

Faculty of Mechanical Engineering

MODELING AND ANALYSIS OF COMPOSITE HINGE FOR AIRCRAFT SPOILER USING FINITE ELEMENT ANALYSIS

Wai Chee Mun

Master of Science in Mechanical Engineering

2014

C Universiti Teknikal Malaysia Melaka

MODELING AND ANALYSIS OF COMPOSITE HINGE FOR AIRCRAFT SPOILER USING FINITE ELEMENT ANALYSIS

WAI CHEE MUN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "Modeling and Analysis of Composite Hinge for Aircraft Spoiler using Finite Element Analysis" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	WAI CHEE MUN
Date	:	

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Master of Science in Mechanical Engineering.

Signature	:	
Supervisor Name	:	AHMAD RIVAI
Date	:	

DEDICATION

To my beloved parents and dear friends

ABSTRACT

This thesis is concerned with the modeling and analysis of a composite hinge bracket for Airbus A320 aircraft using Finite Element Method. The increasing demand of composite materials in aircraft structural design is due to the high strength and stiffness to weight ratio of the composite materials. The reduction in structural weight by the composite materials reduces the fuel consumption of the aircraft. Since the hinge bracket of the A320 aircraft is made of metallic materials, this research aims to redesign the hinge bracket with laminated composite plates. However, the design of structures with composites is not as easy as the design of metallic structures. Composites are heterogeneous and anisotropic in nature thus, complicating the structural analysis. The best practice of laminated composite design in the industry is simplified to accommodate the limitation of this research. The simplified design process is a simple three stages design process which focused on using Finite Element Anlysis for unidirectional laminated composite structural design. It begins with the determination of stress distribution in a metallic structure. The stress distribution allows the designer to identify areas of different stress distribution of the structure. Once the areas are identified, the direction of principle stresses is determine to decide on the fiber orientation and stacking sequence of the composite laminates for each area. Finally, the analysis of the laminated composite structure is carried out using Classical Laminate Plate theory and the structural integrity is accessed by the calculation of margin of safety. The simplified design process has been applied to redesign the metallic hinge bracket of A320 aircraft using IM7/8552 composite laminates. MSC Patran/Nastran and Abaqus CAE were used to carry out the finite element analysis of the hinge bracket. The composite hinge bracket has a margin of safety of 0.041. The weight savings by this composite hinge bracket is estimated to be 42.29 percent of the original metallic hinge bracket of A320. The success of this composite hinge design has proven that the simplified design process proposed in this research is indeed feasible for the purpose of preliminary design of laminated composite structures. The advantage of this simplified design process is that it approaches the design of composite structures in a systematic manner thus, allowing the identification of factors influencing the strength the laminated composite structural design. Since it is based on Finite Element Method, the results are at best approximations but sufficient to boost the level of confidence in the preliminary design stage.

