

Faculty of Manufacturing Engineering

A STUDY ON AGV BATTERY PERFORMANCE AFFECTING FACTORS IN MANUFACTURING ENVIRONMENT

Madihah binti Haji Maharof

Master of Manufacturing Engineering (Manufacturing System Engineering)

2013

C Universiti Teknikal Malaysia Melaka

A STUDY ON AGV BATTERY PERFORMANCE AFFECTING FACTORS IN MANUFACTURING ENVIRONMENT

MADIHAH BINTI HAJI MAHAROF

A thesis submitted in fulfillment of the requirement for the degree of Master of Manufacturing Engineering (Manufacturing System Engineering)

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2013

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "A Study on AGV Battery Performance Affecting Factors in Manufacturing Environment" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Madihah binti Haji Maharof
Date	: 6 Sept 2013

APPROVAL

This thesis is submitted to the Centre for Graduate Studies of UTeM as a partial fulfilment of the requirements for the Master of Manufacturing Engineering (Manufacturing Systems Engineering). The member of the supervisory committee is as follow:

Signature	:
Supervisor Name	: Dr. Fairul Azni bin Jafar
Date	: 6 Sept 2013

DEDICATION

This thesis report is lovingly dedicated to my respective family who have been constant source of inspiration to me. They have given me the drive and discipline to tackle any task with enthusiasm and determination. Without their love and support this project would not have been made possible.

,

ABSTRACT

Material Handling System (MHS) is the backbone of a Flexible Manufacturing System (FMS). AGV is most often used in MHS industrial applications to move materials around manufacturing facility. AGV is unmanned vehicles that usually run on predefined guide paths in large material warehouses to transport goods among different workstations. This project focuses on the factors AGV battery performance affecting in manufacturing environment. When dealing with AGV in factories, many important factors need to be considered in order to ensure that the AGV will works efficiently and the life of the AGV battery itself is one of the crucial parts to maintain and control. Usually, when AGV is running and working smoothly in production lines, the battery condition need to be always monitored and it is necessary to take into account that the use of battery may impact the performance of the overall system. In this study and analysis, the factors of load and no load are considered. During data collection, AGV is running with both of factors in two conditions which are with stoppage and without stoppage, assuming that stoppage condition happen due to the existence of obstacles such as human, forklift, and etc. When AGV is running on the path within 15 minutes, without load and without stoppage gives more effect to the battery deterioration. It used 39.17% of battery to move the AGV compared to when AGV is working with load and without stoppage which used only 23.34% of battery. Furthermore, when AGV is running without load and with stoppage also used 35.17% of battery to move on the path compared to load factor with stoppage only used 10.45% of battery. Through this analysis, it is believe that battery deterioration

increases when AGV is working without load in manufacturing environment. A part from that, AGVs perform their task effectively by means less monitor and less frequent to charge the battery when AGV is running with load. Through this analysis too, performance of battery is 76.66% when AGV is running with load and without stoppage and 89.55% when AGV is running with load and stoppage. Significant parameters of this analysis that give effect to the battery deterioration are voltage, followed by current and temperature.

