

Faculty of Electronics and Computer Engineering

QUEUING SYSTEM 'EXCEPTIONS', THEIR AFFECTS AND NON-QUEUE STATE: A NEW STOCHASTIC APPROACH

Harpreet Singh s/o Bhagat Singh Azad

Master of Science in Electronic Engineering

2014

C Universiti Teknikal Malaysia Melaka

QUEUING SYSTEM 'EXCEPTIONS', THEIR AFFECTS AND NON-QUEUE STATE: A NEW STOCHASTIC APPROACH

HARPREET SINGH S/O BHAGAT SINGH AZAD

A thesis submitted

in fulfillment of the requirement for the degree of Master of Science

in Electronic Engineering

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Jun Signature:

Supervisor Name: Professor Dr. Muhammad Ghazie Ismail

١

Date: 15 May 2014

C Universiti Teknikal Malaysia Melaka

int for a diff to a difference of the second to a second to a

DECLARATION

I declare that this thesis entitle "Queuing System 'Exceptions', Their Affects and Non-Queue State: A New Stochastic Approach" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature: How preet Sm

Name: Harpreet Singh s/o Bhagat Singh Azad

Date: 15 July 2014

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Most queuing models are based on organized behavior of customers served by a server or multiple servers. However, there are many instances that the queuing model does not stand by real world queue ethics. The consequences can go towards non-queue state caused by overcrowding and cultural background of the customers. This research portrays the successive outcomes that sourced non-queue state due to customer ignored behaviors as well as the unsystematic policy of a single serving system which becomes the main research problem. Such activities are termed as 'exceptions' and their disturbances in queuing system. The main objective of this research is to present 'exceptions', their affects and to resolve the non-queue state. It is important so that the waiting time distribution, behaviour of the system during 'exceptions' and queuing system can be evaluated, demonstrated and reinstated to a single server queuing state, respectively. A non-queue is a state addressed when system utilization goes beyond 100 percent. Furthermore, this would indicate no formal queue at all as customers could be assumed at random locations. This research will explain the state of the system during 'exception' and non-queue transformation largely with the support of probability theory in time index values. Various 'exceptions' categories with constructed waiting time probability models and their results have proven that the customers large waiting do actually overcrowd the queuing system. This thesis discusses 'exceptions' affects through the Markov chain, random walk and birth-death process. The above concepts illustrate system behaviour, as 'exception' that disrupts services. In exceptional case, stochastic matrix considered two types such as actual job and 'exception' to occur during state transition. Their limitation is further simplified by random walk in convolution idea. The system parameters such as late departures, queue loss and others are affirmed in continuous-time by birth-death process. Simulation of change of discrete-event of queuing system such as service times shows, in long-run on averages service time fluctuates, utilization gets large, service finishing late and customers get increased in the system causing non-queue state. A platform of dissimilar manners used by stochastic process in non-queue transformation analysis. One of the manner employed are Markov conditional selection procedure is presented to recover queuing system through selecting and ordering random states. In other manner, random state(s) proceeds to get in order are expanded by proceeding walk and multinomial-pure death view. The interrelation of such models is grounded through the random states and distance decays by an interval. All such manners in stochastic process have likely to bring into being a queuing model after non-queue transformation. This research finds that the stochastic process has tremendous potential to model 'exception' outcomes and to restore the 'exception' eventual affects.

