

Faculty of Electronics and Computer Engineering

DESIGN OF INTEGRATED RECTANGULAR SIW FILTER AND MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATIONS

Sam Weng Yik

MSc. in Electronic Engineering

2014

🔘 Universiti Teknikal Malaysia Melaka

DESIGN OF INTEGRATED RECTANGULAR SIW FILTER AND MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATIONS

SAM WENG YIK

A thesis submitted in fulfillment of requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Design of integrated Rectangular SIW Filter and Microstrip Patch Antenna for Wireless Communications" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science Electronic Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

ABSTRACT

This thesis presents the design and development of an integrated substrate integrated waveguide (SIW) filter and microstrip patch antenna, which utilizes cascaded and multilayered techniques. Integrated method contributes to the reduction of the overall design size in front-end subsystems as well as in manufacturing cost. The first design process was developed using the basic concept of filter with the characteristics of the circuit transformation of lowpass prototype network for filter, antenna and integrated filter and antenna with the sequence procedure as a starting point. The next process involved the designing of Chebyshev bandpass for filter, antenna and integrated filter and antenna at desired frequency based on single- and dual-mode. The second and third design process were developed using planar structure based on SIW technology and patch antenna. The concept of SIW was formulated from a standard conventional rectangular waveguide by a set of design rules. Meanwhile, microstrip patch antenna was designed based on the procedures and techniques in order to integrate with SIW filter. Integrated method using cascaded and multilayer are developed from the combination between SIW filter and patch antenna. Two commercial software programs that were used in the design and development of integrated SIW filter and antenna bandpass filter namely Advanced Design System (ADS) software, and CST Studio Suite software. All designs were simulated, manufactured and measured. The experimental results showed good agreement with the simulated results. The main benefits of the integrated SIW filter and microstrip patch antenna are the reduction of the overall size, ease to fabricate, low in cost and the use of standard printed circuit board process. This new novel of microwave filters is considered suitable and is an alternative solution for 3G, ISM, WLAN and LTE applications without an addition of external common impedance network on the systems.

ABSTRAK

Tesis ini membentangkan reka bentuk dan pembangunan integrasi penapis pandu gelombang berinterasi substrat dan antena tampalan mikrostrip yang menggunakan kaedah lata dan berbilang lapis antara penapis dan antena. Kaedah integrasi dapat menyumbangkan kepada pengurangan saiz keseluruhan reka bentuk dan kos pembuatan dalam bahagian depan subsistem. Proses reka bentuk yang pertama telah dibangunkan dengan menggunakan konsep asas penapis dengan ciri-ciri transformasi litar rangkaian prototaip untuk penapis laluan rendah, antena dan integrasi penapis dan antena dengan mengikut prosedur tertentu sebagai satu titik permulaan. Reka bentuk ini diteruskan dengan lulus jalur untuk penapis Chebyshev, antena dan integrasi penapis dan antenna pada frekuensi yang dikehendaki berdasarkan tunggal- dan dwi-mod. Proses reka bentuk kedua dan ketiga telah dibangunkan dengan menggunakan struktur satah berasaskan teknologi SIW dan tampalan antenna. Konsep SIW digubal dari rumus standard pandu gelombang segi empat tepat konvensional dengan mengikut set peraturan reka bentuk yang telah ditetapkan. Sementara itu, mikrostrip tampalan antenna direka berdasarkan prosedur dan teknik dalam usaha untuk bergabung dengan penapis SIW. Kaedah integrasi menggunakan lata dan berbilang lapis dihasilkan melalui gabungan antara penapis SIW dan antena tampal. Dua program perisian komersial telah digunakan dalam reka bentuk dan pembangunan integrasi SIW penapis dan antena seperti Advanced System Design (ADS) perisian, dan perisian CST Studio Suite. Semua reka bentuk telah disimulasikan, dihasilkan dan diuji untuk membuktikan konsep yang telah direka adalah betul. Keputusan eksperimen menunjukkan persetujuan yang baik dengan keputusan simulasi yang telah dilakukan. Manfaat utama integrasi SIW penapis dan mikrostrip tampalan antenna adalah pengurangam saiz keseluruhan reka bentuk, pemudahan fabrikasi, pengurangan kos dan menggunakan standard proses papan litar yang bercetak. Integrasi ini merupakan sesuatu yang baru dan sesuai digunakan serta menjadi alternatif menyelesaikan untuk aplikasi 3G, ISM, WLAN dan LTE dengan tanpa tambahan galangan di luar rangkaian sistem.