ABSTRAK

Sistem Pengendalian bahan (MHS) merupakan tulang belakang kepada Sistem Pembuatan Fleksibel (FMS). AGV merupakan kenderaan yang sering digunakan dalam MHS aplikasi industri untuk menggerakkan bahan-bahan di sekitar kemudahan pembuatan. AGV adalah kenderaan tanpa pemandu yang biasanya berjalan di laluan yang telah ditetapkan panduan dalam gudang bahan besar untuk mengangkut barang-barang antara stesen kerja yang berbeza. Projek ini memberi tumpuan kepada faktor-faktor AGV menjejaskan prestasi bateri dalam persekitaran pembuatan. Apabila berurusan dengan AGV di kilangkilang, banyak faktor-faktor penting yang perlu dipertimbangkan untuk memastikan bahawa AGV akan berfungsi dengan cekap dan hayat bateri AGV itu sendiri adalah salah satu bahagian yang penting untuk mengekalkan dan mengawal . Biasanya, apabila AGV sedang berjalan dan bekerja dengan lancar dalam barisan pengeluaran, keadaan bateri perlu sentiasa dipantau dan adalah perlu untuk mengambil kira bahawa penggunaan bateri boleh memberi kesan kepada prestasi sistem secara keseluruhan. Dalam kajian dan analisis ini, faktor-faktor beban dan tanpa beban akan dipertimbangkan. Dalam pengumpulan data, AGV sedang berjalan dengan kedua-dua faktor dalam dua keadaan yang dengan kecederaan dan tanpa kecederaan, dengan anggapan bahawa keadaan kecederaan berlaku disebabkan oleh kewujudan halangan-halangan seperti manusia, forklift, dan lain-lain Apabila AGV sedang berjalan di atas jalan dalam 15 minit, tanpa beban dan tanpa pemberhentian memberi kesan yang lebih kepada kemerosotan bateri. Ia digunakan 39.17 % daripada bateri untuk bergerak AGV berbanding apabila AGV bekerja

dengan beban dan tanpa kecederaan yang digunakan hanya 23.34 % daripada bateri. Tambahan pula, apabila AGV sedang berjalan tanpa beban dan dengan kecederaan juga digunakan 35.17 % daripada bateri untuk bergerak di jalan berbanding dengan faktor muatan dengan kecederaan hanya digunakan 10.45% bateri. Melalui analisis ini, ia percaya bahawa kenaikan kemerosotan bateri apabila AGV bekerja tanpa beban dalam persekitaran pembuatan. Sebahagian daripada itu, AGVs melaksanakan tugas mereka dengan berkesan oleh bermakna kurang memantau dan kurang kerap untuk mengenakan bateri apabila AGV sedang berjalan dengan beban. Melalui analisis ini juga, prestasi bateri adalah 76.66 % apabila AGV sedang berjalan dengan beban dan kanpa pemberhentian dan 89.55 % apabila AGV sedang berjalan dengan beban dan kecederaan. Parameter penting analisis ini yang memberi kesan kepada kemerosotan bateri adalah voltan, diikuti oleh arus dan suhu.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim,

I am so thank full to Allah S. W. T for giving me patient and spirit throughout this master project I and master project II until the project is successfully completed. With the mercifulness from Allah therefore I can produce a lot of idea to this project.

I would like to express all my sincere thanks to my supervisor Dr. Fairul Azni bin Jafar. This thesis would not have been done without his support, encouragement, and comments.

I would also like to express my thanks to Mr. Mahasan bin Ali and Mr. Muhamad Asari bin Abdul Rahim staff at the Robotics & Automation Department for their help and cooperation. Also, my appreciation and gratitude to Mr. Fadzil bin Che Man and Mr. Muhammad Zulhelmi bin Ahmad for their help and valuable ideas shared with me.

Finally, I would like to thank my family and all my friends. Without their encouragement, support and understanding, this thesis would not have been possible.

TABLE OF CONTENT

				PAGE
DE	CLAF	ATION		
AP	PROV	'AL		
DE	DICA	TION		
AB	STRA	СТ		i
AB	STRA	K		iii
AC	KNO	WLEDGH	EMENT	v
TA	BLE (OF CONI	ſENT	vi
LIS	ST OF	TABLES	5	X
LIS	ST OF	FIGURE	2S	xi
LIS	ST OF	SYMBO	LS	XV
LIS	ST OF	APPENI	DICES	xvi
LIS	ST OF	ABBREV	VIATIONS	xvii
СН	APTE	R		
1.	INT	RODUC	TION	1
	1.1	Introduc	tion	1
	1.2	Problem	Statement	2
	1.3	Objectiv	es	3
	1.4	Scopes		3
	1.5	Organiza	ation	4
2.	LIT	'ERATUI	RE REVIEW	5
	2.1	Introduc	ction of Automated Guided Vehicle (AGV)	5
	2.2	Navigat	ion of Automated Guided Vehicle (AGV)	8
	2.3	Battery	Management of the Automated Guided Vehicle	0
		(AGV)		9
	2.4	Factors	Effecting the Battery Performance	14
	2.5	Battery	Performance Characteristics	15
		2.5.1	Temperature Characteristics	16
		2.5.2	Self Discharge Characteristics	17

