

THE DEVELOPMENT OF ACTIVE FRONT WHEEL STEERING SYSTEM

MOHD HAFIDZ B ZAKARIA

MSc. IN MECHANICAL ENGINEERING

Commented [ft1]: Use most recent utem logo

Faculty of Mechanical Engineering

THE DEVELOPMENT OF ACTIVE FRONT WHEEL STEERING SYSTEM

Mohd Hafidz b Zakaria

MSc.in Mechanical Engineering

THE DEVELOPMENT OF ACTIVE FRONT WHEEL STEERING SYSTEM

MOHD HAFIDZ BIN ZAKARIA

 ${\bf A\ thesis\ submitted}$ in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled, "The development of active front wheel steering system"

The development of delivery time the second graphs of the second graphs						
is the result of my own research except as cited in the references. The thesis has not been						
accepted for any degree and is not concurrently submitted in candidature for any degree.						
Signature :						

Name

Date

:.....

: Mohd Hafidz b Zakaria

APPROVAL

I hereby d	eclare tha	t I have	read tl	his thesis	and in my	opinion	this th	esis is	sufficient	in	terms
of scope a	nd quality	for the	award	of Master	r of Science	e in Mec	hanica	l Engin	eering.		

Signature	:
Supervisor Name	: Engr. Dr. Noreffendy b Tamaldin
Date	:

DEDICATION Dedicated to my beloved parents, wife, brothers and sisters.

ABSTRACT

This study deals with the use of Active Front Wheel Steering (AFWS) system in reducing the unwanted yaw motion cause by the side wind disturbance. The core of this study is the development of a control structure for AFWS system in a nine degree of freedoms full vehicle model, which consists of handling, ride and tyre model as to study the vehicle dynamic behavior in lateral axis. Validation with the CarSimEd software was conducted to identify the behaviour of the full car model when the steering input is given. Through a double lane change test, the results show that the developed full vehicle model and CarSimEd data are having a good agreement with acceptable error. Then, the control structure for the Active Front Wheel Steering system then developed on the validated full vehicle model to reduce the unwanted yaw motions after the side wind force is applied to the body of the vehicle. The proposed control structure for the AFWS system consists of two control loops, which named as the inner loop and outer loop controller. It consists of a serial feedback control which is operated based on the response of vehicle lateral position and yaw rate. Lastly, the controller is tested on the Hardware-in-the-loop simulation (HiLS) which will examine the effectiveness of the whole AFWS system. A collaboration between software and hardware in HiLS shows that the system can reduce the effect of the side wind disturbance in terms of lateral displacement error, body slip angle, yaw and yaw rate responses.

Commented [A2]: reducing

Commented [A3]: change to development of control structure for AFWS

Commented [A4]: lane

i

ABSTRAK

Kajian ini adalah berkenaan dengan penggunaan sistem Steering Tayar Hadapan Aktif (AFWS) yang bertujuan menghapuskan kesan olengan yang disebabkan oleh gangguan angin lintang. Asas kajian ini adalah dengan membangunkan satu sistem kawalan bagi AFWS di dalam model penuh kenderaan, yang terdiri daripada model pengendalian, tunggangan dan tayar untuk mengkaji tindak balas kenderaan pada arah sisi. Model disahkan dengan perisian CarSimEd untuk mengenal pasti tindak balas model tersebut terhadap input daripada pemandu. Melalui ujian memotong di barisan berkembar, keputusan telah menunjukkan bahawa model kenderaan yang dibangunkan mempunyai hasil yang hampir sama dengan data dari perisian CarSimEd dan ralat yang berlaku boleh diabaikan. Kemudian, struktur kawalan untuk sistem AFWS telah dibangunkan pada model kenderaan yang telah disahkan tadi. Ia bertujuan untuk mengurangkan kesan olengan yang tidak diingini selepas angin lintang dikenakan pada sisi badan kenderaan. Struktur kawalan yang dicadangkan untuk sistem AFWS terdiri daripada dua pusingan kawalan yang dinamakan sebagai gegelung dalaman dan gegelung luaran. Kedua-dua gegelung tersebut berfungsi berdasarkan maklumat daripada kedudukan kenderaan pada arah sisi dan kadar olengan kenderaan. Akhir sekali, struktur kawalan tersebut diuji pada simulasi yang bersambung antara perisian dan perkakasan untuk meneliti keberkesanan sistem AFWS secara keseluruhan. Kerjasama antara perisian dan perkakasan dalam simulasi tersebut telah menunjukkan bahawa sistem AFWS boleh mengurangkan kesan gangguan angin lintang dan ia dapat dilihat berdasarkan hasil kajian yang telah diperolehi.