ABSTRAK

Tesis ini adalah berkenaan dengan pemodelan dan analisis pendakap engsel komposit untuk pesawat Airbus A320 dengan menggunakan Kaedah Unsur Terhingga. Permintaan yang semakin meningkat daripada bahan komposit dalam reka bentuk struktur pesawat adalah disebabkan nisbah kekuatan dan kekakuan kepada berat bahan komposit yang tinggi. Pengurangan berat struktur oleh bahan-bahan komposit mampu mengurangkan penggunaan bahan api pesawat. Penyelidikan ini bertujuan untuk mereka bentuk semula pendakap engsel pesawat A320 dengan menggunakan plat komposit berlapis untuk menggantikan pendakap engsel lama pesawat A320 yang diperbuat daripada bahan logam. Walau bagaimanapun, reka bentuk struktur komposit tidak semudah reka bentuk struktur logam. Sifat bahan komposit yang anisotropik merumitkan analisis struktur. Amalan terbaik reka bentuk komposit berlapis dalam industri dipermudahkan untuk menampung had kajian ini. Proses reka bentuk yang dipermudahkan terdiri daripade tiga peringkat asas yang memberi tumpuan kepada menggunakan Analysis Unsur Terhingga untuk mereka bentuk struktur daripada plat komposit berlapis satu arah. Ia bermula dengan penentuan agihan tegasan dalam struktur logam. Agihan tegasan membolehkan pereka mengenal pasti kawasan agihan tegasan yang berbeza dalam struktur. Sebaik sahaja kawasan dikenal pasti, arah tegasan prinsip digunakan untuk menentukan orientasi gentian dan susunan urutans lapisan komposit bagi setiap kawasan. Akhir sekali, analisis struktur komposit berlapis dijalankan dengan menggunakan teori Klasik lamina Plat dan integriti struktur diukur melalui pengiraan margin keselamatan. Proses reka bentuk yang dipermudahkan telah digunakan untuk mereka bentuk semula pendakap engsel logam pesawat A320 dengan menggunakan IM7/8552 komposit berlapis. MSC Patran/Nastran dan Abaqus CAE telah digunakan untuk menjalankan analisis unsur terhingga pendakap engsel tersebut. Pendakap engsel komposit mempunyai margin keselamatan 0.041. Penjimatan berat badan oleh pendakap engsel komposit ini dianggarkan 42.29 peratus daripada berat badan asal pendakap engsel logan pesawat A320. Kejayaan reka bentuk engsel komposit ini telah membuktikan bahawa proses reka bentuk yang mudah yang dicadangkan dalam kajian ini memang boleh digunakan untuk tujuan reka bentuk awal struktur komposit berlapis. Kelebihan model ini ialah ia membolehkan pengenalpastian faktor yang mempengaruhi kekuatan reka bentuk struktur komposit berlapis dalam proses reka bentuk struktur. Memandangkan ia adalah satu kaedah berdasarkan Kaedah Unsur Terhingga, keputusan analysis merupakan satu anggaran sahaja tetapi cukup untuk meningkatkan tahap keyakinan dalam reka bentuk dan pembuatan komposit.

ACKNOWLEDGEMENTS

I would like to thank Centre for Research and Innovation Management (CRIM) and Faculty of Mechanical Engineering (FKM) Universiti Teknikal Malaysia Melaka for funding this research through PJP/2012/FKM(18C)S1112 Research Fund and having interest in this area of engineering. I hope that the contents of this thesis can benefit them in designing and developing laminated composite structures in the future.

I would like to extend my appreciation to my supervisors, Associate Professor Ahmad Rivai and Mr Omar Bapokutty, for their suggestions and guidance. Thank you, Mr. Omar, for willing to join my research at a late notice.

I would also like to thank my parents, family members, friends who were involved directly or indirectly in the completion of my thesis. Thank you for your morale support throughout my graduate studies.

Last but not least, I would like to thank God for answering my prayers in my darkest time. The completion of this thesis would not been possible without God's will. I humbly thank you for guiding and instilling faith in me.

TABLE OF CONTENTS

DE(CLAR	ATION	Í	
DEI	DICA	ΓΙΟΝ		
ABS	TRA	СТ		i
ABS	TRA	K		ii
ACH	KNOV	VLEDG	EMENTS	iii
TAE	BLE C	DF CON	TENTS	iv
LIS	ГOF	TABLE	S	vi
LIS	ГOF	FIGUR	ES	viii
LIS	ГOF	APPEN	DIXES	xi
LIS	Г ОГ	ABBRE	EVIATIONS	xii
LIS	Г ОГ	SYMBO	DLS	xiv
LIS	ГOF	PUBLI	CATIONS	xvi
CHA	APTE	R		
1	INT	RODU	CTION	1
	1.1	Backg	round	3
	1.2	Proble	m Statement	4
	1.3	Object	ives	4
	1.4	Scope		5
	1.5	Overvi	ew of Thesis	
2	LIT	ERATU	JRE REVIEW	6
	2.1	Structu	ıral Design	6
		2.1.1	The Design Process	7
		2.1.2	Stress Analysis	9
		2.1.3	Factor and Margin of Safety	11
		2.1.4	Accuracy	13
		2.1.5	Materials Selection	14
	2.2	Compo	osite	15
		2.2.1	Composite in Aircraft Design	16
		2.2.2	Laminated Composite	18
		2.2.3	Mechanics of Laminated Composite	20
		2.2.4	Failure Criteria of Laminated Composite	26
		2.2.5	Composite Design Method	28
	2.3	Finite	Element Method and Analysis	29
		2.3.1	Finite Element Procedures in Engineering Analysis	31
			2.3.1.1 Verification and Validation of Simulation Models	33
		2.3.2	Software Packages for Finite Element Analysis	36
			2.3.2.1 MSC Patran & Nastran	37
			2.3.2.2 Abaqus CAE	38
	2.4	Chapte	er 2 Overview	39