ABSTRAK

Kebanyakan model baris-gilir adalah berdasarkan kepada tingkah laku terancang para pelanggan yang dilayan oleh satu pelayan atau pelayan berganda, Sungguhpun begitu, terdapat banyak contoh di mana model baris-gilir tidak berdiri dengan etika giliran dunia yang sebenar. Kesannya boleh sampai kepada keadaan bukan baris-gilir yang disebabkan oleh kesesakan dan latar belakang budaya para pelanggan. Kajian ini menggambarkan hasil berturut-turut yang bersumberkan keadaan bukan-bergilir kerana pengabaian perlakuan pelanggan serta dasar tidak sistematik sistem layanan tunggal yang menjadi masalah utama penyelidikan. Aktiviti sedemikian disebut sebagai 'pengecualian' dan gangguannya dalam sistem baris-gilir. Objektif utama penyelidikan ini adalah untuk membentangkan 'pengecualian-pengecualian', kesannya dan penyelesaian kepada keadaan tidak berbaris-gilir. Ia adalah penting agar taburan masa menunggu, tingkah laku sistem semasa 'pengecualian-pengecualian' dan sistem baris-gilir masing-masing boleh dinilai, ditunjukkan dan dinvatakan kembali kepada keadaan bergilir lavanan tunggal. Bukan-bergilir adalah keadaan yang dinyatakan apabila penggunaan sistem melampaui 100 peratus. Tambahan pula, ini boleh menunjukkan tiada baris-gilir formal langsung kerana para pelanggan boleh diandaikan berada di lokasi-lokasi rawak. Kajian ini akan menjelaskan keadaan sistem semasa 'pengecualian'dan transformasi bukanbergilir dengan sokongan besar oleh teori kebarangkalian dalam nilai indeks masa. Pelbagai kategori 'pengecualian-pengecualian' dengan pembentukan model-model kebarangkalian masa menunggu dan keputusannya telah membuktikan bahawa penantian besar para pelanggan sebenarnya menyesakkan sistem baris-gilir. Tesis ini membincangkan kesan 'pengecualian-pengecualian' menerusi rantaian Markov. perjalanan rawak dan proses kelahiran-kematian. Konsep-konsep di atas menggambarkan sistem tingkah laku sebagai 'pengecualian' yang mengganggu perkhidmatan. Dalam kes yang istimewa, matrik stokastik mengambil kira dua jenis keadaan yakni kerja sebenar dan 'pengecualian' untuk berlaku semasa peralihan tahap. Limitasi mereka kemudiannya dipermudahkan dengan perialanan rawak dalam idea kekusutan. Parameter-parameter sistem seperti keberangkatan lewat, kehilangan giliran dan lain-lain adalah ditegaskan dalam masa-berterusan oleh proses kelahiran-kematian. Simulasi perubahan acara-diskret sistem baris-gilir seperti pertunjukan masa perkhidmatan, purata masa perkhidmatan yang turun-naik dalam jangka panjang, penggunaan semakin meningkat, perkhidmatan tamat lewat dan para pelanggan semakin meningkat dalam sistem menyebabkan keadaan tidakberbaris. Satu platform adab yang berbeza digunakan oleh proses stokastik dalam analisis transformasi tidak-berbaris. Salah satu cara yang digunakan adalah prosedur pemilihan bersyarat Markov yang dibentangkan untuk mendapatkan semula sistem beratur melalui pemilihan dan mengarah keadaan rawak. Dalam cara lain, keadaan rawak diteruskan untuk mendapatkan aturan yang diperkembangkan oleh perjalanan berterusan dan pandangan kematian tulen-multinomial. Hubungkait model-model tersebut adalah berasaskan kepada keadaan rawak dan pereputan jarak menerusi hentian sementara. Semua kaedah ini dalam proses stokastik mempunyai kemungkinan membawa kepada penciptaan model baris-gilir selepas transformasi bukan-bergilir. Kajian ini mendapati bahawa proses stokastik mempunyai potensi besar untuk membentuk hasil model 'pengecualian' dan akhirnya untuk memulihkan kesan 'pengecualian'.

ACKNOWLEDGEMENTS

As it pleases You, You assign tasks to one and all. All things are Your Doing; we can do nothing ourselves. (*Guru Granth Sahib*: 103)

I would like to express my sincerest gratitude to my supervisor, Professor Dr. Muhammad Ghazie Ismail for introducing me to the queuing theory, giving parallel coordination on thesis contents and inspired me to publish articles in international journals. Likewise, the most important is the arriving at the rest of thesis through his 'higher degree of independence' morals. I am grateful for the constructive comments and suggestions given by the external examiner, Professor Dr. Kamaruzzaman Seman for the advancement of this thesis.

I must also appreciate the current existence of electronic media that had helped me in understanding the conceptual framework of the queuing theory. Especially the e-learning video tutorials, which was uploaded by the volunteers/universities. I sincerely thanks to Dr. Charanjit Kaur for supporting my research finances, providing required literatures, translating thesis abstract in Bahasa Melayu, editing assistance, dealings with university administrating staff and outside the university in local language throughout my research duration. I attribute the level of my Masters degree to their encouragements and efforts. Without them, this thesis would not have been integrated, improved and completed.