Commented [A5]: italic

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my previous main supervisor, Dr. Khisbullah Hudha for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. I would like to extend my gratitude to my current main supervisor, Engr. Dr. Noreffendy b Tamaldin for providing such a valuable support and knowledge for my research. I also want to acknowledge my second supervisor, Dr. Mohd Fadzli b Abdollah for his cooperation in helping me till the end of this project.

I want to dedicate a special thanks to Center for Graduate Studies, and The Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka for the opportunity to conduct the research. I would like to thank the Ministry of Science, Technology and Innovation Malaysia (MOSTI) for providing me scholarship as a financial support. I also want to address my appreciation to Autotronic Lab members, Muhammad Lokman Hakim, Zubir Amir, Ahmad Zaifazlin, Ahmad Lokman b Hitam, Fauzi Ahmad and also to my sister-in-law Rashihan Rashidi for their precious contribution to the research.

Lastly, I offer my regards and blessings to my parent Hj Zakaria Ahmad and Hjh Halimah Idris for their encouragement and patience. Without the moral support from both of them, I would never be able to get strength and passion to finish my dissertation. Not to forget, special thanks to all of those who supported me in any respect during the completion of the project.

iii

TABLE OF CONTENTS

		PAGE
1	DECLARATION	
	DEDICATION	
	ABSTRACT	i
1	ABSTRAK	ii
_	ACKNOWLEDGEMENT	iii
,	TABLE OF CONTENT	iv
	LIST OF TABLES	vi
]	LIST OF FIGURES	vii
	LIST OF APPENDICES	xi
]	LIST OF ABBREVIATIONS AND SYMBOLS	xii
	LIST OF PUBLICATIONS	XV
Cl	HAPTER	
1.	INTRODUCTION	1
	1.1 Preface	1
	1.2 Problem Statement	2
	1.3 Project Overview	3
	1.4 Objective	4
	1.5 Scope of Project	4
	1.6 Research Methodology	5
	1.7 Thesis Arrangement	6
2.	THEORETICAL BACKGROUND	7
	2.1 Introduction	7
	2.2 Driver Assist Technology	7
	2.3 Introduction to Active Front Wheel Steering System	8
	2.4 Previous Work on Active Front Wheel Steering System	9
	2.5 Mathematical Model for Nine Degree of Freedom	10
	2.5.1 Handling Model	11
	2.5.2 Ride Model	16
	2.5.3 Tyre Model	17
	2.6 Model Validation	20
	2.6.1 Vehicle Parameters	21
	2.6.2 Simulation Parameters	23
	2.6.3 Validation Results	23
	2.7 Disturbance Modelling	27
	2.8 Conclusion	29
3.	CONTROL STRUCTURE OF ACTIVE FRONT WHEEL STEERING AND	
	SIMULATION RESULTS	30
	3.1 Introduction	30

ΑI	PPENDICES	88
RI	EFERENCES	82
	6.2 Open Problem and Recommendation for Future Works	81
	6.1 Conclusion	80
6.	CONCLUSION AND FUTURE WORK	80
	J.J CONCIUSION	79
	5.2.4 Case 4. White Heading Angle at 45 Degree 5.3 Conclusion	73 79
	5.2.3 Case 3: Vehicle Speed 110 km/h and Wind Speed 75 km/h 5.2.4 Case 4: Wind Heading Angle at 45 Degree	71 75
	5.2.2 Case 2: Vehicle Speed 110 km/h and Wind Speed 100 km/h	66 71
	5.2.1 Case 1: Vehicle Speed 90 km/h and Wind Speed 100 km/h	63
	5.2 Comparison of Simulation and Hardware-In-The-Loop Simulation	62
	5.1 Introduction	61
5.	EXPERIMENTAL RESULT	61
_		
	4.6 Conclusion	60
	4.5 Experimental Procedure	58
	4.4 Implementation	57
	4.3 Hardware-In-The-Loop Simulation Configuration	55
	4.2.4 Overall Structure	54
	4.2.3 Technical Specifications	53
	4.2.2 List of AFWS Actuator Components	52
	4.2.1 Superposition Mechanism	50
	4.2 Active Front Wheel Steering Actuator Design	49
→.	4.1 Introduction	49
1	HARDWARE-IN-THE-LOOP TEST RIG AND SETUP	49
	3.4 Conclusion	47
	3.3.3 Effect of Varying Side Wind Heading Angle	43
	3.3.2 Effect of Varying Vehicle Speed	39
	3.3.1 Effect of Varying Wind Speed	35
	3.3 Comparison of Passive and Active Front Wheel Steering	35
	3.2.2 Inner Loop Controller	33
	3.2.1 Outer Loop Controller	31
	3.2 AFWS Controller	30

