

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Manufacturing Engineering

LASER PROCESSING OF NON-LINEAR INCLINE CUTTING

Turki Diwan Hussein

Master of Manufacturing Engineering

(Manufacturing System Engineering)

2013

LASER PROCESSING OF NON-LINEAR INCLINE CUTTING

TURKI DIWAN HUSSEIN

A thesis submitted

in fulfilment of the requirements for the degree of Master of Manufacturing Engineering

(Manufacturing System Engineering)

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2013

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Laser Processing of Non-Linear Incline Cutting" is the results of my own research except as cited in references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

..... 7.... Signature : Name : Turki Diwan Hussein : 5/9/2013 Date

APPROVAL

I hereby declare that I have read this thesis and in my opnion this thesis is sufficient in terms of scope and quality for the award of Master of Manufacturing Engineering (Manufacturing System Engineering).

> Signature Supervisor Date

:

:

:

Saunfally

Prof. Madya. Ir. Dr. Sivarao Subramonian

5/9/2013

PROFESOR MADYA IR. DR. SMARAO SUBBASIONAN Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melake Durian Tunggal, Melaka.

ABSTRACT

This research is to find the optimal parameters of machining process. The research conduct based on Design of Experiment DOE analysis. In this research the experiment designed to find out the interaction between the variables to evaluate the high performance responses of machining process. The experiment is design based on the objectives that want to be achieved in this research. The analysis is run by using the Minitab Software. In this research, Response Surface Methodology and factorial design used to compared in term of modeling capabilities. The input parameters evaluated were gas pressure, power supply, and cutting speed; meanwhile the output responses being kerf width and surface roughness. The laser cutting process is one of the widely used techniques for cut various thickness of material for many applications such as fiber, steel, wood etc. In the area cutting material, it can be improved drastically with the application of difficult cutting material. Application of cut on mild steel for various machining techniques, such as bevel linear and bevel non-linear cutting, requires different cut characteristics. From that, being highly dependent on the process parameters under which they were performed. To efficiently optimise and customise the kerf width and surface roughness characteristics, machining of laser cutting conduct via modelling using RSM methodology was proposed. In this research, non-linear incline cutting is done on critical laser processing of mild steel materials optimization. This research predominantly focuses to investigate the correlation between laser machining parameter with the responses kerf width and surface roughness. This research also highlights the experimental control parameters of mild steel laser processing with the responses.

ABSTRAK

Kajian ini adalah untuk mencari parameter optimum dalam proses pemesinan. Kajian penyelidikan ini berdasarkan "Design of Experiment". Dalam kajian ini "DOE" bertujuan untuk mengetahui interaksi antara pembolehubah untuk menilai respons prestasi tinggi dalam proses pemesinan. Analisis ini dijalankan dengan menggunakan perisian Minitab itu. Dalam kajian ini, "Response Surface Methodology" dan "Factorial Design" akan digunakan untuk dibandingkan dari segi keupayaan model. Parameter input dinilai ialah tekanan gas, bekalan kuasa, dan kelajuan pemotongan; sementara itu maklumbalas adalah lebar garitan dan kekasaran permukaan. Proses pemotongan laser adalah salah satu teknik yang digunakan secara meluas untuk pelbagai ketebalan potong bahan untuk banyak aplikasi seperti serat, besi, kayu dan lain-lain Dalam bidang memotong bahan, ia boleh diperbaiki secara drastik dengan permohonan memotong bahan yang sukar. Pengunaan pemotongan pada keluli lembut untuk pelbagai teknik mesin, seperti serong linear dan memotong serong bukan linear, memerlukan ciri-ciri yang berbeza dipotong. Dari itu, Proces paramter memainkan peranan penting dalam menentukan potongan terbaik. Dengan mengoptimumkan dan menyesuaikan lebar garitan dan ciri-ciri kekasaran permukaan, pemesinan pemotongan dijalanakan melalui model dengan menggunakan kaedah RSM telah dicadangkan. Dalam kajian ini, pemotongan serong bukan linear dilakukan di laser pemotongan. Kajian ini terutamanya memberi tumpuan untuk menyiasat hubungan antara parameter pemesinan laser dengan maklumbalas lebar garitan dan kekasaran permukaan. Kajian ini juga menunjukkan parameter kawalan eksperimen untuk pemotongan keluli lembut

DEDICATION

I would like to present my work to those who did not stop their daily support since I was born, my dear mother and my dear wife. They never hesitate to provide me all the facilities to push me foreword as much as they can. This work is a simple and humble reply to their much goodness I have taken over during that time. I don't forget my brothers, sisters, son, daughter, uncle and those entire how I love. Also to my father, grandfather, aunt and uncle (Allah's mercy them).

