Lazi, J.M., Ibrahim, Z., Isa, S.N.M, Anugerah, A., **Patakor, F.A.**, Mustafa, R "Sensorless speed control of PMSM drives using dSPACE DS1103 board" *PECon* 2012 - 2012 IEEE International Conference on Power and Energy
- Patakor, F.A., Sulaiman, M., Ibrahim, Z. "Adaptive Sliding Mode For Indirect Field Oriented Controlled of Induction Motor" 2011 IEEE Student Conference on Research and Development (SCORED), 19-20 Dec 2011
- Lazi, J.M., Ibrahim, Z., Sulaiman, M., **Patakor, F.A.**, Isa, S.N.M "Fuzzy logic speed controller with reduced rule base for dual PMSM drives" *International Conference on Electrical, Computer, Electronics and Communication Engineering (ICCESSE 2011),22-24 June 2011, Paris France.*
- Patakor, F.A., Sulaiman, M., Ibrahim, Z. "Robust Sliding Mode Controller for Induction Motor with SVPWM", *International Conference on Electrical, Computer, Electronics and Communication Engineering (ICCESSE 2011),22-24 June 2011, Paris France*
- Patakor, F.A., Sulaiman, M., Ibrahim, Z. "Performance of Sliding Mode Control for Three Phase Induction Motor" 2010 International Conference on Science and Social Research (CSSR 2010), 5-7 Dec 2010, Kuala Lumpur Malaysia. doi: 10.1109/SCOReD.2011.6148752

Journal

- Sulaiman, M., **Patakor, F.A.**, Ibrahim, Z. "Sliding Mode Speed Control for Induction Motor Drives with State-Dependent Gain Method" International Review of Electrical Engineering (IREE) Vol. 8 N. 5 October 2013
- Sulaiman, M., **Patakor, F.A.**, Ibrahim, Z. "A New State-dependent of Sliding Mode Control for Three-Phase Induction Motor Drives" *International Review on Modelling and Simulations* (IREMOS), Vol. 6, N.3, Jun 2013
- Patakor, F.A., Sulaiman, M., Ibrahim, Z. "Comparison Performance of Induction Motor Using SVPWM and Hysteresis Current Controller" *Journal of Theoretical* and Applied Information Technology.15st August 2011. Vol. 30 No.1. ISSN: 1992-8645

TABLE OF CONTENT

DECLARATION

APPROVAL	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
LIST OF TABLES	iv
LIST OF FIGURES	vi
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvi
LIST OF PUBLICATIONS	xviii

CHAPTER

1	INTRODUCTION		1		
	1.1	Backg	round	1	
	1.2	Motiva	ation of Research	5	
	1.3	Proble	m Statement	7	
	1.4	Research Objectives			
	1.5	The Scope of Research			
	1.6	5 Contribution of Research			
	1.7	Structu	ire of Thesis	14	
2	LIT	LITERATURE REVIEW		16	
	2.1	Introdu	action	16	
	2.2	Vector Control of Three-Phase Induction Motor		17	
	2.3	Voltage Control and Current Control for Vector Control Induction Motor		18	
		2.3.1	Field Oriented Technique	20	
		2.3.2	Robust Speed Control in AC Motor Drives	21	
			2.3.2.1 Conventional Sliding Mode Control	23	
			2.3.2.2 Adaptive Sliding Mode Control	24	
			2.3.2.3 Adaptive Sliding Mode with Fuzzy Logic Control	25	
			2.3.2.4 Adaptive Sliding Mode with Genetic Algorithm	26	
		2.3.3	Integral Sliding Mode Control	27	

PAGE

	2.3.4	Chattering Suppression Method in Shunig Mode Control	20
	2.3.5	Other Control Techniques of Sliding Mode	34
	2.3.6	Current Control for Three-Phase Voltage-Source Pulse Width Modulation	35
2.4	Summa	ry	38
DES	SIGN OF	SLIDING MODE CONTROL FOR ROBUST INDUCTION	
MO	TOR		40
3.1	Introduc	ction	40
3.2	Fundam	nental Sliding Mode Approach	41
3.3	Integral	Sliding Mode Approach in Induction Motor Drives	45
3.4	Nonline	ear System Analysis	50
	3.4.1	Lyapunov Theory and Describing Function Method	51
	3.4.2	Lyapunov Analysis for Sliding Mode Control	52
3.5	State-De	ependent Gain of Sliding Mode Control	54
	3.5.1	Auto-Tuning Sigmoid Sliding Mode Controller	56
	3.5.2	State-Dependent Switching Gain	57
3.6	Summa	ry	60
SYS	TEM AN	ND DESIGN: SIMULATION STUDIES	61
4.1	Introduc	ction	61
4.2	Mathem	natical Model of Three-Phase Induction Motor	61
4.3	Rotor F	lux Oriented Control of Three-Phase Induction Motor	66
4.4	PI Spee	d Control of Three-Phase Induction Motor	68
4.5	Space V	Vector Pulse Width Modulation	71
4.6	Results	of Simulation Studies	75
	4.6.1	Comparative Study Based on Different Speed Controller	77
	4.6.2	Comparative Performance of State-Dependent SMC with Fixed	
4 7	G	Parameter of SMC	83
4.7	Summa	ry	85
SYS	TEM AN	ND DESIGN: RESULTS OF EXPERIMENTAL WORKS	86
5.1	Introduc	ction	86
5.2	Inductio	on Motor Drives	87
	5.2.1	Induction Motor	88
	 2.4 DES MO 3.1 3.2 3.3 3.4 3.5 3.6 SYS 4.1 4.2 4.3 4.4 4.5 4.6 4.7 SYS 5.1 5.2 	2.3.5 2.3.6 2.4 Summa DESIGN OF MOTOR 3.1 Introdue 3.2 Fundam 3.3 Integral 3.4 Nonline 3.4.1 $3.4.1$ $3.4.2$ $3.5.1$ $3.5.1$ $3.5.2$ 3.6 Summa SYSTEM AN 4.1 Introdue 4.2 Mathem 4.3 Rotor F 4.4 PI Spee 4.5 Space V 4.6 Results $4.6.1$ $4.6.2$ 4.7 Summa SYSTEM AN 5.2 Induction 5.2 Induction $5.2.1$ Summa	 2.3.5 Other Control Techniques of Sliding Mode 2.3.6 Current Control Tor Three-Phase Voltage-Source Pulse Width Modulation 2.4 Summary DESIGN OF SLIDING MODE CONTROL FOR ROBUST INDUCTION MOTOR 3.1 Introduction 3.2 Fundamental Sliding Mode Approach 3.3 Integral Sliding Mode Approach in Induction Motor Drives 3.4 Nonlinear System Analysis 3.4.1 Lyapunov Theory and Describing Function Method 3.4.2 Lyapunov Analysis for Sliding Mode Control 3.5 State-Dependent Gain of Sliding Mode Control 3.5.1 Auto-Tuning Sigmoid Sliding Mode Control 3.5.2 State-Dependent Switching Gain 3.6 Summary SYSTEM AND DESIGN: SIMULATION STUDIES 4.1 Introduction 4.2 Mathematical Model of Three-Phase Induction Motor 4.3 Rotor Flux Oriented Control of Three-Phase Induction Motor 4.5 Space Vector Pulse Width Modulation 4.6.1 Comparative Study Based on Different Speed Controller 4.6.2 Comparative Performance of State-Dependent SMC with Fixed Parameter of SMC 4.7 Summary