I would like to thanks my parents Sardar Bhagat Singh Azad and Sardarni Balbir Kaur, my wife Dr. Charanjit Kaur, my siblings Satbir Kaur, Rupinder Singh and rest of other family members for their endless love and spiritual support during the course of my studies. Last but not least, a very acknowledgment to the new-born daughter Eykam Parteet Kaur during my study period. Her cheerful presence boosts the enthusiasm of our everyday life.

TABLE OF CONTENTS

DEC	LARA	ATION	
ABS	TRAC	CT	i
ABS	TRAK	K	ii
ACK	NOW	LEDGEMENTS	iii
TAB	LE OI	F CONTENTS	iv
LIST	OF T	TABLES	viii
LIST	OF F	IGURES	ix
LIST	OF A	APPENDICES	xii
LIST	OF S	SYMBOLS	xiii
LIST	OF P	UBLICATIONS	xvii
СНА	PTER		
1.	INT	1	
	1.1	Background	1
	1.2	Research Questions	5
	1.3	Research Objectives	5
	1.4	Research Methodology	6
	1.5	Problem Statement	6
	1.6	Research Scope	7
	1.7	Research Originality	8
	1 8	Persearch Contribution	0

9
9
11
13

2.	LITI	14	
	2.1	Introduction	14
	2.2	Queuing System	15
	2.3	Queuing Among 'Exception'	17

3.	MATERIALS AND METHODS		
5.	3.1 Introduction		24 24
	3.2	Research Design	25
	3.3	Research Design: Conceptual Approach	26
	3.4	Probability Theory	26
		3.4.1 Probability models	27
		3.4.2 Stochastic process concepts	27
	3.5	Data Collection	30
	3.6	Research Design: Simulation Approach	33
	3.7	Research Design Route	37

1 3

Queuing Among 'Exception' 2.3

4.	'EXO	CEPTIONS' AND THEIR SEQUENTIAL AFFECT	39
	4.1	Introduction	39
	4.2	'Exceptions' in Queuing System	39
	4.3		40
	4.4	Queuing System with Server Disreputable Approach	41
		4.4.1 Bypass serving system	41
		4.4.2 Delay commencing of services	42
		4.4.3 Tailored waiting	42
	4.5	Queuing System with Unsystematic and Fluctuate Policy	43
		4.5.1 Devices unconcern system	43
		4.5.2 Less informative system	44
		4.5.3 Policy fluctuate system	44
		4.5.4 Broadcasted appointments	44
	4.6	Queuing System with Changes in Arrival	45
		4.6.1 Inconsiderate underpinning	45
		4.6.2 Brazenness feeding	46
		4.6.3 Unorganized customer	46
	47	4.6.4 Untimely arrival	47
	4.7	Untimely Arrivals: Waiting Time Distribution Modeling	48
		4.7.1 First Scenario: Unknown opening time4.7.2 Earlier queuing up: Waiting time distribution	49 49
		4.7.2 Earner queuing up: Waiting time distribution 4.7.3 Later queuing up: Waiting time distribution	49 51
		4.7.4 Result and discussion	54
		4.7.5 Second scenario: Known opening time	58
		4.7.6 Result and discussion	60
	4.8		64
		4.8.1 Result and discussion	69
	4.9	Service Variations: Waiting Time Distribution	71
		4.9.1 Result and discussions	74
	4.10	Relationship Among Waiting Models	77
5.	BEH	AVIOUR OF THE QUEUING SYSTEM IN 'EXCEPTION'	81
	5.1	Introduction	81
	5.2	Queuing System Declination: Markov Chain	83
	0.2	5.2.1 Stochastic concept approach	88
		5.2.2 Overcrowding probability	89
		5.2.3 Result and discussion	90
	5.3	'Exception' Through Random Walk	92
		5.3.1 Convolution of two types occurrences	93
		5.3.2 Result and discussion:	95
	5.4	System Declination: Regular Birth Single Death Chain	97
		5.4.1 Birth-Death 'exception' chain	99
		5.4.2 Result and discussion:1	101
		5.4.3 Result and discussion:2	102
	5.5	Continuous-Time Deviation Process	105
		5.5.1 Assumption 1: Queue fading	106
		5.5.2 Result and discussion	109
		5.5.3 Assumption 2: Accumulated dual-state	110
		5.5.4 Result and discussion: 1	113