ACKNOWLEDGMENT

I would like to express my appreciation to my main supervisor Dr. Zahriladha bin Zakaria who had guided me throughout this on my main thesis writing and for his advice that had greatly improved my knowledge on the microwave field. I am also very thankful to my co-supervisor, Mr. Zoinol Abidin bin Abd. Aziz for his guidance, advice and motivation. Without their continued moral support and concern, this thesis would not have been presented here.

Besides that, I want to thank my lecturers, specially Mr. Noor Azwan bin Shairi and Mr. Sani Irwan bin Md Salim who have helped and motivated me throughout. Finally, I would like to extend my gratitude to everyone who have been directly and indirectly invovled in the successful completion of this thesis.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF APPENDICIES	xvi
LIST OF ABBREVIATION	xvii
LIST OF SYMBOLS	xviii
LIST OF PUBLICATIONS	XX
AWARD	xxii

CH	APTE	R		
1.	INT	RODU	CTION	1
	1.0	Backg	round	1
	1.1	Origin	al Contribution Presented in this Thesis	4
	1.2	Proble	m Statement	6
	1.3	Object	tives	6
	1.4	Scope		7
	1.5	Thesis	Organization	7
2.	LIT	ERATU	JRE REVIEW	9
	2.0	Introdu	uction	9
	2.1	Basic	Concept of Filter	10
	2.2	Lowpa	ass Prototype Network	12
	2.3	Lowpa	ass to Bandpass Circuit Transformation	12
	2.4	Effects	s of Losses on Bandpass Filter	15
	2.5	Reson	ant Circuit Theory of Filter	19
		2.5.1	Single-Mode Filter	19
		2.5.2	Dual-Mode Filter	21
	2.6	Reson	ant Circuit Theory of Antenna	22
		2.6.1	Single-Mode Antenna	22
		2.6.2	Dual-Mode Antenna	23
	2.7	Reson	ant Circuit Theory of Integrated Filter and Antenna	24
		2.7.1	Integrated Filter and Antenna (Single-mode)	24
		2.7.2	Integrated Filter and Antenna (Dual-mode)	35
	2.8	Substr	ate Integrated Waveguide (SIW) Filter	27
		2.8.1	Introduction	27
		2.8.2	Overview of Microwave Filter	27
		2.8.3	Recent Development of SIW Filter	28
		2.8.4	Fundamentals of Waveguide	32
		2.8.5	Waveguide Modes	35
		2.8.6	Rectangular Wavegulde Resonator	37