3	ME	THODOLOGY	40
	3.1	Working Method for Composite Design	40
	3.2	Preliminary Analysis	42
	3.3	Discretization	44
	3.4	Composite Laminate Modeling	45
4	МО	DELING AND VERIFICATION	46
	4.1	3D Hinge Bracket Modeling	46
	4.2	2D Hinge Bracket Modeling	49
	4.3	Verification of Modeling	52
5	RES	SULTS AND ANALYSIS	56
	5.1	Preliminary Analysis of Metallic Hinge Bracket	56
		5.1.1 Stress Analysis	57
	5.2	Discretization of Composite Hinge Bracket	63
	5.3	Original Composite Hinge Bracket Analysis	66
	5.4	Modified Composite Hinge Bracket	75
	5.5	Brief Economy Analysis	81
6	CO	NCLUSION AND RECOMMENDATIONS	82
	6.1	Conclusion	82
	6.2	Recommendations	84
RE	FERE	NCES	86
AP	PEND	IXES	99

LIST OF TABLES

TITLE

PAGE

TABLE

4.1	Mechanical Properties of AA7075-T651	49
4.2	Mechanical Properties of IM7/8552 Lamina	51
4.3	Von Mises Stresses of W460x74 Beam	53
4.4	Deflection of W460x74 Beam at Different Beam Length	53
4.5	Elastic Properties of Each Ply	54
4.6	Ply by Ply Stress Results of Quasi-isotropic Laminate	55
5.1	Summary of Load Cases Considered in FEA for Spoiler Hinge Bracket	56
5.2	Comparison of Von Mises Stresses at the Top Surface of the Right	61
	Side of the Metallic Hinge Bracket	01
5.3	Composite Laminate Layup for Each Zone of A320 Composite Hinge Bracket	64
5.4	Summary of Worst MS for Each Zone of the Composite Hinge Bracket	68
5.5	Layer by Layer Longitudinal Stress of Zone A for Case of Spoiler	70
	Close with Negative wing Bending	
5.6	Open with Positive Wing Bending	70

5.7	Displacement Analysis of Zone A at Node 1	74
5.0	Composite Laminate Layup of the Modified Composite Hinge	77
5.0	Bracket	11
5.9	Summary of Worst MS by Zones for the Modified Composite Hinge	
	Bracket	17
5.10	Comparison of Worst MS at Each Zone between Original and	80
	Modified Composite Hinge Bracket	80
5.11	Comparison of Weight Savings between Different Hinge Bracket	81
	Designs	01

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	Rolling Motion Cause by Deploying Right Spoiler	1
1.2	FACC Carbon Composite Center Hinge Fitting	2
1.3	Composite Structural Weight Development in Airbus	3
2.1	Design Model	7
2.2	Fiber Arrangement Patterns in a Lamina	18
2.3	Composite Laminate Drawing	19
2.4	Sign Convention of Positive and Negative Fiber Orientation	20
2.5	Finite Element Method Model	31
2.6	The Process of Finite Element Analysis	32
2.7	Verification and Validation Activities and Outcomes	34
3.1	Schematic Picture of Composite Working Method	40
3.2	Aero Shaped Segment	41
3.3	Unidirectional Laminated Composite Design Model	42
3.4	CAD Drawing of Airbus A320 Outer Hinge Bracket	43
3.5	Discretized Zones in Airbus A320 Hinge Bracket	44
4.1	CAD Model of A320 Hinge Bracket for 3D FE Modeling	46
4.2	Finite Element Modeling of 3D Hinge Bracket	47
4.3	CAD Model of A320 Hinge Bracket for 2D FE Modeling	49