V

LIST OF TABLES

ΓABLE NO.	TITLE	PAGE
2.1	Vehicle parameters	22
2.2	Non-dimensional tyre parameters	22
3.1	Types of simulation test	35
4.1	List of AFWS actuator components	53
4.2	Gearing for AFWS actuator	54
5.1	Summary of the experimental cases	62

LIST OF FIGURES

Commented [A6]: Sentence case

FIGURE NO.	TITLE	PAGE
1.01	Vehicle axis system	11
1.02	Handling model	13
1.03	Ride and roll model	16
1.04	Free body diagram of a wheel	18
2.01	Response for validation of lateral acceleration	24
2.02	Response for validation of pitch angle	24
2.03	Response for validation of roll angle	25
2.04	Response for validation of longitudinal position	25
2.05	Response for validation of lateral position	26
2.06	Response for validation of yaw angle	27
2.07	Wind speed relative to the vehicle	29
3.01	Control structure for AFWS	32
3.02	Matlab Simulink Transfer Function Block Diagram	34
3.03	Response of yaw rate for varying wind speed	36
3.04	Response of yaw angle for varying wind speed	36
3.05	Response of lateral position for varying wind speed	37
3.06	Response of lateral acceleration for varying wind speed	38

vii

3.07	Response of body slip angle for varying wind speed	39
3.08	Response of yaw rate for varying vehicle speed	40
3.09	Response of yaw angle for varying vehicle speed	40
3.10	Response of lateral position for varying vehicle speed	41
3.11	Response of lateral acceleration for varying vehicle speed	42
3.12	Response of body slip angle for varying vehicle speed	42
3.13	Response of yaw rate for varying heading angle	44
3.14	Response of yaw for varying heading angle	44
3.15	Response of lateral position for varying heading angle	45
3.16	Response of lateral acceleration for varying heading angle	46
3.17	Response of body slip angle for varying heading angle	47
4.01	Location of AFWS actuator	50
4.02	Mechanism of AFWS actuator	51
4.03	Exploded view of AFWS actuator	52
4.04	Cross section drawing of AFWS actuator	55
4.05	AFWS hardware-in-the-loop test rig	56
4.06	Revised version of AFWS controller for HiLS	57
4.07	Flowchart of the HiLS experiment	59
5.01	Position tracking performance of the steering system for vehicle	
	speed 90 km/h and wind speed 100 km/h	63
5.02	Lateral displacement error of the passive steering, simulation of	
	AFWS and HiLS of AFWS system for vehicle speed 90 km/h and	
	wind speed 100 km/h	64

viii

5.03	Body slip angle of the passive steering, simulation of AFWS and	
	HiLS of AFWS system for vehicle speed 90 km/h and wind speed	65
	100 km/h	
5.04	Yaw angle responses of the passive steering, simulation of AFWS	
	and HiLS of AFWS system for vehicle speed 90 km/h and wind	
	speed 100 km/h	65
5.05	Yaw rate of the passive steering, simulation of AFWS and HiLS	
	of AFWS system for vehicle speed 90 km/h and wind speed 100	
	km/h	66
5.06	Position tracking performance of the steering system for vehicle	
	speed 110 km/h and wind speed 100 km/h	67
5.07	Lateral displacement error of the passive steering, simulation of	
	AFWS and HiLS of AFWS system for vehicle speed 110 km/h	
	and wind speed 100 km/h	68
5.08	Body slip angle of the passive steering, simulation of AFWS and	
	HiLS of AFWS system for vehicle speed 110 km/h and wind	
	speed 100 km/h	69
5.09	Yaw angle of the passive steering, simulation of AFWS and HiLS	
	of AFWS system for vehicle speed 110 km/h and wind speed 100	
	km/h	70