iv

		2.8.7 Design Rules of Substrate Integrated Waveguide (SIW)	38
	2.9	Design of Antenna	38
		2.9.1 Introduction	41
		2.9.2 Overview of Microstrip Patch Antenna	41
		2.9.3 Review of Microstrip Patch Antenn	42
		2.9.4 Basic Concept of Rectangular Microstrip Patch Antenna	44
		2.9.5 Transmission Line Model	48
	2.10	Design of Integrated Filter and Antenna	45
		2.10.1 Introduction	53
		2.10.2 Overview of Integrated Microwave Filter and Antenna	54
		2.10.3 Review of Integrated Microwave Filter and Antenna	54
	2.11	Summary	58
3.	MET	THODOLOGY	60
	3.0	Introduction	60
	3.1	Flow Chart	61
	3.2	Design of Bandpass Filter Based on Circuit Theory	63
		3.2.1 Single-mode Bandpass Filter	63
		3.2.2 Dual-mode Bandpass Filter	65
	3.3	Design of Antenna Based on Circuit Theory	67
		3.3.1 Single-mode Antenna	67
		3.3.2 Dual-mode Antenna	69
	3.4	Design of Integrated Filter and Antenna Based on Circuit Theory	71
		3.4.1 Single-mode Integrated Filter and Antenna	71
		3.4.2 Dual-mode Integrated Filter and Antenna	73
	3.5	Design of the Substrate Integrated Waveguide (SIW) Bandpass Filter	75
		3.5.1 Single-mode Rectangular SIW Bandpass Filter	75
		3.5.2 Dual-mode Rectangular SIW Bandpass Filter	77
	3.6	Design of the Microstrip Patch Antenna	79
		3.6.1 Single-mode Rectangular Microstrip Patch Antenna	79
		3.6.2 Dual-mode Rectangular Microstrip Patch Antenna	82
	3.8	Summary	83
4.	RES	ULTS AND DISCUSSIONS: SIW FILTER AND MICROSTRIP	84
	PAT	CH ANTENNA	~ (
	4.0	Introduction	84
	4.1	Results of Bandpass Filter Based on Circuit Theory	84
		4.4.1 Single-mode Bandpass Filter	84
	4.0	4.4.2 Dual-mode Bandpass Filter	85
	4.2	Results of Antenna Based on Circuit Theory	87
		4.2.1 Single-mode Antenna	87
	4.0	4.2.2 Dual-mode Antenna	88
	4.3	Results of the Substrate Integrated Waveguide (SIW) Bandpass Filter	89
		4.3.1 Single-mode SIW Bandpass Filter	89
		4.3.2 Manufacturing and Measurement Results	91
		4.5.5 Dual-mode SIW Bandpass Filter	94
	1 1	4.5.4 Ivianufacturing and ivieasurement Kesuits	9/
	4.4	Results of Microstrip Patch Antenna	99

v

		4.4.1	Single-mode Rectangular Microstrip Patch Antenna	99
		4.4.2	Manufacturing and Measurement Results	102
		4.4.3	Dual-mode Rectangular Microstrip Patch Antenna	105
		4.4.4	Manufacturing and Measurement Results	108
	4.5	Summa	ary	111
5.	RES	SULTS A	AND DISCUSSIONS: INTEGRATED SIW FILTER AND	112
	MIC	CROSTI	RIP PATCH ANTENNA	
	5.0	Introdu	action	112
	5.1	Results Theory	s of the Integrated SIW Filter and Antenna Based on Circuit	112
		5.1.1	Single-mode Integrated Filter and Antenna	112
		5.1.2	Dual-mode Integrated Filter and Antenna	113
	5.2	Results	s of the Integrated SIW Filter and antenna	115
		5.2.1	Cascaded (Single-mode)	115
		5.2.2	Manufacturing and Measurement Results	119
		5.2.3	Cascaded (Dual-mode)	120
		5.2.4	Manufacturing and Measurement Results	125
		5.2.5	Multilayer (Single-mode)	127
		5.2.6	Manufacturing and Measurement Results	133
	5.3	Compa	arison of Results	136
	5.4	Summa	ary	137
6.	CO	NCLUS	ION AND FUTURE WORK	138
	6.0	Conclu	ision	138
	6.1	Future	Work	139
RE	FERE	NCES		141
AP	PEND	ICES		153

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Key literature on microstrip patch antenna	43
3.1	Single-mode bandpass filter specification	63
3.2	Impedance scaling network element values for single-mode bandpass	64
	filter	
3.3	Dual-mode bandpass filter specification	65
3.4	Impedance scaling network element values for dual-mode bandpass	67
	filter	
3.5	Single-mode antenna specification	67
3.6	Impedance scaling network element values for single-mode antenna	68
3.7	Dual-mode antenna specification	69
3.8	Impedance scaling network element values for dual-mode antenna	71
3.9	Single-mode integrated filter and antenna specification	71
3.10	Impedance scaling network element values for integrated filter and	73
	antenna	
3.11	Dual-mode integrated filter and antenna specification	73
3.12	Initial element values of integrated filter and antenna	73
3.13	Impedance scaling network element values for integrated filter and	75