Turki diwan Hussein

ACKNOWLEDGEMENT

قال تعالى في محكم كتابه الكريم و**قل اعْملُواْ فُسيَرَى اللّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِثُونَ** صدق الله العلي العظيم الاية ١٠٠سورة التوبة

First and foremost, praise be to Allah, for giving me this opportunity, the strength and the patience to complete my thesis finally, after all the challenges and difficulties. I would like to thank my supervisor, Prof. Madya. Ir. Dr. Sivarao Subramonian for his high motivation and most significant contribution in this thesis.

I would also like to thank Ministry of Higher Education and Scientific Research of Iraq, the Dean of Faculty of Manufacturing Engineering Prof. Madya. Dr. Mohd Rizal Salleh and Prof. Madya. Dr. Mohd Warikh Bin Abd Rashid. Furthermore, I want to thank my friends who have helped and motivated me throughout. May Allah reward them all abundantly, Sincere thanks to all.

Turki Diwan Hussein

TABLE OF CONTENT

			PAGE	
AB	STRAC	Г	i	
ABSTRAK			ii	
DE	iii			
AC	KNOW]	LEDGEMENT	iv	
TA	BLE OF	CONTENT	V	
LIS	T OF T	ABLES	vii	
LIS	T OF F	IGURES	ix	
LIS	T OF S	YMBOLS	xi	
LIS	T OF A	PPENDICES	xii	
СН	APTER		1	
1.	INT	INTRODUCTION		
	1.1	Background	1	
	1.2	Laser Parameters	2	
		1.2.1 Laser Cut Quality Characteristics	3	
	1.3	Problem statement	4	
	1.4	Research Objective	5	
	1.5	Research Scopes	5	
2.	LITERATURE REVIEW		6	
	2.1	Introduction	6	
	2.2	Metal Cutting Process	7	
	2.3	Laser Cutting	9	
		2.3.1 Types of Cutting	12	
		2.3.1.1 Laser Fushion Cutting	12	
		2.3.1.2 Laser Flame Cutting	12	
		2.3.1.3 Laser Sublimation	12	
	2.4	Laser Types	13	

		2.4.1 CO ₂ Laser	14
		2.4.2 Nd:YAG Laser	15
		2.4.3 Fibre Laser	16
		2.4.4 Laser Gas Assistance	17
		2.4.5 Oxygen as Assist Gas	18
		2.4.6 Nitrogen as Assist Gas	19
	2.5	Laser Cut Quality	20
		2.5.1 Laser Cutting Typical Imperfection	23
	2.6	Optimization of Cutting Process Parameters	24
		2.6.1 Fuzzy Logic	24
		2.6.2 Genetic Algorithm	25
		2.6.3 Taguchi Technique	25
		2.6.4 Artificial Neural Network (ANN)	26
		2.6.5 Response Surface Methodology (RSM)	27
	2.7	Related Work	29
	2.8	The Research Work	31
3.	МЕТ	THODOLOGY	32
	3.1	Research Methodology	32
	3.2	Initial Design	33
	3.3	Flow Chart of Research Methodology	34
	3.4	Work Material	35
	3.5	Cutting Parameter	35
	3.6	Cutting Machine and Laser Cutting	39
	3.7	Analytical Tool	42
		3.7.1 Response Surface Methodology (RSM)	43
4.	RES	ULT & DISCUSSION	45
	4.1	Modelling of the Cut Kerf Width and Roughness	45
	4.2	RSM Modelling of Kerf Width With Respect to Laser	46
		Cutting Process Parameters	
	4.3	Response Surface Regression: Kerf versus Pressure	57
		Power, Speed	27
		/ 1	

	4.4	Discuss Interpreting the Results	59
	4.5	Interpretting the Results	56
	4.6	Response Optimization	57
	4.7	Discuss Interpretting the Results Optimization Plot	58
	4.8	Interpretting the Results	59
	4.9	Response Surface Regression: Roughness versus Pressure,	60
		Power, Speed	
	4.10	Interpretting the Results and Discussion	68
	4.11	Response Optimization	72
5.	CONCLUSION		74
	5.1	Conclusion	74
	5.2	New Contributions to Body of Knowledge	76
	5.3	Future Work	76
REFE	RENC	E	78