	5.5.5 Result and discussion: 2	114
	5.5.6 Assumption 3:Pure birth and pure death	116
	5.5.7 Result and discussion	117
5.6	Discrete-Event System Simulation	120
	5.6.1 Different time sets and their affects	120
5.7	Behaviour Verification and Discussion	122
	5.7.1 Comparison of HTS and NHTS	123
	5.7.2 Utilization (ρ)	125
	5.7.3 System behaviour comparison in discrete-event system	128
5.8	System Behaviour Comparison in Time Index Parameter	129
5.9	Law of Large Numbers Function Comparisons	130

6. NON-QUEUE STATE TRANSFORMATION: A STOCHASTIC APPROACH I 132

6.1	Transformation Approach	132
6.2	General Idea of Transformation	133
6.3	Transformation of Non-Queue State	135
0.0	6.3.1 Markov conditional selection procedure	135
	6.3.2 Discrete-time continuous-state MCSP	136
6.4	Simulation of MCSP Random State Transitions	140
	6.4.1 Simulation of the non-queue state segment	140
	6.4.2 Result and discussion: MCSP simulation	141
6.5	Result and Discussion: State Transitions and Queue Straightening	143
	6.5.1 Fix-modes transition Markov chain procedure	148
6.6	Random Walk to Proceeding Walk	151
6.7	Relationship Between Random Walk and Proceeding Walk	152
6.8	Introduction to Proceeding Walk	153
6.9	Proceeding Walk: Random Digit Signs	155
6.10	Proceeding Walk: Non-Queue Transformation	157
	6.10.1 Effective positions range $(\langle r \rangle)$	160
	6.10.2 Result and discussion: Limitless proceeding walk	163
	6.10.3 Result and discussion: Limited proceeding walk	165
	6.10.4 Result and discussion: Expected time distribution	166
	6.10.5 Partial proceeding walk: Coordinate system	168
	6.10.6 Result and discussion	169

7. NON-QUEUE STATE TRANSFORMATION A STOCHASTIC APPROACH II 172

7.1	Introduction	172
7.2	Proceeding Walk Counting Approach	172
	7.2.1 Coordinate base counting method: Combinatorial analyses	174
7.3	Result and Discussion: Number of Ways Probabilities	175
7.4	Effective Positions General Probability Interpretation	189
	7.4.1 Result and discussion: For $P(u^p) = P(f_p)$	180
	7.4.2 Result and discussion: For $P(u^p) > P(f_p)$	181
	7.4.3 General probabilities comparison	182
7.5	Dual Multinomial Distribution	184
	7.5.1 Distribution formulation	185

		7.5.2	Result and discussion	187
	7.6	Chance	es of Contravene	188
		7.6.1	Result and discussion	191
	7.7	Multin	omial-Pure Death View (MPD)	195
		7.7.1	Result and discussion	200
			Result and discussion: Modes set probabilities	202
	7.8	Multine	omial-Pure Death Distribution Relationship	204
	7.9		Relationship and Further Presentment	206
			MCSP significance in communication	207
	7.10	Transfe	ormation Concepts Relationship	211
	7.11	Expecte	ed Outcome	212
-	~ ~ ~ ~ ~			
8.	CON	CLUSIO	IN AND RECOMMENDTIONS FOR FUTURE RESE	EARCH 214
8.	CON 8.1	CLUSIO Summa		EARCH 214 214
8.		Summa		
8.	8.1	Summa Limitat	ary	214
8.	8.1 8.2	Summa Limitat Attainn	ary tion of Study	214 220
8.	8.1 8.2 8.3	Summa Limitat Attainn Signific	ary tion of Study nent of Research Objective	214 220 221
8.	8.1 8.2 8.3 8.4	Summa Limitat Attainn Signific	ary tion of Study nent of Research Objective cance of Research Outcomes	214 220 221 222
	8.1 8.2 8.3 8.4 8.5	Summa Limitat Attainn Signific Sugges	ary tion of Study nent of Research Objective cance of Research Outcomes	214 220 221 222 223
	8.1 8.2 8.3 8.4	Summa Limitat Attainn Signific Sugges	ary tion of Study nent of Research Objective cance of Research Outcomes	214 220 221 222
REFE	8.1 8.2 8.3 8.4 8.5	Summa Limitat Attainn Signific Sugges	ary tion of Study nent of Research Objective cance of Research Outcomes	214 220 221 222 223