3.10	Taw rate of the passive steering, simulation of Arws and files	
	of AFWS system for vehicle speed 110 km/h and wind speed 100	
	km/h	71
5.11	Position tracking performance of the steering system for vehicle	
	speed 110 km/h and wind speed 75 km/h	62
5.12	Lateral displacement error of the passive steering, simulation of	
	AFWS and HiLS of AFWS system for vehicle speed 110 km/h	
	and wind speed 75 km/h	73
5.13	Body slip angle of the passive steering, simulation of afws and	
	HiLS of AFWS system for vehicle speed 110 km/h and wind	
	speed 75 km/h	74
5.14	Yaw angle of the passive steering, simulation of AFWS and HiLS	
	of AFWS system for vehicle speed 110 km/h and wind speed 75	
	km/h	74
5.15	Yaw rate of the passive steering, simulation of AFWS and HiLS	
	of AFWS system for vehicle speed 110 km/h and wind speed 75	
	km/h	75
5.16	Position tracking performance of the steering system for wind	
	heading angle at 45 degree	76
5.17	Lateral displacement error of the passive steering, simulation of	
	AFWS and HiLS of AFWS system for wind heading angle at 45	
	degree	77
5.18	Body slip angle of the passive steering, simulation of AFWS and	78

	Hills of AFWS system for wind heading angle at 45 degree	
5.19	Yaw angle of the passive steering, simulation of AFWS and HiLS	
	of AFWS system for wind heading angle at 45 degree	78
5.20	Yaw rate of the passive steering, simulation of AFWS and HiLS	
	of AFWS system for wind heading angle at 45 degree	79

LIST OF APPENDICES

APF	ENDIX	TITLE	PAGE
A	DATA AND SPECIFICAT	TIONS OF STEERING WHEEL	
	ANGLE SENSOR		88
В	EXPLODED DRAWING	OF AFWS ACTUATOR	91
C	PUBLICATION		93

LIST OF ABBREVIATIONS AND SYMBOLS

3D - Three-dimensional

ABS - Antilock braking system

AFWS - Active front wheel steering system

DAQ - Data acquisition

DC - Direct current

DoF - Degree of freedom

EPS - Electronic power steering

HiLS - Hardware-in-the-loop simulation

SIMO - Single input multiple output

PCI - Peripheral component interconnect

PID - Proportional, integral, and derivative

SISO - Single input single output

 F_w - Side wind force

*L*_w - Distance side wind force to body centre of gravity

a - Distance between front of vehicle and C.G. of sprung

mass

b - Distance between rear of vehicle and C.G. of sprung

mass

xiii

t	-	Track width
δ_f	-	Front tyre angle from horizontal axis
a_x	-	Longitudinal acceleration
a_y	-	Lateral acceleration
β	-	Side slip angle
v_x	-	Lateral velocity
v_y	-	Longitudinal velocity
r	-	Yaw motion
G	-	Body centre of gravity
F_{xfl}	-	Longitudinal force for front left corner
F_{xfr}	-	Longitudinal force for front right corner
F_{xrl}	-	Longitudinal force for rear left corner
F_{xrr}	-	Longitudinal force for rear right corner
F_{yfl}	-	Lateral force for front left corner
F_{yfr}	-	Lateral force for front right corner
F_{yrl}	-	Lateral force for rear left corner
F_{yrr}	-	Lateral force for rear right corner
F_z	-	Vertical force
$lpha_{fl}$	-	Tyre slip angle for front left tyre
α_{fr}	-	Tyre slip angle for front right tyre
$lpha_{rl}$	-	Tyre slip angle for rear left tyre
α_{rr}	-	Tyre slip angle for rear right tyre