		2.5.3	Tempera	ture Effects	17
	2.6	Charg	ing Metho	ods	18
		2.6.1	Chargin	g Schemes	18
			2.6.1.1	Charge Termination	18
			2.6.1.2	Safe Charging	19
			2.6.1.3	Charging Times	19
	2.7	Summ	ary		21
3.	ME	THOD	OLOGY		23
	3.1	Introd	luction		23
	3.2	Identi	fication of	f Measurement Method	24
		3.2.1	Maxim	DS2788	24
			3.2.1.1	Voltage Measurement	25
			3.2.1.2	Temperature Measurement	27
			3.2.1.3	Current Measurement	27
			3.2.1.4	Gas Gauging	29
		3.2.2	Design of	of DS2788 Evaluation Kit	30
		3.2.3	Feature	and Function of DS2788	30
		3.2.4	Overvie	w Battery Fuel Gauge Operation	31
		3.2.5	Applicat	tion of Battery Fuel Gauge	31
			3.2.5.1	Battery Voltage Connection	31
	3.3	Setup	and Insta	llation	32
		3.3.1	Board Co	onnections	32
		3.3.2	Configur	ation of Lead Acid Batteries	34
		3.3.3	Electrocl	nemical Principles	34
			3.3.3.1	Discharging Process	34
			3.3.3.2	Charging Process	35
	3.4	Exper	rimental S	etup for Maxim DS2788 Evaluation Kit	36
		3.4.1	Testing t	he Evaluation Module with GUI Software	38
		3.4.2	Overview	v of Graphical User Interface Software	38
			3.4.2.1	Real Time	38
			3.4.2.2	Parameters	40
			3.4.2.3	Memory	41

			3.4.2.4	Log Data	42
	3.5	Expe	rimental	Platform	42
		3.5.1	Mecanu	m Wheels	43
		3.5.2	Battery		44
	3.6	Expe	rimental	Layout	45
	3.7	Expe	rimental	Validation and Data Analysis	45
		3.7.1	Experin	nental Setup for No Load	47
		3.7.2	Experin	nental Setup for Load	48
	3.8	Findi	ng		49
	3.9	Sumn	nary		49
4.	RE	SULT	AND DI	SCUSSION	51
	4.1		luction		51
	4.2	-	riment Ro		52
		4.2.1		ithout Stoppage	52
			4.2.1.1	Graph against Times for Load Condition without Stoppage for each Parameter	52
			4.2.1.2	Analysis of Graph for Load without Stoppage	55
		4.2.2	Load w	ith Stoppage	57
			4.2.2.1	Graph against Times for Load Condition with Stoppage for each Parameter	57
			4.2.2.2	Analysis of Graph for Load with Stoppage	60
		4.2.3	No Loa	d and without Stoppage	62
			4.2.3.1	Graph against Times without Load Condition without Stoppage for each Parameter	62
			4.2.3.2	Analysis Graph for No Load and without Stoppage	65
		4.2.4	No Loa	d with Stoppage	66
			4.2.4.1	Graph against Times without Load Condition and with Stoppage for each Parameter	66
			4.2.4.2	Analysis Graph for without Load and with Stoppage	69
	4.3	Discu	ssions		71
		4.3.1	Load a	nd No Load without Stoppage	71

4	4.3.2	Load and No Load with Stoppage	72
2	4.3.3	Load without and with Stoppage	74
2	4.3.4	No Load without and with Stoppage	75
CONC	CLUSI	ON AND FUTURE WORK	77

79

CONCLUSION AND FUTURE WORK 5.