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Study comparison	23
4.1	Statistical norms for waiting time distribution	54
4.2	λ_i value descriptions $\forall \tau$	55
4.3	Statistical description for $\tilde{X} \cap q\lambda_2$	62
4.4	Characteristic relationship	77
5.1	Two type transition matrix	87
5.2	Regular births irregular single death sample	103
5.3	Absorption matrix	103
5.4	Parameters notation	121
5.5	Discrete-event system performance measure models	122
5.6	Various times comparisons	128
5.7	Time index parameter comparison	129
5.8	Long-run functions comparison	130
6.1	MCSP based on state tag	139
6.2	MCSP random state transition matrix	143
6.3	State transition table	149
6.4	Different walk types relationship table	152
7.1	Probabilities for absolute distance	174
7.2	Probabilities for absolute distance	175
7.3	Number of ways with N_j	176
7.4	Probability for number of ways with N_j	178
7.5	$P(u^p) > P(f_p)$	182
7.6	Individual average for individual step in $\langle r \rangle$	183

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Thesis outline	13
2.1	Literature review concerns	17
3.1	Research formation	37
4.1	A typical queuing system with 'exception'	41
4.2	Comparison of $R(\tau)_{\lambda_1}$, $R(\tau)_{q\lambda_2}$ and $R(\tau)_{\lambda_1 \cap q\lambda_2}$	55
4.3	Comparison of $F(\tau)_{\lambda_1}$, $F(\tau)_{\lambda_2}$ and $F(\tau)_{\lambda_1 \cap q\lambda_2}$	56
4.4	Combined plots of \tilde{X} , $\tilde{X} \cap R(\tau)_{q\lambda_2}$ and $F(\tau)_{\tilde{X} \cap q\lambda_1}$	60
4.5	$ ilde{X}(au)$ continuous-time early arrival waiting	61
4.6	Density functions for successive w	68
4.7	Waiting cumulative distribution by Markovian service	69
4.8	Erlangian waiting distribution function for different phases (states)	71
4.9	Service rate variation layout	72
4.10	Waiting inside the queuing system during 'exception'	75
4.11	W_s of L	76
4.12	Expected service time for each customer	76
5.1	Stochastic matrix prototype	90
5.2	Stochastic matrix of two types	91
5.3	$N \times M$ matrix random walk for 11 steps	93
5.4	Convolution of probabilities in $N = 51$	95
5.5	Birth-death process in random walk illustration	99
5.6	Regular births single death finite chain	99
5.7	Transition matrix for regular births single death	99
5.8	Long term state probability by linear equation method	102
5.9	Long term state probability by limiting probability method	104
5.10	State transition rate diagram for regular births single death	105
5.11	Probability distribution of queue disappear	109
5.12	Dual-state of accumulated arrival rates, and then a departure	110
5.13	Next state probabilities during k in the system	113
5.14	$M_{E_{k+1}}$ and μ during overcrowding	115
5.15	Joint view of pure birth then single death process	116
5.16	Joint probability of pure birth and single death	118

5.17	Average IAT vs Avg. Service finish time	123
5.18	Long term service times during HTS and NHTS	125
5.19	Utilization comparison during both situations	126
5.20	Utilization when no 'exception' occurs	127
5.21	Utilization (ρ) when 'exception' occurs	127
5.22	System operation times during HTS and NHTS	128
6.1	Non-queue state	134
6.2	General idea of transformation	134
6.3	Non-queue segment (with tag and current position digits)	140
6.4	MCSP (based on least distance with earlier position number)	142
6.5	Comparison between MCSP and Headless selection	142
6.6	Random state transition diagram	144
6.7	Long-term state probability vector (3-D)	144
6.8	Pictorial view of transformation of non-queue segment	146
6.9	Straightening out queue process	147
6.10	Simple symmetric random walk	157
6.11	Illustration of proceeding walk, $\int_{f}^{u} p$	158
6.12	One-dimensional proceeding walk on xy -plane	159
6.13	Limited positions	161
6.14	Ranged proceeding walk	161
6.15	Limitless end-queue proceeding walk	164
6.16	Limited end-queue proceeding walk	165
6.17	Expected time from $ -y $ distance	167
6.18	Probability of landing at various levels for $n = 13$	170
6.19	Logarithmic probability plot of <i>l</i> for $n = 13$	170
7.1	A sample for counting number of ways for $\int_{f}^{u} p$	173
7.2	Samples of proceeding walk for end-queue positions	174
7.3	Logarithmic plot for probabilities based on N_j	178
7.4	For $P(u^p) = P(f_p)$	181
7.5	For $P(u^p) > P(f_p)$	182
7.6	Average comparison	182
7.7	Cartesian coordinate proceeding walk model	186
7.8	For $P(u^p) = P(f_p)$	188
7.9	For $l=20$ levels of proceeding walks reduction	192
7.10	Stack probabilities of customer (A, B)	193
7.11	Sample diagram of multinomial-pure death	197
	Surfre andran of mornioning bare again	