xiv

S	-	Tyre slip rates	
Ö	-	Roll motion	
$\ddot{ heta}$	-	Pitch motion	
g	-	Gravitational acceleration	
k_{arphi}	-	Stiffness constant for roll	
eta_{arphi}	-	Damping constant for roll	
$k_{ heta}$	-	Stiffness constant for pitch	Commented [A7]: check definition to similar with page 25
$oldsymbol{eta}_{ heta}$	-	Damping constant for pitch	
I_x	-	Moments of inertia of the sprung mass around <i>x</i> -axes	
I_y	-	Moments of inertia of the sprung mass around y-axes	
C_1 , C_2 , C_3 and C_4	-	Specific tyre constant parameters	
σ	-	Composite slip	Commented [A8]: check definition to similar with page 25
ap	-	Tyre contact patch	
T_w	-	Tread width	
T_p	-	Tyre pressure	
F_{ZT} and K_{α}	-	Tyre contact patch constants	
K_s	-	Lateral stiffness	
K_c	-	Longitudinal coefficients	
A_0 , A_1 , A_2 and CS/FZ	-	Stiffness constants	Commented [A9]: undefined
ν	-	Nominal coefficient of friction	
Γ	-	Tyre camber angle	
K_{μ}	-	Coefficient of friction	

LIST OF PUBLICATIONS

JOURNAL

Hudha, K., Zakaria, M.H. and Tamaldin, N. (2011). Hardware in the loop simulation of active front wheel steering control for yaw disturbance rejection. *International Journal of Vehicle Safety 2011 - Vol. 5, No.4 pp. 356 – 373*

PROCEEDING

Zakaria, M.H. and Hudha, K. (2010). Yaw disturbance rejection control using active front wheel steering system. *Proceeding of International Conference on Sustainable Mobility* (*ICSM 2010*) Nov, 29 – Dec, 3 2010 at Kuala Lumpur, Malaysia.

xvi

CHAPTER 1

INTRODUCTION

1.1 Preface

Vehicle stability is a never-ending issue in automotive research since the development in technology creates potential for another advance stability system to be explored. Another factor contributes to the improvement of the system is the needs for a better ride and handling characteristic; from a simple to a complex system which has the ability to control multiple subsystems simultaneously referred to the steering system, braking system and suspension system. These are the major systems in a vehicle that highly influences to the level of stability other than tyre effect and road profile. The systems are designed to enhance the stability and able to reduce the effect of the external distraction such as sudden braking, road irregularity and side wind gust.

Recently, electronic stability control takes action through integration of braking system and throttle input. The combination is quite successful in terms of reducing lateral motion of a vehicle during a high speed cornering and also when the car is on a slippery road. However, there is another potential subsystem that can provide other advantages for the purpose of increasing the vehicle stability namely steering assist system. There are few reasons why steering assist system is needed besides the current stability control system such as direct yaw moment control which control braking system individually on each tyre. Ackerman et al. (1999) had compared the contribution from steering and braking to yaw moment and he stated that only one-fourth of the longitudinal tyre force produced from braking is developed from tyre to achieve the same amount of the yaw moment. For

disturbance such as side wind force, the braking assist system is unable to reject and leave it to the steering system to overcome the disturbance and maintain the original direction of travel.

1.2 Problem Statement

The main problem in the current driver assistance technology is the lack of a system that is able to encounter the effect from side wind gust. The lacking of the system will result to the uncomfortable handling characteristic where the driver has to encounter manually the yaw motion caused by the disturbance to make the vehicle stay on the original direction. The major distraction for the driver is when a massive speed of side wind burst and the tyre starts to skid, which will cause to an accident.

Besides, there are other examples that will result to the same unwanted yaw motion such as slippery road and emergency braking. This critical situation needs a quick response from the driver. The driver need to counteract the steering wheel in order to compensate the immediate disturbance torque. Since the disturbance is suddenly occurred, there is always a tendency for the driver to overreact or may take a second of reaction time that may lead to worst situation (Ackermann, 1997).

Another question is whether the reaction is right or not. This is all about the driver's experience. We cannot assume that all the drivers have the same experience like as a professional racing driver who is already trained to handle the critical situation and should have no problem to encounter any tyre skidding that might occur while manoeuvring a vehicle. So this is why the active steering control is needed to perform the steering correction in order to reduce the unwanted effect from the critical situation.