antenna

3.14	FR-4 substrate properties	76
3.15	FR-4 substrate properties	78
3.16	FR-4 substrate properties	79
3.17	FR-4 substrate properties	82
4.1	Geometric dimensions of single-mode rectangular SIW bandpass filter	90
4.2	Geometric dimensions of dual-mode rectangular SIW bandpass filter	95
4.3	Geometric dimensions of single-mode rectangular microstrip patch	101
	antenna	
4.4	Geometric dimensions of dual-mode microstrip patch antenna	106
5.1	Geometric dimensions of integrated single-mode SIW bandpass filter	118
	and patch antenna	
5.2	Geometric dimensions of integrated dual-mode SIW bandpass filter	124
	and patch antenna	
5.3	Geometric dimensions of the multilayer structure	131
5.4	Comparison of simulated and measurement results for single-mode	136

viii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Typical block diagram of receiving front end of communication	2
	system	
1.2	Block diagram of the RF front end of wireless communication	3
	systems in the base station (Hunter, 2001)	
2.1	Filter in ideal condition (a) Lowpass filter response (b) Highpass filter	11
	response (c) Bandpass filter response (d) Bandstop filter response	
2.2	(a) Lowpass response $\omega_c = 1$ (b) Bandpass response	14
2.3	Bandpass transformation of (a) an inductor (b) a capacitor	15
2.4	Inductor with finite resistance	16
2.5	Circuit representations of resonators with finite resistances	17
2.6	Insertion losses as a function of different Q_u values (Hunter, 2001)	18
2.7	Lowpass prototype of single-mode filter	19
2.8	Equivalent circuit of single-mode bandpass filter	20
2.9	Lowpass prototype of dual-mode filter	21
2.10	Equivalent circuit of dual-mode bandpass filter	22
2.11	Lowpass prototype of single-mode antenna	23
2.12	Equivalent circuit of single-mode antenna	23

2.13	Lowpass prototype of dual-mode antenna	23
2.14	Equivalent circuit of dual-mode antenna	24
2.15	Lowpass prototype equivalent circuit of integrated second order	24
	filter/antenna	
2.16	Equivalent circuit of integrated second order filter/antenna	25
2.17	Lowpass prototype equivalent circuit of dual-mode filter/antenna	26
2.18	Integrated equivalent circuit filter/antenna (dual-mode)	26
2.19	The electromagnetic spectrum (Pozar, 2005)	28
2.20	SIW topology (Deslandes and Wu, 2003)	29
2.21	The triangular cavities structure proposed by Zhang et. al. (2005)	30
2.22	Four second-order filters (Potelon et. al., 2006)	31
2.23	SIW square cavity dual-mode filter (Wang et. al., 2008)	32
2.24	End view of two wire line	33
2.25	Waveguide shapes (Pozar, 2005)	33
2.26	Simple electric fields (capacitor)	34
2.27	Two wire transmission line using a generator	35
2.28	Magnetic fields in a single wire	35
2.29	(a) Half-sine and (b) Full-sine of E-field distribution in a rectangular	36
	waveguide	
2.30	Half-sine of H-field distribution in a rectangular waveguide	37
2.31	Rectangular waveguide resonator	38
2.32	(a) Rectangular waveguide hollow structure and (b) SIW structure	39
	with via-holes in array form	
2.33	SIW filter (top view)	40

Х

2.34	Microstrip Patch Antenna	44
2.35	Fringing effect fields (E-Field)	45
2.36	Microstrip line feed	46
2.37	Probe feed (a) top view (b) side view	46
2.38	Proximity-coupled multi-layer feed	47
2.39	Aperture-coupled feed	47
2.40	Transmission line model	48
2.41	E-fields distribution for mode $t = 1$	49
2.42	Microstrip patch antenna (top view)	53
2.43	Layout structure of the multilayer, multi-technology slotline	55
	dipole/Chebyshev filter (Nadan et. al., 1998)	
2.44	(a) Layout of antenna filter layer (b) layer structure (Tamijani et. al.,	56
	2002)	
2.45	SIW filter-antenna module's topology (Nova et. al., 2011)	57
2.46	Bottom and top view of fabricated filter-antenna (Wu et. al., 2013)	58
3.1	Flow chart of the project	61
3.2	Circuit representation of a single-mode SIW filter	77
3.3	Circuit representation of a dual-mode SIW filter	78
3.4	Circuit representation of a single-mode antenna	81
3.5	Circuit representation of a dual-mode antenna	83
4.1	Simulated response of lowpass prototype (single-mode)	85
4.2	Simulated response of first order Chebyshev bandpass (single-mode)	85
4.3	Simulated response of lowpass prototype (dual-mode)	86
4.4	Simulated response of second order Chebyshev bandpass (dual-mode)	86