REFERENCES

APPENDICES

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Key specification of Maxim DS2788	24
4.1	Data of AGV's battery, current and temperature	52
4.2	Recorded data of voltage dropped, current and temperature changes for load without stoppage	56
4.3	Data of AGV's battery, current and temperature	57
4.4	Recorded data of voltage dropped, current and temperature changes for load with stoppage	61
4.5	Data of AGV's battery voltage, current and temperature	62
4.6	Recorded data of voltage dropped, current and temperature changes for no load without stoppage	66
4.7	Data of AGV's battery voltage, current and temperature	67
4.8	Recorded data of voltage dropped, current and temperature changes for no load and with stoppage	70
4.9	Comparison of load and no load factors without stoppage	71
4.10	Comparison of load and no load factors with stoppage	72
4.11	Comparison of load factor without and with stoppage	74
4.12	Comparison of no load factor without and with stoppage	75

х

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	AGV used in production line	6
2.2	AGV used in internal logistics	6
2.3	Navigation of the AGV and path using surface mounted tape or optical stripes	9
2.4	The relationship between battery management system and costs	13
2.5	Performance of Lithium Ion batteries	16
2.6	Typical self discharge rate of Lithium Ion battery	18
2.7	Chemical reaction in the cell of battery	20
3.1	Overall flowchart of the project	23
3.2	Voltage measurement	26
3.3	Voltage register formats	26
3.4	Temperature register formats	27
3.5	Current register formats	28
3.6	Current measurement circuits	28
3.7	Schematics design of DS2788 evaluation kit	30
3.8	DS2788 IC chip	31
3.9	Schematic of battery connections	32

3.10	Communication connections	33
3.11	Discharging circuit	33
3.12	Charging circuit	33
3.13	Working principles discharging of lead acid batteries	34
3.14	Working principles charging of lead acid batteries	35
3.15	Initial testing set up with DS2788 evaluation kit board	36
3.16	Comparison of communicating and non-communicating with evaluation kit	38
3.17	Parametric data sub tab	39
3.18	Fuel gauge sub tab	39
3.19	Application unit sub tab	40
3.20	Device unit sub tab	40
3.21	Memory tab	41
3.22	Log data tab	42
3.23	Automated guided vehicle (AGV)	42
3.24	Mecanum wheels	43
3.25	Lead acid batteries 12V	44
3.26	Plant"s layout	45
3.27	Schematic diagrams for no load	47
3.28	Schematic diagrams for 70kg weight of load	48
4.1	Graph of voltage measurement against times for load condition without stoppage	53
4.2	Graph of current measurement against times for load condition	54

without stoppage

- 4.3 Graph of temperatures measurement against times for load 54 condition without stoppage
- 4.4 Enlargement of graph against times for each parameters load 56 without stoppage (a) voltage dropped (b) current changes (c) temperature changes
- 4.5 Graph of voltage measurement against times for load condition 58 with stoppage
- 4.6 Graph of current measurement against times for load condition 59 with stoppage
- 4.7 Graph of temperatures measurement against times for load 59 condition with stoppage
- 4.8 Enlargement of graph against times for each parameters load with 61 stoppage (a) voltage dropped (b) current changes (c) temperature changes
- 4.9 Graph of voltage measurement against times under without load 63 condition and without stoppage
- 4.10 Graph of current measurement against times under without load 64 condition and without stoppage
- 4.11 Graph of temperatures measurement against times under without 64 load condition and without stoppage
- 4.12 Enlargement of graph against times for each parameter no load 65 without stoppage (a) voltage dropped (b) current changes (c) temperature changes
- 4.13 Graph of voltage measurement against times under without load 68 condition and with stoppage