APPENDIX A:	Measuring for Laser Process Kerf Width	87
	Non-Linear Incline Cutting	
APPENDIX B:	Measuring for Laser Process Surface Roughness	97
	Non-Linear Incline Cutting	
APPENDIX C:	Experimental for Laser Process Kerf Width and	102
	Surface Roughness Non-Linear Incline Cutting	
APPENDIX D:	Experimental for Laser Process Kerf Width and	104
	Surface Roughness of Non-Linear Incline Cutting	

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Parameters for Laser Cutting of Mild Steels with Laser	13
	Cutting Oxygen Including Pressure and Volume	
	Requirements	
3.1	Parameters Range	36
3.2	Parameters Values during the Central Composite Design	37
3.3	Experimental Layout for Response	38
4.1	Experimental Results for Laser Process Kerf Width	47
	Non-Linear Incline Cutting of Bevels and Reading Measured	
	Specified Three of Top Area x_1 , x_2 , and x_3 at Bevel Angle 22°	
4.2	Experimental Results for Laser Process Kerf Width Non-Linear	48
	Incline Cutting and Reading Measured Specified Three of	
	Bottom Area X ₁ , X ₂ , And X ₃ at Bevel Angle 22°	
4.3	Experimental Results for Laser Process Kerf Width Non-Linear	49
	Incline Cutting of Bevels, Top And Bottom Area Average	
4.4	Estimated Regression Coefficients for Kerf	50
4.5	Analysis of Variance for Kerf	51
4.6	Estimated Regression Coefficients for Kerf Using Data in	52
	Uncoded Units	
4.7	Predicted Responses for New Design Points Using Model for	53
	Kerf	
4.8	Parameters Response Optimization	57
4.9	Starting Point	57
4.10	Global Solution	57
4.11	Predicted Responses	57
4.12	Experimental Results for Laser Process surface roughness	60
	Non-Linear Incline Cutting and Reading Measured Specified	
	Three of Area x_1 , x_2 , and x_3 at Bevel Angle 22°	
4.13	Experimental Run and Results of Surface Roughness	61
	(Non-Linear Incline Cutting)	

4.14	Experimental Run and Results of Kerf Width and Surface	62
	Roughness	
4.15	Estimated Regression Coefficients for Roughness	63
4.16	Analysis of Variance for Roughness	64
4.17	Responses for New Design Points Using Model for Residual	65
4.18	Estimated Regression Coefficients for Roughness using Data	66
	in Uncoded Units	
4.19	Predicted Responses for New Design Points Using Model for	67
	Roughness	
4.20	Surface Roughness Optimization	72
4.21	Starting Point	72
4.22	Global Solution	72
4.23	Predicted Responses	72

LIST OF FIGURES

TABLE	TITLE	PAGE
1.1	Laser Parameters	3
2.1	Basic Principle of Laser Cutting	9
2.2	N2 and O2 Laser	15
2.3	Nd:YAG Laser	16
2.4	Fiber Laser	17
2.5	Schematic Mechanism of Striations Formation during Laser	23
	Cutting	
2.6	Formation of Dross: a- Formation of a Droplet, b- Growing,	24
	c- Merging of the Droplet with Previous Molten Material	
3.1	Flow Charts of Research Methodology	34
3.2	RSM Central Composite Designs for 3 Factors at Two Levels	36
3.3	Laser Cutting Machine LVD	39
3.4	Workpiece before Laser Cutting	40
3.5	Workpiece after Laser Cutting	41
3.6	The Work Pieces Base at an Angle of 22°	42
3.7	Overall Approach of Laser Process Non-Linear Incline	44
	Cutting Study	
4.1	Residual Plots for Kerf Width	54
4.2	Contour Plot of Kerf vs. Power, Pressure	55
4.3	Selects the First Factor, in This Case Pressure, for the Vertical	56
	Axis, and the Second Factor, Power, for the Horizontal Axis.	
4.4	Optimization Plot	58
4.5	Graph Window Output	59
4.6	Residual Plots for Roughness	68
4.7	Contour Plot	69
4.8	Surface Plot	70
4.9	Contour of Roughness	71
4.10	Surface Roughness Optimization.	73

5.1Laser Cutting Process as Applied to the Cutting Kerf Width74and Surface Roughness Hard Cutting.