Probability at each distance	200
Modes set flicking probabilities in various intervals	202
Pure death single mode	205
Recurrence from acknowledged to previous state	208
Recurrence form responded state to origin	208
Interrelation among concepts	211
Single server with multiple queues	212
	Modes set flicking probabilities in various intervals Pure death single mode Recurrence from acknowledged to previous state Recurrence form responded state to origin Interrelation among concepts

LIST OF APPENDICES

APPENDIXTITILEPAGEAAdditional substantial of analysation of 'exception' and non-queue
transformation and Pseudo-codes of some mathematical models.239BBasic definition of the concept used in thesis.279

xii

LIST OF SYMBOLS

Symbol	Characteristics	Explanation
ρ	Rho	Mean service time of a single customer over mean interval between arrivals of successive individual customers.
$1/\mu$	Reciprocal service rate	Mean service time.
$1/\lambda$	Reciprocal arrival rate	Mean interval between arrivals.
$\{X_n\}$	Markov chain process	Set of random variable at step n .
<i>x</i> _{<i>n</i>+1}	Next state random variable	Variable that will take some state value at $n + 1$ step.
S_{R_n}	Random variables set	Set of series of n random variable R_n .
·	Implies	It implies that both (*) and (.) have same meaning.
Y _e	Random variable	Random variable for exponential distribution that exceed define time.
$T_{b(*)}$	Before waiting time	Waiting time before the outlet opens for customer to arrive at T_i .
$X \sim \operatorname{Exp}(\lambda)$	Distribution function parameters	It is a short hand notation which implies X is an exponential random variable with parameter λ .
$T_{a(*)}$	After waiting time	Waiting time set after the queuing system begins.
$F(\tau)$	Distribution function	Cumulative distribution function at time τ .
$F(\tau)_*$		Cumulative distribution function at time τ of (*) form.
$R(\tau) \\ R(\tau)_*$	Survivor function	Survivor function of exponential distribution or probability of waiting more than τ . Survivor function of (*) form.
k_{T_i}	Arrival time of k	k number of customer arrived at time T_i .
Ḿ(*)	Median	The median is used to determine the location of the reasonable time when the distribution is skewed.
$S(T_n)$	System opening time	Time T_n , at which the queuing system will open.
~ *	Long-run average of	The accent mark on any character is used to symbolize the average or expectation, whichever related to relative section.
$P_{T_{b(i)}}$	Customer's waiting time	Long-run stationary value in discrete time.

$F_{Z_N}(T)$	Distribution function	Cumulative distribution for sum of N random variable Z_N .
X_i^{th}	Customer number	Random variable for i^{th} affected customer due do displacement act.
$R(T)_{state*}$ $R(T)_{*}$	Survivor function	Survivor function of state *. Survivor function of any state.
μ_a μ_b	Service rate	Service rate before i^{th} customer. Service rate after i^{th} customer.
ρ_{*}	Traffic intensity during service variations	where (.) represents the state of the system and (*) for before or after service rate.
p_0	State probability	Probability that the queuing system is empty.
l_i	Time length	Length of interval <i>i</i> .
l _j		Length of interval <i>j</i> .
$(i, j)_{v},$	State transitions pair	State transition from i to j at interval label v .
A_j	Actual job	The actual job stand for the service supposed to perform for a customer in queue in a specified interval.
\mathcal{E}_x	'Exception'	Behaviour that can brings the queuing system to non-queue state.
$p(*)_v$	Probability at interval	Probability of type (*) at interval label v .
P_S	Survival probability	The probability of actual job done so far.
$k_{\neq 0}^{\in \mathbb{N}}$	Dual classification of a variable	It defines k is an element of natural number and also not equals to zero.
$\left\{ S_{N}^{N} ight\} _{N=1}^{\infty}$ $S_{N_{i}}^{N}$	Sequence of random variable	Sequence of N random variable from 1 to ∞ . Sequence of <i>i</i> steps random variables.
x_k	Long run random variable	Long-run random variable of being in state k .
$x_k^{(i)}$	Long run random variable	Random variable at i^{th} step of being in state k .
D.	Discrete-time	Discrete-time used during Markov chain.
\mathcal{C}	Continuous-time	Continuous-time used during birth and death process.
$P_{k>\delta}(t+\Delta t)$	State probability	Probability of being in state of $k > \delta$ at $(t + \Delta t)$,
		where δ is default queue size and k is total of default number of customers and overcrowded customers.
λ^k	Arrival rate	Arithmetic collection of back to back occurrences of arrival rates.