- Graph of current measurement against times under without load 68 4.14 condition and with stoppage
- Graph of temperatures measurement against times under without 69 4.15 load condition and with stoppage
- Enlargement of graph against times for each parameter no load 70 4.16 and with stoppage (a) voltage dropped (b) current changes (c) temperature changes

LIST OF SYMBOLS

Millisecond ms

Voltage input Vin

Voltage maximum Vmax

Voltage source Vss

LIST OF APPENDICES

APPENDIX

TITLE

- A Gantt charts of Master Project 1 (Semester 2 Session 2012/2013)
- B Gantt charts of Master Project 2 (Special Semester Session 2012/2013)

LIST OF ABBREVIATIONS

AGV	Automated Guided Vehicle
AS/RS	Automated System and Retrieval System
BMS	Battery Management System
DOD	Depth of Discharge
FMS	Flexible Manufacturing System
GUI	Graphical User Interface
JIT	Just In Time
MHS	Material Handling System
NV	Non-Volatile
OCV	Open Circuit Voltage
PC	Personal Computer
RAAC	Remaining Active Absolute Capacity
RSAC	Remaining Stand-By Absolute Capacity
RARC	Remaining Active Relative Capacity
RSRC	Remaining Stand-By Relative Capacity
SOC	State of Charge
TEMP	Temperature
VOLT	
VOLT	Voltage

xvii

CHAPTER 1

INTRODUCTION

This chapter introduces the problem statements, objectives, scopes and the organization of a work entitled "A Study on AGV Battery Performance Affecting Factors in Manufacturing Environment".

1.1 Background

Material Handling System (MHS) is the backbone of a Flexible Manufacturing System (FMS). It connects various production functions and regulates part movement. From different types of material handlers available for FMS, Automated Guided Vehicle (AGV), which comprises several microprocessors controlled driverless vehicles, is the most adaptable and capable one. Automated Guided Vehicle (AGV) is unmanned vehicles that usually run on predefined guide paths in large material warehouses to transport goods among different workstations.

In early 1950's AGVs has been introduced, the numbers use of AGV has increased along with the application areas and types (Hamid *et al.*, 2009). Usually in a warehouse, the operators are one of the main purposes to maintain productivity in the production lines. By using AGV in production lines it will be safe and easy to operate. AGV is very flexible of controlling in a communication way. The AGV is now found in all types of industries, with the only restrictions on their use mainly resulting from the dimensions of the goods to be transported considerations (Ali, 2003). Many applications of AGV are technically possible, but the purchase and implementation of such systems are usually based on economic considerations (Chiew *et al.*, 2009).

AGV system is mainly integrated with a central controller, paths, an electronic communication mechanism and routing strategies. Nowadays, AGV systems are widely

used in automated MHS, FMS and even in container terminals to transport containers. The vehicles can automatically perform loading, routing selection, and unloading process. Though flexible, it is highly complex and expensive. To realize the full potential, it is essential to design, plan, schedule, and control the system efficiently.

When dealing with the AGV in factories or in industries many important factors need to be considered in order to ensure that the AGV will work efficiently and the life of AGV battery itself is one of the crucial parts to maintain and control. When AGV is running and working smoothly on production lines or warehouse systems, usually the battery condition needs to be always monitored and it is necessary to take into account that the use of batteries may impact the performance of the overall system.

1.2 Problem Statement

Based on the previous work of the AGV battery performance, it is very hard to find the details manufacturing environment factors that give effect to the deterioration of the AGV battery. Usually, the battery of AGV always needs to be recharged or changed after a certain time being used, and the time required to execute these operations might interfere the AGV availability. In order to avoid and reduced this problem, this project is analysed the AGV battery performance with regards to some potential affective factors in manufacturing environment that will effect the battery system. This is to ensure that the shelf life of the battery will perform their task effectively by means less frequent to charge the battery and less monitor. All kind of factors and the data will be captured by using Maxim DS2788. Hence, all the measurements is analysed in order to find the most significant parameter that give effect to the battery performance.

2