4.5	Simulated response of lowpass prototype (single-mode)	87
4.6	Simulated response of first order antenna (single-mode)	87
4.7	Simulated response of lowpass prototype (dual-mode)	88
4.8	Simulated response of second order equivalent circuit antenna (dual-	88
	mode)	
4.9	Single-mode rectangular SIW bandpass filter	89
4.10	Effect of l_1 of single-mode rectangular SIW bandpass filter	90
4.11	Magnitude of E-field of single-mode rectangular SIW bandpass filter	91
4.12	Simulated results of single-mode rectangular SIW bandpass filter	91
4.13	Manufacturing single-mode rectangular SIW bandpass filter	92
4.14	Measured results of single-mode rectangular SIW bandpass filter	93
4.15	Comparison between the simulated and measured response	93
4.16	Dual-mode rectangular SIW bandpass filter	94
4.17	Effect of j of dual-mode rectangular SIW bandpass filter	95
4.18	Magnitude of E-field of dual-mode rectangular SIW bandpass filter	96
4.19	Simulated results of dual-mode rectangular SIW bandpass filter	96
4.20	Manufacturing dual-mode rectangular SIW bandpass filter	98
4.21	Measured results of dual-mode rectangular SIW bandpass filter	98
4.22	Comparison between the simulated and measured response	99
4.23	Single-mode rectangular microstrip patch antenna	100
4.24	Effect of L_a of single-mode rectangular microstrip patch antenna	100
4.25	Magnitude of E-field of single-mode rectangular microstrip patch	101
	antenna	
4.26	Simulated results of rectangular microstrip patch antenna	101

4.27	Simulated radiation pattern	102		
4.28	Manufacturing single-mode rectangular microstrip patch antenna	103		
4.29	Measured results of rectangular single-mode microstrip patch antenna			
4.30	Comparison between the simulated and measured response			
4.31	Comparison of simulated and measurement for radiation pattern			
4.32	Dual-mode rectangular microstrip patch antenna			
4.33	Effect of <i>a</i> of dual-mode rectangular microstrip patch antenna			
4.34	Magnitude of E-field of dual-mode rectangular microstrip patch			
	antenna			
4.35	Simulated results of dual-mode rectangular microstrip patch antenna	107		
4.36	Simulated radiation pattern	108		
4.37	Manufacturing dual-mode rectangular microstrip patch antenna	109		
4.38	Measured results of dual-mode rectangular microstrip patch antenna	109		
4.39	Comparison between the simulated and measured response	107		
4.40	Comparison of simulated and measurement for radiation pattern	108		
5.1	Simulated response of lowpass prototype (single-mode)	113		
5.2	Simulated response of single-mode integrated filter and antenna	113		
5.3	Simulated response of lowpass prototype (dual-mode)	114		
5.4	Simulated response of dual-mode integrated filter and antenna	114		
5.5	Integrated single-mode SIW bandpass filter and patch antenna	115		
5.6	Circuit representation of a single-mode integrated SIW filter and	116		
	antenna			
5.7	Effect of l_3 of integrated single-mode SIW filter and patch antenna	117		
5.8	Magnitude of E-field of integrated single-mode SIW filter and patch	117		