4.4	Finite Element Modeling of 2D Hinge Bracket	50		
4.5	W460x74 Beam	52		
4.6	Composite Laminate Setup for Tension Coupon Test	54		
5 1	Stress Distribution of Metallic Hinge Bracket for Case of Spoiler	56		
3.1	Close	50		
5.2	Stress Distribution of Metallic Hinge Bracket for Case of Spoiler	56		
3.2	Open	30		
5.3	Stress Concentration at Bolt Holes of Metallic Hinge Bracket	58		
5 /	Stress Distribution for Metallic Hinge Bracket for Case of Spoiler	50		
3.4	Close	39		
5 5	Comparison of Stress Concentration at Lug of the Metallic Hinge	60		
5.5	Bracket	00		
56	Nodes Location at the Top Surface of the Right Side of the Hinge	61		
5.0	Bracket	01		
57	Comparison of Stresses Obtained by Nastran and Abaqus at the Top			
5.7	Surface of the Sides of the Metallic Hinge Bracket	02		
5 8	Comparison of Stresses between Six Different Load Cases at the Top			
5.0	Surface of the Sides of the Metallic Hinge Bracket	02		
5 0	Discretization of A320 Hinge Bracket by Areas of Different	64		
J.7	Thickness	04		
5 10	Discretization of 2D FE Model of A320 Hinge Bracket by Areas of	64		
5.10	Different Stress Distribution and Laminate Thickness			
5.11	Difference in Global Axis and Local Material Axis in Zone A	66		
5 12	Comparison of Von Mises Stresses (MPa) between Metallic Hinge			
5.12	Bracket and Composite Hinge Bracket for the Case of Spoiler Close	07		

With negative Wing Bending

	Comparison of Von Mises Stresses (MPa) between Metallic Hinge				
5.13	Bracket and Composite Hinge Bracket for the Case of Spoiler Open	67			
	With Positive Wing Bending				
5.14	Comparison between 3D and 2D FE Model of A320 Hinge Bracket	69			
5.15	Laminate Stacking Sequence of Zone A	69			
5.16	Left Side View of Zone A of the Composite Hinge Bracket	70			
5 17	Average Longitudinal Stress in MPa of the Composite Laminate in	70			
5.17	Zone A	12			
	Layer by Layer Analysis of Longitudinal Stress of Zone A of the				
5.18	Composite Hinge Bracket for the Case of Spoiler Close with	72			
	Negative Wing Bending				
	Layer by Layer Analysis of Longitudinal Stress of Zone A of the				
5.19	Composite Hinge Bracket for the Case of Spoiler Open with Positive	73			
	Wing Bending				
5.20	Deformation of Composite Laminate in Zone A	74			
5.21	Composite Hinge Bracket	75			
5.22	Discretization of Modified Composite Hinge Bracket	76			
	Comparison of Von Mises Stresses between Original and Modified				
5.23	Composite Hinge Bracket for the Case of Spoiler Close with	78			
	Negative Wing Bending				
	Comparison of Von Mises stresses between Original and Modified				
5.24	Composite Hinge Bracket for the Case of Spoiler Open with Positive	78			
	Wing Bending				

LIST OF APPENDIXES

APPENDIX	TITLE	PAGE
А	Airbus A320 Original Hinge Bracket Drawing	99
В	Airbus A320 Hinge Loads	100
С	Selected Properties of Matrix and Fibrous Materials	102
D	Hexcel Datasheet for HexPly 8552 Epoxy Matrix	103
Е	Calculation of IM7/8552 Lamina Properties	104
F	Weight Calculation of Airbus A320 Hinge Bracket	106
G	Mesh Refinement	110
Н	Calculation of Principle Stresses	113