P_{0,E_k}	State probability	Probability of accumulated states from 0 until E_K .
$P_{\mathbf{l} N}$	Conditional probability	Probability that single event will occur given N births.
$\mathrm{E}_{*}[f(\tilde{\cdot})]$	Expected value	Expected value of long-run function of (.).
·C*	Combination	It signifies (.) choose (*), as same as n choose r .
$(x_i, y_j)_P$	Coordinate pair	The location of dissipated customer with its previous value <i>P</i> , prior to non-queue state.
GLB	Greatest lower bound	Greatest lower bound will be the next nearest value.
LUB	Least upper bound	Least upper bound will be the rarest customer.
$\int_{f}^{u} p$	Proceeding walk with up and flat proceeds	p with u and f only indicates the to proceed up and flat.
$P(u^p)$	Probability of up step	Probability of steps during up proceeding.
$P(f_p)$	Probability of flat step	Probability of steps during flat proceeding.
$^{+1}_{+0}p$	Proceeding walk with random digits	It screens out the directions of proceedings in up and flat, positively.
$(x_p, -y_q)$	Coordinate pair	Position of dissipated customer in 4 th quadrant
\mathbb{E}_{p_n}	Effective position	n^{th} effective position from $(x_p, -y_q)$.
< <i>r</i> >	Ranged	Ranged of effective positions at the end-queue.
- <i>y</i>	Absolute distance	Distance from $(x_p, -y_q)$ to first effective position.
$x_{+x axis}$	Location at abscissa	Location at x of $+x$ axis.
$x_{-y axis}$		Location at x of $-y$ axis.
$0_{+x axis}$		Location at 0 of $+x$ axis.
$y_{-y \ axis}$	Location at ordinate	Location at y of $-y$ axis.
±∞∗	Infinity of	Positive infinity of $\{x, y\}$ or negative infinity of $\{x, y\}$.
l _{+*}	Level proceeding	Random digit sign (0 or 1) added up to l .
N_{j}	Number of steps	Number of j steps that lead to effective positions.
$X_1(w)$	Random variable	The process that performs counting number of ways collected by random variable, which is used to reach the destination, where l represent ordinate level.
$P(\mathbb{E}_{p_k})_s$	Probability of effective position at <i>s</i>	Probability of k^{th} effective position is s distance far from $(x_p, -y_q)$.

$W_x(x,-y)$	Probability function	Probability function when $(x_p, -y_q)$ is x proceeding far.
$(s-1)\times(s)$ $(s-2)\times(s)$ $(s+1)\times(s-2)$ $(1)\times(s-2)$	Mutually overlapping cells	Numbers of column and row arrangement during overlapping of ranged of two different locations when effective position is s distance far.
D(t) $D(t_i)$	Random process	Counting process of decreasing distance in time period t or t_i .
$d_{\{\alpha,\beta,\gamma\}}$	Distance through modes	d distance covered or declined through α, β and γ modes.
$i_{\alpha+\beta+\gamma}$	<i>i</i> th distance	Covered i^{th} distance through the combination of α, β and γ .

LIST OF PUBLICATIONS

Singh, Harpreet and Ismail, M. Ghazie, 2014. 'Exceptions' in Queuing Theory. International Journal of Computer and Information Technology, 3 (1), pp. 110-119.

Singh, Harpreet and Ismail, M. Ghazie, 2014. 'Exception' in Queuing Theory through Markov Chain. International Journal of Electrical and Electronics Engineering, 1 (1), pp. 14-29.