xiii

antenna

- 5.9 Simulated results of the integrated single-mode SIW filter and patch 118 antenna
- 5.10 Manufacturing integrated single-mode SIW filter and patch antenna 119
- 5.11 Measured results of integrated single-mode SIW filter and patch 120 antenna
- 5.12 Comparison between the simulated and measured response 120
- 5.13 Integrated dual-mode SIW bandpass filter and patch antenna 121
- 5.14 Circuit representation of a dual-mode integrated SIW filter and 122 antenna
- 5.15 Effect of y_1 of integrated dual-mode SIW filter and patch antenna 123
- 5.16 Magnitude of E-field of integrated dual-mode SIW filter and patch 123 antenna at centre frequency 1.878 GHz
- 5.17 Magnitude of E-field of integrated single-mode SIW filter and patch 123 antenna at centre frequency 2.113 GHz
- 5.18 Simulated results of integrated dual-mode SIW filter and patch 125 antenna
- 5.19 Manufacturing integrated dual-mode SIW filter and patch antenna 126
- 5.20 Measured results of integrated dual-mode SIW filter and patch 126 antenna
- 5.21 Comparison between the simulated and measured response 127
- 5.22Top view of the multilayer structure128
- 5.23Side view of the multilayer structure128
- 5.24 Ground plane view with T-slot 128

xiv

5.25	Bottom view of the multilayer structure			
5.26	Circuit representation of a single-mode integrated SIW filter and	130		
	antenna			
5.27	Effect of h_4 of the multilayer structure			
5.28	Magnitude of E-field for multilayer (a) top view (b) bottom view			
5.29	Simulated results of the multilayer structure			
5.30	Simulated radiation pattern			
5.31	Manufacturing integrated single-mode SIW filter and patch antenna	134		
	(from left: bottom and top)			
5.32	Manufacturing integrated single-mode SIW filter and patch (ground	134		
	plane)			
5.33	Measured results of multilayer structure	135		
5.34	Comparison between the simulated and measured response			
5.35	Comparison of simulated and measurement for radiation pattern			

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
А	Cosine and Sine Integrals		148
В	Data Sheet FR-4-86 UV Block		150
С	Standard Rectangular Waveguide D	Pata	152

xvi

LIST OF ABBREVIATION

3G	-	Third Generation
EM	-	Electromagnetic
LTE	-	Long Term Evolution
RF	-	Radio Frequency
RX	-	Recieve
SIW	-	Substrate Integrated Waveguide
TE	-	Transverse Electric
TEM	-	Transverse Electromagnetic
ТМ	-	Transverse Magnetic
TX	-	Transmit
WLAN	_	Wireless Local Area Network

xvii

LIST OF SYMBOLS

L	-	Inductance
R	-	Resistance
ω	-	Angular frequency
ω _c	-	Angular cut-off frequency
ωο	-	Angular centre frequency
K	-	Impedance inverter
α	-	Bandwidth scaling factor
С	-	Speed of light
λ	-	Wavelength
λ_o	-	Centre frequency wavelength
λ_g	-	Centre guide wavelength
Ν	-	Number of order(s)
f _o	-	Centre frequency
f_c	-	Cut-off frequency
f_r	-	Resonant frequency
BW	-	Bandwidth
E ₀	-	Permittivity of free space

С

- Capacitance

C Universiti Teknikal Malaysia Melaka

xviii

- ε_r Dielectric constant
- S Sensitivity
- *h* Substrate thickness

LIST OF PUBLICATIONS

Journals:

Zakaria, Z., <u>Sam, W.Y.</u>, Abd Aziz, M.Z.A., Jusoff, K., Othman, M.A., Ahmad, B.H., Mutalib, M.A., and Suhaimi, S., 2013. Hybrid Topology of Substrate Integrated Waveguide (SIW) Filter and Microstrip Patch Antenna for Wireless Communication System. *Australian Journal of Basic and Applied Sciences*, 7(3), pp. 24-34. (*Scopus*)

Zakaria, Z., <u>Sam, W.Y.</u>, Abd Aziz, M.Z.A., and Ismail, M.M, 2013. The Integration Of Rectangular SIW Filter and Microstrip Patch Antenna Based On Cascaded Approach, *Procedia Engineering*, 53(1), pp. 347-353. (*Scopus*)

Zakaria, Z., <u>Sam, W.Y.</u>, Abd Aziz, M.Z.A., Jawad, M.S., and Mohamad Isa, M.S., 2012. Investigation of Integrated Rectangular SIW Filter and Rectangular Microstrip Patch Antenna Based on Circuit Theory Approach, *International Journal of Advanced Studies in Computers, Science and Engineering (IJASCSE)*, 1(4), pp. 46-55. (*Google Scholar*)