C Universiti Teknikal Malaysia Melaka

LIST OF SYMBOLS

K/W	-	Kerf Width
CO ₂	-	Carbon Dioxide
I,V,Y	-	Type of Bevel
DC	-	Direct Current
RF	-	Radio Frequency
Nd:YAG	-	Neodymium-Doped Yttrium Aluminum Garnet
K=1	-	For an ideal Gaussian
K < 1	-	For real laser radiation.
CW	-	Continuous Wave
Psi	-	Pounds per square inch
RSM	-	Response Surface Methodology
LBC	-	Laser Beam Cutting
XRD	-	X-Ray Diffraction
SEM	-	Scanning Electrical Microscopy
OP	-	Optical Microscopy
ANOVA	-	Analysis of Variance
CCD	-	Central Composite Design
O ₂	-	Oxygen
N_2	-	Nitrogen

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Measuring for Laser Process Kerf Width Non-Linear Incline	87
	Cutting	
В	Measuring for Laser Process Surface Roughness Non-Linear	97
	Incline Cutting	
С	Experimental for Laser Process Kerf Width and Surface	102
	Roughness Non-Linear Incline Cutting	
D	Experimental for Laser Process Kerf Width and Surface	104
	Roughness of Non-Linear Incline Cutting	

CHAPTER 1

INTRODU CTION

1.1 Background

This Laser light amplification by stimulated emission of radiation is basically a cohesive, convergent and monochromatic electromagnetic radiation beam. Its wavelength ranges from ultra-violet to infrared. It can provide very low to very high power with a precise spot to any substrate type through any medium. Laser is differed from other electromagnetic radiation especially in terms of its cohesion, spectral purity and its straight line propagation. Therefore, it plays an important role in different industries, and used in many applications such as communication, military, medical and others. It is used in wide applications due to several properties such as spatial and temporal coherence, low divergence, and high continuous or pulsed power density and mono - chromaticity (Majumdar and Manna, 2003). One of its main applications is his ability to act as a heat source LMP. This feature helps to utilize it in Forming, joining, machining, manufacturing, coating/ deposition and surface engineering.

Due to the advantages of laser over the traditional cutting processes, it is commonly used in machining various types of materials, especially very hard materials in many industrial applications. The fundamental advantages of laser cutting are: no vibration because it is non- contact process, low heat input that leads to less distortion and its ability to be controlled numerically. The parameters of laser cutting process play a main role on the cutting edge quality features. The commercially available lasers for material processing by Eltawahni et. al., (2010):

- i. Solid state crystal or glass laser Nd:YAG, Ruby
- ii. Semiconductor laser AlGaAs, GaAsSb and GaAlSb lasers
- iii. Dye or liquid lasers solutions of dyes in water/alcohol and other solvents
- iv. Neutral or atomic gas lasers He–Ne laser, Cu or Au vapor laser
- v. Ionized gas lasers or ion lasers argon. ArC / and krypton .KrC / ion lasers
- vi. Molecular gas lasers CO₂ or CO laser
- vii. Excimer laser XeCl, KrF, etc
- viii. Fiber laser- ytterbium

However, there are main obstacles that limit the lasers extensive use in applications of routine material processing such as beam size limitation, high cost of installation and replacement, additional and costly accessories, and need for skilled workers (Majumdar and Manna, 2003).

1.2 Laser Parameters

The laser cutting process quality and the response in terms of cut edge quality is controlled by a number of parameters linked to the laser system, used material, and the cutting process. The laser system parameters are summarized in Figure 1.1 below.

Figure 1.1 Laser Parameters (Wandera, 2010)

Researchers studied the impact of different lasers parameters on cut edge quality, kerf dimensions, roughness and surface finish. Kar et. al., (1996) studied the process parameters impacts such as laser power, spot size and dimensions, and cutting speed on the resulting kerf size. Yilbas (2008) studies on the effect of laser power and oxygen gas pressure on the kerf width variation. Researchers Ghany and Newishy (2005) indicated a positive relationship between laser cutting quality and the laser power, pulse frequency, cutting speed and focus position.

1.2.1 Laser Cut Quality Characteristics

The laser cut edge characteristics, which can be used to measure the laser cut quality include: the cut kerf width, dross attachment on the lower cut edge, cut edge squareness deviation perpendicularity, cut edge surface roughness, and boundary layer separation point.

1.3 Problem Statement

The common metal machining is performed by using a laser machine with vertical cutting head. The literature did not explain clearly the impact of the nonlinear incline cutting process parameters on the surface quality, and did not compare this effect with the linear cutting.