CHAPTER 1

INTRODUCTION

1.1 Background

In a system of line up there are various factors that can develop the chain of complications before breaking the queuing system into unlike situation. Any system that constitutes individual giving services to seekers either mechanically or electronically or manually or else and a seeker that gets services from either authorized or experienced individual is known as serving system. In the queuing literatures, it is recognized as queuing system. Generally the host(s) provides services to the chronological arrivals of seeker that waits for their turn patiently. The study that mathematically analyzes the number of customers in the system, queue length, system size, arrival discipline, service time, service discipline, expected number of waiting, time in queue, load in the system and many other interested terms, can know from the queuing theory (Hlynka, 2007). Danish engineer, Agner Krarup Erlang considered as a discoverer of such theory when he published first paper in 1909 on queuing theory in telephonic networks at Copenhagen.

The theory results in the form of queuing models with many applications in different fields of study. This theory extensively used in telecommunications, hospitals, traffic, computers, retails, airports, banks and many others. The arrival and service can be individual or group, completely random or constant. A server can be single or multiple. Queue size can be both finite and infinite. The queue controlling can be chronological, random, or unordered. Customers permitted in the system are finite or infinite. The make-up of all these choices can collectively define in Kendall notation given as (P/Q/R):(X/Y/Z), where P/Q is the arrival and a server probabilistic approach, R is server

quantity, X is queuing controlling, Y is number of customers permitted and Z is size of customer population.

It is routinely believed that the mutual contribution of socially acceptable behaviour by the seekers and the host(s) supports queuing system performances. This can only be possible if they are following ethics that are organized. If the queuing system considers human involvements then most probably the only term relevant is the waiting. Waiting requires patience and patience requires practice. Besides this, due to their achievement rate the system in services does not desirable to keep customers in the waiting. However, the reason that put into concern that why the waiting begins and gets large. The reason is simple, when the undesirable exception comes in during the current task and its regularity cause the beginning of waiting more than expected.

Large waiting completely influenced by the large accumulation of small-scale of hindrances. It possibly will be an unnecessary exception that caused either the service provider gets undesirably slow or service seekers are undesirably arriving faster than normal. If there were no hindrances then the servicing rate is infinite and queue size is zero, i.e., *sojourn* time in such state is nothing. Otherwise, it causes growing of queue besides overcrowding prior to the queue less state. For e.g., in a queue network, service rate variation within a larger time frame gives sudden input to subsequent server or specific time of arrival of requests in a system in a short period of time.

The services of the customer may be either constant or stochastic, and the organization of queuing system varies globally. However, in some area of the world the queue routines are not following properly. From place to place the cultural practice of queuing includes awful customers, dishonor and for few the existence of a queue is almost alien to them. Such practices cause pressure on the serving system. However, the proper restricted policy can control customer behavior inside the serving system to avoid from

delay in services. Gross et al. (2008) suggested that if such behaviours are not controlled in time the chances are that the queues get bigger and bigger unless at some point the customers are not allowed to enter the system.

Ever since Erlang, most of the researches have been focused on designing wellorganized system by assuming static conditions to perform without any disruptions. In general, queue analysis is based on the stationary assumption in customer's variability, but in reality there are other variables that can direct to a different state of the system. Many literatures analyzed the results using a queuing model on the basic assumption that $\rho < 1$, otherwise later $\rho \ge 1$, the queuing system goes imbalance or unimagined situation. But the series of outcomes with an undesired event and the queuing system later $\rho > 1$ exclusively not at all exhibited. As Gross et al. (2008) highlighted, in queuing theory the queuing models that predict the performance of serving system with the assumption that demands arising randomly, but not unnaturally, which can be either service or arrival.

Such unnatural randomness may perhaps be due to undesired behaviour occurrences of customers and server. Cohen (1982) describes the behavior of customers with two characteristic features, viz. The arrival process and the waiting process, and thus the continuation of unnoticeable behaviour may challenge the service seekers patience. Cox and Smith (1961) and Conolly (1975) mentioned that congestion in queuing system occurs due to an abnormality, i.e., the sudden changes in behaviours of either customer(s) or server will result in an unbalanced system. Wang et al. (2010) highlighted that numerous queuing literatures discuss two types of behaviours concerned with customer and servers which are *impatience* and *vacation* period, respectively. In customer behaviours case reneging, preemptive, baking and jockeying is covered largely by other researchers. Kok and Tijms (1984), Shin, Choo and Chakravarthy (2009), Sudesh, Perel and Yechiali (2010)