LIST OF ABBREVIATIONS

1D	-	One dimensional
2D	-	Two dimensional
3D	-	Three dimensional
ASM	-	American Society for Metals
ASME	-	American Society of Mechanical Engineers
CAD	-	Computer Aided Design
CAM	-	Cylindrical Assemblage Model
CLT	-	Classical Laminate Theory
cm ³	-	Centimeter cube
DoFs	-	Degree of Freedoms
DTA	-	Damage Tolerance Analysis
etc.	-	et cetera
FAA	-	Federal Aviation Administration
FACC	-	Fischer Advanced Composite Components
FE	-	Finite Element
FEA	-	Finite Element Analysis
FEM	-	Finite Element Method
FPF	-	First ply failure
FRP	-	Fiber Reinforced Polymer
FS	-	Factor of Safety

g	-	Gram
g/cm ³	-	Gram per centimeter cube
GUI	-	Graphic-user interface
IBC	-	International Building Code
in	-	Inch
lb/in	-	Pounds per square inch
mm	-	millimeters
mm ²	-	millimeters square
mm ³	-	millimeters cube
MPa	-	MegaPascal
MS	-	Margin of Safety
Msi	-	Megapounds per square inch
Ν	-	Newton
Nm	-	Newton meter
NASA	-	The National Aeronautics and Space Administration
PLM	-	Patran Laminate Modeler
PPF	-	Progressive ply failure
psi	-	Pounds per square inch
RBE	-	Rigid Body Elements
RF	-	Reserved Factor
RTM	-	Resin transfer moulding
UD	-	Unidirectional
VAC	-	Volvo Aero Corporation
V&V	-	Verification and validation
VV&A	-	Verification, validation and accreditation

LIST OF SYMBOLS

%	-	Percent
0	-	Degree
cm ³	-	Centimeter cube
g/cm ³	-	Gram per centimeter cube
θ	-	Angle
\mathbf{V}_{f}	-	Fiber volume fraction
$V_{\rm m}$	-	Matrix volume fraction
W_{f}	-	Fiber weight fraction
W_{m}	-	Matrix weight fraction
Р	-	Density
ρ_c	-	Lamina density
$ ho_{\rm f}$	-	Fiber density
$ ho_m$	-	Matrix density
E_1	-	Lamina longitudinal modulus
E_{f}	-	Fiber elastic modulus
E _m	-	Matrix elastic modulus
v ₁₂	-	In-plane Poisson's ratio
$v_{\rm f}$	-	Fiber Poisson's ratio
v _m	-	Matrix Poisson's ratio
E ₂	-	Lamina transverse modulus

ζ	-	Empirical parameter	
G ₁₂	-	Lamina in-plane shear modulus	
G_{f}	-	Fiber shear modulus	
G _m	-	Matrix shear modulus.	
G ₂₃	-	Lamina out of plane shear modulus	
σ_1	-	Maximum local stress along fiber direction	
σ_2	-	Maximum local stress transverse to the fiber direction	
τ_{12}	-	Maximum shear stress in the principal material direction	
F _{ft}	-	Fiber tensile strength	
F _{1c}	-	Lamina longitudinal compressive strength	
F _{2t}	-	Lamina transverse tensile strength	
F _{mt}	-	Matrix tensile strength	
F _{2c}	-	Lamina transverse compressive strength	
F _{mc}	-	Matrix compressive strength	
F ₆	-	Lamina in-plane shear strength	
F _{ms}	-	Matrix shear strength	
α_{σ}	-	Standard deviation of fiber misalignment	
V_{v}	-	Void volume fraction	
П	-	A constant with the value of 3.142	

LIST OF PUBLICATIONS

Journal:

Putra, A., Rivai, A., Wai, C.M., and Muhammad, N., 2014. Preliminary Investigation on the Perforated Panel Mobility using Finite Element Method. *Applied Mechanics and Materials*, 471, pp.341 – 346.

Wai, C.M., Rivai, A., and Omar, B., 2013. Modeling Optimization Involving Different Types of Elements in Finite Element Analysis. *IOP Conference Series: Materials Science and Engineering*, 50 (1), pp. 1 - 8.