The nonlinear incline cutting is very important in assembling parts or appliances or in welding pieces together as some of the parts and by design must have incline surfaces for ease of their linking and assembling. Therefore, incline cutting laser machine should be available, but this machine probably not is available, in addition to being expensive. For this reason, will use the available vertical cutting machine to address this problem, where we will be control the incline degree of the work piece usually at an angle of 22° under the vertical head to get the incline cutting. After that test process on the impact of incline cutting process parameters in term of surface quality will conduct. This project focuses on research on alternative process acetylene oxygen cutting material in machine CNC because of their defects on the metal surface and the changing characteristics at mechanical physical and safety of the surface and transactions thermal and other. Therefore, the existence of machine laser CNC using oxygen gas best for the safety of the surface and the characteristics of mechanical and other through literature review of cutting mild steel, stainless steel, crystal steel, duplex steel.

1.4 Research Objectives

The main objective of this research is to conduct a comprehensive study on the processing parameters effects during incline laser cutting of thin sheet mild steel. The effect of processing parameters is evaluated in terms of surface finish and kerf width. The research aims to achieve the following objectives:

- i. To identify the significant laser material processing that affecting inclined cutting parameter.
- ii. To establish significant design parameters for high cut quality of non-linear inclined cutting.
- iii. To model the optimal laser processing of non-linear inclined cutting

1.5 Research Scope

The aim of this research is to identify which parameters in incline laser cutting process play the major role in producing very low roughness cuts and surface finish, which improve the end product quality. The laser oxygen assist will be used for non-linear incline cutting process of a thin sheet of mild steel of 6 mm thickness.

The response surface methodology RSM will be applied to construct a mathematical relationship between the laser cutting process parameters, laser power, speed and pressure and between the quality of the responses namely quality of cut edge and surface roughness during an incline cutting process. The potential impact of each laser cutting parameter on the responses will be defined by the verified mathematical models to identify the optimal cutting conditions that lead to the highest quality.

CHAPTER 2

LITERATURE REVIEW

This chapter provides an overview of the laser and laser-cutting machine. The principles of the laser beam generation and the technology involved in the laser cutting machine is presented. Previous studies conducted on lasers and laser-cutting machines were reviewed and suggestions and recommendations from those studies were used in the current study.

2.1 Introduction

The conventional machining use has been restricted because of sophisticated shape and unusual size of the work material, rigorous design need and the emergence of advanced engineering materials. Thus, the need for nonconventional machining methods becomes an urgent demand which lead to the emergence of advanced machining processes AMPs (Choudhury and Shirley, 2010).

Laser machining is one of the AMPs utilized to cut various types of materials economically. Laser beam machining has wide application because it gives a finer finish to the end product as compared to conventional cutting methods (Choudhury and Shirley, 2010). Lasers are commonly used to cut or machine different types of materials, especially difficult-to-cut materials, in many industrial applications, due to its advantages over the conventional cutting processes (Eltawahni et al., 2010). Compared with other conventional mechanical processes, laser cutting removes little material, involves highly localized heat input to the workpiece, minimizes distortion, and offers no tool wear. Laser cutting is a thermal, non-contact, and highly automated process well suited for various manufacturing industries where a variety of components in large numbers are required to be machined with high dimensional accuracy and surface finish (Madic et al., 2012).

2.2 Metal Cutting Process

Metals are one of the structural materials. Metals are strong, cheap and tough; they are chemically reactive, heavy and have limitations on the maximum operating temperature (Samant and Dahotre, 2009). Metal working is the process of working with metals to create individual parts, assemblies, or large scale structures. It therefore includes a correspondingly wide range of skills, processes, and tools. Cutting is a collection of processes wherein material is brought to a specified geometry by removing excess material using various kinds of tooling to leave a finished part that meets specifications. The net result of cutting is two products, the waste or excess material, and the finished part. In cutting metals the waste is chips and excess metal. These processes can be divided into chip producing cutting, generally known as machining. Burning or cutting with an oxyfuel torch is a welding process not machining.

There are also miscellaneous specialty processes such as chemical cutting. Using an oxy-fuel cutting torch to separate a plate of steel into smaller pieces is an example of burning. Chemical turning is an example of a specialty process that removes excess material by the use of etching chemicals and masking chemicals (Tulasiramarao et al., 2013). Emergence of advanced engineering materials, stringent design requirements,