Wai, C.M., Rivai, A., and Omar, B., 2013. Effects of Elements on Linear Elastic Stress Analysis: A Finite Element Approach. *International Journal of Research in Engineering and Technology (IJRET)*, 10 (2), pp.561 – 567.

Wai, C.M., Ahmad, R., and Omar, B., 2013. Design and Analysis of an Aircraft Composite Hinge Bracket using Finite Element Approach. *Applied Mechanics and Materials* (Accepted manuscript).

Putra, A., Cheah, Y.M., Muhammad, N., Rivai, A., and Wai, C.M., 2014. The Effect of Perforation on the Dynamics of a Flexible Panel. *Advances in Acoustic and Vibration* (Accepted manuscript).

CHAPTER 1

INTRODUCTION

1.1 Background

Commercial aircrafts, such as Airbus A380 and Boeing E787, have spoilers attached to the top surface of their wings. Spoilers are plate like structures used to assist the landing and descending of an aircraft from higher to lower altitude as well as generate rolling motion of the aircraft (Dawson, 2006; NASA, 2010). Figure 1.1 shows the rolling motion generated by deploying the right spoiler of an aircraft.

Figure 1.1 : Rolling Motion Cause by Deploying Right Spoiler (NASA, 2010)

As the name suggest, aircraft spoilers are used to "spoil" the airflow over the wing. When both the spoilers are deployed, the drag increases while the lift decreases (Dawson, 2006). The decrease in the lift enables the aircraft to descend from a higher to lower altitude and slow down before landing. Spoilers are also useful in assisting the breaking of the aircraft on the runway (NASA, 2010). The upward and downward movements of the aircraft spoilers are made possible by a set of hinges. A hinge is a mechanism which allows the rotational motion in one axis (Leet et al., 2008). Hinges usually consists of two brackets. Some hinges have bearings fitting to reduce frictional force between the pin and two brackets. The brackets of the hinges are supportive structures which are usually made of metals. In 2006, Fischer Advanced Composite Components (FACC) AG successfully designed a composite center hinge fitting for Airbus, shown in Figure 1.2, by using resin transfer molding (RTM). The composite hinge is said to be able to withstand 20 ton air load and save 25 percent in weight per set of hinge (Dawson, 2006).

Figure 1.2 : FACC Carbon Composite Center Hinge Fitting (Dawson, 2006): (a) Metal Bushings and Bearings Installed in the Fitting Lugs; (b) Hinge Fitting Molded via RTM

In aircraft construction, composites are more commonly used for secondary structure, wings, fuselages, and even smaller parts such as spoilers (Dawson, 2006). However, the use of composite materials in commercial aircraft has been increasing exponentially since the last decade due to their capability in reducing the overall structural weight of the aircraft effectively (Basavaraju, 2005; Mallick, 2007). Companies such as Airbus and Boeing have been replacing their metallic aircraft parts with composite materials. Figure 1.3 shows the composite structural weight development in Airbus commercial aircrafts. Though the development of composites has mostly been derived

from military and The National Aeronautics and Space Administration (NASA) prototypes (Cole, 2002), it is not too farfetch to say that there will be an all composite aircraft one day.

Figure 1.3 : Composite Structural Weight Development in Airbus (Bold, 2007)

1.2 Problem Statement

Existing hinges for aircraft spoilers, especially the old aircraft models, are mostly made of metals. For example, the Airbus A320 aircraft spoiler hinges are still made of metal. The replacement of the existing metallic hinges with composite materials may save up quite a considerable amount of the hinges structural weight. The decrease in the aircraft structural weight will reduce the fuel consumption of the aircraft. However, composite is still considered new compared to the well established monolithic metals (Maligno, 2007; Nguyen, 2010). Therefore, more information and a different approach to design composite structure are required (Mallick, 2007). The industry has developed their own best practices to design composite structures but the educational model flow to design composite structures, especially laminated composite structures, is still lacking in the engineering textbooks.